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Abstract—Willshaw networks are a type of associative memo-
ries with a storing mechanism characterized by a strong redun-
dancy. Namely, all the subparts of a message get connected to
one another. We introduce an additional specificity, by imposing
the constraint of a minimal space separating every two elements
of a message. This approach results from biological observations,
knowing that in some brain regions, a neuron receiving a stronger
stimulation can inhibit its neighbors within a given radius.
We experiment with different values of the inhibition radius
introduced, and we study its impact on the error rate in the
retrieval of stored messages. We show that this added constraint
can result in significatively better performance of the Willshaw
network.

Keywords—Willshaw Networks; Clique-Based Neural Networks;
Lateral Inhibition.

I. INTRODUCTION

Associative memories are a type of computer memories
that are part of the broader category of content-adressable
memories. Where adressable memories associate an adress
with a piece of data, associative memories have the char-
acteristic of associating patterns to one another. Among this
group, we distinguish between hetero-associative memories,
and auto-associative memories. An hetero-associative memory
will associate together patterns in pairs. For instance, if the
pattern p1 was associated with pattern p2, the request p1 will
bring the response p2. Auto-associative memories follow a
different principle, as they will associate a pattern with itself.
The main application of these memories is pattern completion,
where a request made of a subpart of a stored message will get
as response the completed pattern. It is today widely accepted
that the working principle of the brain can often be likened to
the operation of an associative memory.

The prominent model for associative memories was intro-
duced by John Hopfield [1]. Hopfield networks are associative
memories made of a set of N neurons that are fully intercon-
nected. The training of these networks, given n binary vectors
xµ of length N , consists in modifying the weight matrix W
according to the formula:

wij =
1

n

n∑
µ=1

xµi x
µ
j , (1)

where element wij at the crossing between line i and
column j of W is the real-valued connection weight from
neuron i to neuron j.

As connections are reciprocal and not oriented, we have :

wij = wji ∀i, j ∈ J1, NK (2)

for any indices i and j in the list of neurons, which makes W
symmetrical.

The binary values considered for the stored messages are
usually -1 and 1, but can be adapted to work with other
binary alphabets. The Hopfield model has a limited efficiency,
in particular it doesn’t allow a storage of more than 0.14N
messages [2]. The limits of the model can be explained by the
facts that each entry of the matrix is modified at every time
step of the storing procedure, and that the changes are made in
both directions and can therefore cancel each other out. This
overfitted caracteristics of associative memories is very dif-
ferent from that observed in learning applications. Indeed, an
overfitted learning system recognizes only the training samples
and fails at generalizing to novel inputs. To the contrary, an
overfitted storing system recognizes everything and does not
discriminate anymore between stored and nonstored data.

Willshaw networks [3] are another model of associative
memories in which information is carried by the existence
or absence of connections. Its material is made of a set of
N neurons and N2 potential connections between them. A
message is then a fixed size subset of the N neurons, and
can be represented by a sparse vector of length N with
ones at these neurons’ positions and zeros everywhere else.
The connection weights are binary, and the active units in a
message get fully interconnected as soon as it is memorized,
thus forming a clique. Figure 1 gives an example of such a
network. The performances of Willshaw networks are way
superior to those of Hopfield memories, given that stored
messages are sparse (i.e., they contain a small proportion of
nonzero elements). Further theoretical and numerical compar-
ison between Hopfield and Willshaw networks can be found
in [4]–[7].

Recently, a novel type of associative memories was pro-
posed by Gripon et al. [8], called Gripon-Berrou Neural
Networks (GBNNs) or clique-based neural networks. These
associative memories make use of powerful yet simple error
correcting codes. These networks consider input messages to
be nonbinary, and more precisely to be words in a finite
alphabet of size l. This specific structure allows the separation
of nodes into different clusters, each being constituted of the
same number l of nodes. Connections between nodes inside
a given cluster are forbidden, only the connections between
nodes in two different clusters are allowed. There again, this
model brings a significantly improved performance as com-
pared to the former state-of-the-art of associative memories,
namely Willshaw networks [9]–[11]. For instance, with 2048
nodes and 10000 stored messages of order 4 and 2-erasures
queries, a Willshaw network will have an error rate close to
80%, while a clique-based neural network will only make 20%
of wrong retrievals.

