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THEORETICAL AND NUMERICAL OBSERVABILITY OF THE BRESSE BEAM
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The aim of this paper is to study the observability of the elastic type of Bresse systems in one-dimensional bounded domain. We first study the observability of this systems by observing the displacement. The multiplier techniques are applied. In numerical point vue, an implicit Euler scheme is proposed and studied. This allow us to introduce a discrete observability.

Introduction

We consider the following elastic Bresse type system under the homogeneous Dirichlet-Neumann-Neumann boundary conditions

(1.1)                ρ 1 ϕ tt -k(ϕ x + ψ + lω)
x -lk 0 (ω x -lϕ) = 0, ρ 2 ψ tt -bψ xx + k(ϕ x + ψ + lω) = 0, ρ 1 ω tt -k 0 (ω x -lϕ) x + lk(ϕ x + ψ + lω) = 0 ϕ(t, 0) = ϕ(t, L) = ψ x (t, 0) = ψ x (t, L) = ω x (t, 0) = ω x (t, L) = 0, ω(0, .) = ω 0 , ω t (0, .) = ω 1 , ϕ(0, .) = ϕ 0 , ϕ t (0, .) = ϕ 1 , ψ(0, .) = ψ 0 , ψ t (0, .) = ψ 1 .

with t > 0 and 0 < x < L. The functions ϕ, ψ and ω denote, respectively, the transverse displacement of the beam, the rotation angle of the filament and the longitudinal displacement. k 0 = Eh, k = Gh, b = EI and l = 1 R , where, ρ 1 , ρ 2 , l, G, E, and h denote positive constants characterizing physical properties of the beam and the filament. R denotes the radius of curvature.

Moreover, the partial derivatives with respect to time t ≥ 0 (respectively with respect to spatial location x ∈ [0, L]) is denoted by u t (respectively u x ). The energy of solutions of the system (1.1) is defined by

(1.2)    E(t) = 1 2 Ω ρ 1 |ϕ t | 2 + ρ 2 |ψ t | 2 + ρ 1 |ω t | 2 + EI|ψ x | 2 +Gh|ϕ x + ψ + lω| 2 + Eh|ω x -lϕ| 2 dx.
The expressions k(ϕ x + ψ + lω), bψ x , and k 0 (ω x -lϕ)

represent the shear force, the bending moment and the axial force respectively. See [START_REF] Lagnese | Modelling Analysis and Control of Dynamic Elastic Multi-Link Structures[END_REF], [START_REF] Alabau | Stability to Weak Dissipative Bresse System[END_REF], and [9] for more details on the physical properties for this system. On the other hand, the well-posedness of this system have been proved by Wehbe

Many authors studied the observability of coupled systems. Alabau [START_REF] Alabau | Indirect boundary observability of a weakly coupled wave system[END_REF] treated the indirect boundary observability of a coupled system of two wave equations. She showed that for a sufficiently large time, the observation of the trace of the normal derivative of the first component of the solution on a part of the boundary can get back a weakened energy of the initial data, when the coupling parameter is sufficiently small, but non vanishing, and she concluded an indirect exact controllability result. Later, Alabau generalized this result in [START_REF] Alabau | A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems[END_REF]. She considered an abstract system of two coupled second order evolution equations and proved an indirect boundary observability result. She showed that by observing only one component, one can get back a full weakened energy of both components under a compatibility condition linking the operators of each equation and for small coupling. She then establish the indirect exact controllability result. Alabau applied this abstract result to several coupled systems of partial differential equations (wave-wave, coupled elastodynamic systems, Petrowsky-Petrowsky, and wave-Petrowsky systems). Recently, Guesmia and Kirane [9] proved two decay estimates of the Bresse systems depending on the speeds of wave propagations in a bounded open domain under Dirichlet-Neumann-Neumann boundary conditions with two infinite memories acting only on two equations. Keddi, Apalara, and Messaoudi [START_REF] Keddi | Exponential and Polynomial Decay in a Thermoelastic-Bresse System with Second Sound[END_REF] considered the one-dimensional thermoelastic Bresse system and studied the exponential and polynomial stability, where the heat conduction is given by Cattaneo's law effective in the shear angle displacements. Alabau-Boussouira et al. [START_REF] Alabau | Stability to Weak Dissipative Bresse System[END_REF] established the exponential stability of the Bresse systems with frictional dissipation working only on the angle displacement and they found some numerical result to verify their analytical results. Also, other subjets to Bresse system was studied. Charles and al. [START_REF] Charles | Decay Rates for Bresse System with Arbitrary Nonlinear Localized Damping[END_REF] proved an internal observability of the Bresse system by observing locally the vilocities. Soriano and Schulz [START_REF] Soriano | Exact Controllability for Bresse System with Variable Coefficients[END_REF] have treated the internal exact controllability of a generalized Bresse system subjected to Dirichlet boundary conditions with variable coefficients, which the controls functions acts in an arbitrarily small subinterval. We refer also the reader the references for the stabilization and decay rate of the Bresse system ([3], [START_REF] Fatori; R | The Optimal Decay Rate for a Weak Dissipative Bresse System[END_REF], [START_REF] Charles | Decay Rates for Bresse System with Arbitrary Nonlinear Localized Damping[END_REF], [START_REF] Wehbe | Stabilization of the uniform Timoshenko beam by one locally distributed feedback[END_REF], [START_REF] Wehbe | Exponential and Polynomial Stability of an Elastic Bresse System with two Locally Distributed Feedbacks[END_REF], [START_REF] Liu | Energy Decay of the Thermoelastic Bresse System[END_REF], [START_REF] Li | Energy Decay Rate of Bresse System with Nonlinear Localized Damping[END_REF]). Numerically, Erverdoza and al. [START_REF] Ervedoza | On the observability of time-discrete conservative linear systems[END_REF] derived observability inequalities for some time-discretization schemes. Bernardi and Copetti [START_REF] Bernardi | Discretization of a nonlinear dynamic thermoviscoelastic Timoshenko beam model[END_REF] considered a nonlinear model for a thermoelastic Timoshenko beam that can enter in contact with obstacles and they performed the a priori analysis of the discrete problem by proposing a discretization by combining an Euler and Crank-Nicolson type schemes in time and finite elements in space.