In both Hopfield and Willshaw models, the number of
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messages the network can store and retrieve successfully
is linearly proportional to the number of nodes, with a
greater proportionality constant for Willshaw networks [5]. In
clique-based neural networks however, storage capacity grows
quadratically as a function of the number of units.

One of the objectives of the present work is to explain the
performance improvement brought by the separation of the
network into clusters. We therefore study a network that can
be considered as an intermediate between the Willshaw and
Gripon-Berrou models. More precisely, our proposed model
adds a locally exclusive rule for nodes to be active in the
network.

We focus here on the phenomenon observed in biological
neural networks, called lateral inhibition [12]. It can also
be referred to as surround suppression [13]. This translates
in the inhibition exerted by some neurons on their close
neighbors when these have an activity inferior to their own.
We consider that the Willshaw model is not totally biologically
plausible, as it does not feature this phenomenon of inhibition
of close neighbors. We propose a model of Willshaw network
that is improved in terms of plausibility, by the introduction
of local inhibition that results in the prohibition of short-
range connections. We show that this modification brings a
performance improvement in the retrieval of stored messages.

Section II introduces Willshaw networks and biological
considerations related to our model. Section III details mod-
ifications in our implementation as compared to the classic
Willshaw model, including the constraint applied on the space
between connected neurons. Section IV presents the results
we obtain, and gives some theoretical explanations.

II. WILLSHAW NETWORKS AND BIOLOGICAL
CONSIDERATIONS

Willshaw networks are models of associative memories
constituted of a given number of neurons. A stored message,
or memory, is a combination of nodes taken in this set.
The storage of this information element corresponds to the
creation of connections with unitary weights between every
two neurons in this message. The graphical pattern thus formed
is termed "clique". The storing process of n binary vectors xµ

of length N is equivalent to the modification of elements of
the network’s connection matrix W , according to the formula:

wij = max
µ

xµi x
µ
j (3)

Note that here, the max operator is performed coefficient-
wise. Equivalently, the connection weight between nodes i and
j is equal to 1 if, and only if, those two nodes are used in a
same message among the n stored messages.

The network’s density d is defined as the expected ratio of
the number of 1s in the matrix W to the number of 1s it would
contain if every possible message was stored. In the case of
uniform i.i.d. messages, all containing exactly c active nodes,
binomial arguments quickly lead to the formula:

d = 1−

(
1−

(
c
2

)(
N
2

))n (4)

Figure 1. Willshaw network. Black nodes represent a message, and the
connections between them are the means of its storage in the network.

The efficiency of an associative memory is defined as the
ratio of the maximal amount of information carried by the
messages it is capable of storing then retrieving with high
probability, over the total information quantity represented by
its set of connection weights. For a Willshaw network with N
nodes, the number of potential connections or binary resource
is

Q =
N(N − 1)

2
[bits]. (5)

After M mesages have been stored in the network, the amount
of information it contains is

B =M

(
log2

((
N

c

)))
[bits]. (6)

Hence the efficiency of a Willshaw network is

η =
2M

(
log2

((
N
c

)))
N(N − 1)

. (7)

The maximal attainable efficiency is ln(2) [14].
The stimulation of a Willshaw network with an input request

can be performed as the product of the sparse input vector
by the network’s connection matrix. The resulting vector then
contains the output scores of the network’s neurons. The score
of a neuron is thus the sum of unitary stimulations it receives
from the request elements it is connected to. Neurons must
then be selected based on their score.

Figure 2 defines a procedure that can be used for the
recovery of a complete message from a subpart of its content.
The Global Winner-Takes-All step consists in discarding all
active neurons with a score below the maximum.

We aim to modify classic Willshaw networks in a way that is
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Data: Subpart x of a stored message
Result: Set of nodes z active after treatment
z = x
Repeat

y =Wz
z = GlobalWinnerTakesAll(y)

while (convergence not reached
and max. nb. of iterations not reached)

Return z

Figure 2. Message retrieval procedure in a classic Willshaw network

relevant in regard to biological observations. Emphasis is put
on lateral inhibition, a phenomenon that has been observed
in several areas of the brain. It is notably present in sensory
channels. For vision, it operates at the level of retinal cells
and allows an increase in contrast and sharpness of signals
relayed to the upper parts of the visual cortex [13] [17].
In the primary somatosensory area of the parietal cortex,
neurons receive influx coming from overlapping receptive
fields. The Winner-Takes-All operation resulting from the
action of inhibitory lateral connections allows to localize
precisely tactile stimuli, despite the redundancy present in the
received information [18]. The same scheme of redundancy
among sensory channels, and filtering via lateral inhibition,
is present in the auditory system [12]. WTA is observed in
the inferior colliculus and in upper levels of the auditory
processing channel.

III. PREVENTING CONNECTIONS BETWEEN NEIGHBOR
NEURONS

Classic Willshaw networks have no topology. Their material
is constituted with a list of neurons each having an index
as sole referent. There is neither a notion of spatial position
in these networks, nor, a fortiori, of spatial distance. We get
closer here to a real neural network, by arranging them on a
two-dimensional map. In the model we propose, the respective
positions of two neurons impact the possibility for them to
get connected together. The considered network is composed
of a number N of nodes evenly distributed along a square
grid, of side S =

√
N . Stored messages are of constant

order, meaning they are all constituted of the same number
of neurons. We forbid connections between nearby neurons.
To this end, we apply a threshold σ on the spatial length of a
connection. Stored messages must necessarily be conform to
this constraint. Each message is formed in a random manner,
units are chosen iteratively. Each new element of the message
is picked from the positions left available after the removal of
the neighbors of the formerly selected nodes, as indicated on
Figure 3. One can consider the introduced constraint as applied
on the network’s material, as the weights of a predetermined
set of short-range connections will be enforced to stay null all
along the network’s life. During the formation of a message,
it is practical to pick neurons to satisfy this constraint in
a sequential manner, with a local inhibition applied on a
neuron’s neighborhood from the moment it is selected until
the message generation is complete.

Figure 3. Willshaw network with a constraint on local connections.

A link can be drawn between this approach and Kohonen
Self-Organizing Maps [15], where closeby neurons encode
more similar information. Long-range distance therefore sepa-
rates information elements that are different in nature, whereas
shorter-range distance depicts a difference in degree. Local
competition is particularly relevant in this scheme.

During retrieval, the network is stimulated iteratively with
a request that will most often change from one iteration to
the next. Each node of the request will first stimulate every
other element it is connected to. Scores are initialized at
zero at the start of every iteration, and each stimulation is
a unitary increment to the score of the receiver unit. For the
first iteration, after the stimulation we apply a global Winner-
Takes-All rule, which consists in excluding from the research
scope all units that do not achieve the maximal score observed
in the network. We know indeed that the neurons from the
searched message will all have the maximum possible score,
equal to the number of elements in the request. Once non-
maximum elements are put to zero, we only pay interest in
the remaining neurons during the rest of the retrieval process.
Moreover, for every iteration after the first one, neurons in the
new request are the only ones that can receive stimulation as
the algorithm proceeds to only discard neurons from then on.

Thereafter, we can keep using the global Winner-Takes-
All principle iteratively, but other algorithms such as Global
Winners-Take-All (GWsTA) or Global Losers-Kicked-Out
(GLsKO) [16] are more efficient in discriminating the right
nodes from the spurious ones that can appear during retrieval.

Global Winners-Take-All relies on the calculation of a
threshold score to select winner neurons. This threshold is
chosen such that neurons with an activity above it are in
number at least as large as the order of stored messages.
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Data: Subpart x of a stored message
Result: Set of nodes z active after treatment
Phase I

y =Wx
z = GlobalWinnerTakesAll(y)

Phase II
Repeat

y =Wz
a = active nodes in y
m = nodes in a with minimal score
z = a−m

while (convergence not reached
and max. nb. of iterations not reached)

Return z

Figure 4. Message retrieval procedure in a Willshaw network with lateral
inhibition

Global Losers-Kicked-Out consists in putting off, at each
iteration, all the units that do not have the highest score, or a
subgroup sampled randomly in this ensemble.

These two algorithmic techniques allow to get rid of an
important proportion of false-positives. In the clique-based
GBNN, clusters play a similar role.

The iterative nature of the process means that a message
retrieved as output from the network is typically reinjected in
it until input and output no longer differ. A limited number of
iterations is applied in the case where the network would not
converge to a stable solution, an observable case in which it
can oscillate between two states.

In addition to these two stopping criteria that are the
maximum number of iterations and convergence, comes a
third one which is the identification of a clique. Indeed, if
we observe that the units still active after an iteration are in
number equal to the order of stored messages, and that they
all have the same score, this means it is a stored message.
This ensemble is then retained as the response given by the
network for the current request.

Figure 4 shows the message retrieval procedure used in the
results we present. Phase II uses Global Losers-Kicked-Out.

We experiment the storage of messages of order c in the
connection matrix of the network. Messages are formed with
the constraint of a minimal space between connected nodes.
Two units in a message must be spaced apart at a distance
superior to a minimum σ. In order to ease computations and
avoid edge effects, we choose to use the L1 distance, even
though we believe this method should work using any distance.
This way, when picking a node x for a message, all nodes
located in a square grid centered on x, of side 2σ+1, are
excluded from the possible choices for the elements of the
message remaining to be filled. Moreover, this distance is
applied in a cyclic way, meaning a node located on the right
edge of the grid will be considered a direct neighbor of the
element located at the crossing between the same line and the
left edge of the grid. All four corners of the grid will also be
neighbors to one another. As a result, the spatial distance we
consider can be written:

d(A,B) = min(abs(xa − xb), S − abs(xa − xb),
abs(ya − yb), S − abs(ya − yb)),

(8)

where abs denotes the absolute value function.
We call the network so described a torus. During retrieval,

only a sample from the nodes of the complete message are
stimulated, the inputs are subparts of stored messages. Units
that are close to elements of an input will not reach the
maximum score in the network, and will therefore be ruled out
after the first Global Winner-Takes-All operation. During the
second phase of the algorithm, nodes in the vicinity of input
neurons will also be more likely to reach a low score if they are
activated, and to be discarded. Hence, the local inhibition used
initially during the creation of messages impacts the retrieval
process as well.

We pay interest in the network’s ability to return the exact
memory associated to a request. Hence every difference, even
marked by a single unit, between the expected pattern and the
network’s output is counted as an error.

We measure the performance of the network as the ratio of
the number of successfully retrieved messages over the total
number of requests.

Various parameters can impact this performance, albeit to
different degrees:
- the length S of the grid’s side
- the number M of stored messages
- the minimal space σ between two elements of a message
- the order c of stored messages
- the number of erasures ce applied on stored messages to
obtain the corresponding request messages

Let’s note that the constraint applied on the length of
connections reduces the number of messages one can form
for a given network. It thus lowers the information quantity
carried by single messages. Hence, there is a tradeoff on the
individual quantity of information of the messages and the
performance of the retrieval algorithm.

The behavior of this network is interesting in relation to
Willshaw networks and clique-based neural networks, as it is
close to a classic Willshaw network and displays the added
feature of prohibited connections as observed in GBNNs. One
could talk about sliding-window clustering here.

IV. RESULTS

For every configuration of the network, messages and re-
quests we test, we store a set of thousands of messages in the
network. These messages are generated randomly following
the local inhibition pattern described in section III. We then
request it with the full set of queries associated to stored
messages.

For each network size, we observe that there is an opti-
mal value of the minimal distance σ, that lowers the most
significantly the error rate, as compared to the corresponding
Willshaw network without constraint on local connections. For
a given minimal distance, the reduction in error rate depends
on the number of stored messages, with an optimal number of
messages which is a function of the network size. For cliques
of order 4 and 2 erasures, the maximal reachable improvement
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Figure 5. Evolution of the retrieval error rate with and without constraint
σ = 5 in a network of side length 20 with 400 neurons, stored messages of
order 6 and 1 erasure applied to form corresponding requests, with a maximum
of 5 iterations.

Figure 6. Minimal connection distance effect on performance in a network of
side length 20 with 400 neurons, stored messages of order 4 and 2 erasures
applied to form corresponding requests. The case where minimal spacing
σ = 0 corresponds to a classic Willshaw network.

is close to 15%, and seems to be the same for all network sizes.
In this configuration, the minimal distance bringing the best
performance is approximately the third of the network side.

The evolution of the retrieval error rate as a function of
the number of stored messages is slower with the appropriate
constraint on connections than for a classic Willshaw network,
as can be seen on Figure 5.

For a constant number of stored messages, the graph of the
error rate as a function of σ is characterized by a progressive
decay down to a minimum, followed by a rapid growth for
upper values of σ, as shown on Figure 6.

This can be explained by two phenomena. On one part,
the prohibition of a growing part of the possible connections
gradually decreases the probability of a "false message",
characterized by the intrusion of a spurious node in the output.
The existence of a node that is connected to all elements in

Figure 7. Evolution of the density with and without constraint in a network
of side length 20 with 400 neurons, stored messages of order 6.

a request yet is not part of the corresponding message will
potentially cause an error. In fact, forbidding some connections
has the effect of reducing the number of concurrent nodes
susceptible to cause errors. We can estimate the mean number
of concurrent nodes remaining after the choice of k neurons
of a message:

Ncompetitors = N

(
1−

(
(2σ + 1)

2

N

))k
The corresponding number of nodes blocked by the con-

straint on connections is, on average:

Nblocked = N

1−

(
1−

(
(2σ + 1)

2

N

))k
This explains the decay phase in error rate observed for the

first values of σ. Let’s note that it comes with a decrease
in the diversity of messages, namely the total number of
different messages that can be stored in the network. Following
this decay, the decrease in the number of concurrent nodes
has another effect: the reuse of connections by different
messages becomes more frequent as the choice for possible
connections gets reduced. This comes to counteract the former
phenomenon and raises the error rate.

The network density grows faster as messages are stored in
the network, than for a classic Willshaw network, as shown
on Figure 7. This is because of the decrease in number of
possible connections due to the spacing constraint.

Besides, we observe that the maximal improvement in
performance, for given values of c and ce, varies little as a
function of the network size. This can be explained by the
fact that the minimal distance giving the best performance
is approximately proportional to the side of the network.
Consequently, the proportion of neurons in the network that
cannot be connected to the c − ce neurons in the request
remains more or less the same for different network sizes,
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Figure 8. Maximal improvement obtained over a classic Willshaw network
of side length 20 with messages of order 6.

with the optimal minimal distance.
The benefits brought by the constraint on connections seems

stronger for smaller numbers of erasures. For erasures of about
half the units of the messages, the maximum gain will be
lower, yet for a high amount of erasures the performance can
be noticeably enhanced by the added constraint. Moreover, the
graph of the best performance improvement as a function of
the number of stored messages has a shape that varies depend-
ing on the number of erasures. The performance improvement
over a classic Willshaw network also depends on the number of
messages stored in the network. It reaches a peak for a certain
number of stored messages, and then decays when additional
messages get stored. The higher the number of erasures, the
earlier this peak is reached during storage. For lower numbers
of erasures, average performance gain increases more slowly
at first but decays faster after the maximum is reached, as
illustrated by Figure 8.

The greatest performance improvement is most often ob-
served for a Willshaw network and a number of stored
messages giving a performance between 40 and 60%. The
performance gain is then often close to 15%.

V. CONCLUSION

We introduced a modified version of Willshaw neural net-
works that has interesting properties regarding storage capacity
and retrieval performance. By prohibiting certain types of
connections in the network, we observe that the retrieval
ability can be enhanced, and that the value of the threshold
on inter-neuron connection spacing has a direct impact on
performance. This is relevant with observations on clique-
based neural networks, in that it shows constraining connec-
tions in a Willshaw network modifies its capacity in a way
that depends on the nature of the applied constraint. It is
a step forward in understanding why the use of clusters in
GBNNs brings significantly higher capacity as compared to
Willshaw networks. To some extent, it also emulates biological
observations of lateral inhibition in the brain and sensory
channels, as we prevent neighbor neurons from connecting and

therefore let them compete for activity. This makes sense with
a framework in which close-by neurons encode patterns that
differ only in degree and where only one unit that resonates
most with input stimuli must activate. Future work might
involve a deeper theoretical analysis of this result, and a
further attempt to explain the gain in performance brought by
clustering the pool of neurons in GBNNs. It may also involve
experimenting with other constraints on connections based on
the relative locations of neurons.
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