In this paper, we are interested to direct weak observability by observing the displacement not the vilocity or outward normal derivative and deduce the exact controllability of the system. The proof of the main result in the theoreticall part will be based on the lemma 3.4.2 page 123 introduced by [START_REF] Youssef | Contrôle et stabilisation de systèmes élastiques couplés[END_REF]. This result is also used by Soriano and Schulz [START_REF] Soriano | Exact Controllability for Bresse System with Variable Coefficients[END_REF] to treat the exact controllabilty for Bresse system submitted to the Dirichlet boundary conditions but by using lemma 3.3.2 page 113 in [START_REF] Youssef | Contrôle et stabilisation de systèmes élastiques couplés[END_REF]. A second part is treated by proposing a numerical scheme based on finite difference in time and finite element in space of this problem. Then we perform a priori estimate which leads to to the convergence of the scheme. Finally, we establish a discrete observability inequality.

Direct Internal Observability under the Neumann boundary conditions

2.1. Inverse Inequality. Our main result in this section is summerized in the following theorem.

Theorem 2.1. There exist a time T 0 > 0 and a positive constant K such that for every T > T 0 , for all

U 0 = (ϕ 0 , ϕ 1 , ψ 0 , ψ 1 , ω 0 , ω 1 ) ∈ L 2 (Ω) × H -1 (Ω) × L 2 (Ω) × [H 1 * (0, L)]
2 the solution (ϕ, ψ, ω) of (1.1) satisfies

(2.1)

       T 0 ϕ 2 0 + ψ 2 0 + ω 2 0 dt ≥ K ϕ 0 2 0 + ϕ 1 2 -1 + ψ 0 2 0 + ( ψ 1 * ) 2 + ω 0 2 0 + ( ω 1 * ) 2 ,
where K is dependent of T, L, ρ 1 , ρ 2 , k and b .

For the proof, several lemmas are required.

Lemma 2.1. [23]

There exists a positive constant C such that for all (ϕ, ψ, ω) in

F := H 1 0 (Ω) × H 1 * (Ω) 2 , we have      Ω |ϕ x | 2 + |ψ x | 2 + |ω x | 2 dx ≤ C Ω EI|ψ x | 2 + Gh | ϕ x + ψ + lω | 2 +Eh | ω x -lϕ | 2 dx.
Lemma 2.2. There exists a time T 0 > 0 such that for all T > T 0 , for every U 0 = (ϕ 0 , ϕ 1 , ψ 0 , ψ 1 , ω 0 , ω 1 ) ∈ H, there exist two positive constants C 1 and C 2 such that the solution (ϕ, ψ, ω) of (1.1) satisfies

(2.2) C 1 E(0) ≤ T 0 Ω |ϕ t | 2 + |ψ t | 2 + |ω t | 2 dxdt ≤ C 2 E(0),
where C 1 and C 2 are dependent of T, L, ρ 1 , ρ 2 , k and b.

Proof. Firstly, multiply the first equation of (1.1) by ϕ, the second by ψ, the third by ω, then integrate over [0, T ] and combine the three resulting equations, we obtain

(2.3)                - T 0 L 0 ρ 1 |ϕ t | 2 - T 0 L 0 ρ 2 |ψ t | 2 - T 0 L 0 ρ 1 |ω t | 2 + Gh T 0 L 0 | ϕ x + ψ + lω | 2 +Eh T 0 L 0 | ω x -lϕ | 2 +EI T 0 L 0 |ψ x | 2 + ρ 1 T 0 ϕ t ϕ T 0 + ρ 2 L 0 ψ t ψ T 0 + ρ 1 L 0 ω t ω T 0 = 0.
Therefore, we have

(2.4)        2 T 0 E(t) dt = 2T E(0) = -ρ 1 L 0 ϕ t ϕ T 0 -ρ 2 L 0 ψ t ψ T 0 -ρ 1 L 0 ω t ω T 0 + 2 T 0 L 0 (ρ 1 |ϕ t | 2 + ρ 2 |ψ t | 2 + ρ 1 |ω t | 2 )dxdt .
Now, using Young's inequality and generalized Poincaré's inequality yields the estimations of the following terms

-ρ 1 L 0 ϕ t ϕ T 0 ≤ cE(0), -ρ 2 L 0 ψ t ψ T 0 ≤ cE(0), and -ρ 1 L 0 ω t ω T 0 ≤ cE(0),
where c is a generic constant depends on ρ 1 , ρ 2 , E, I, G et c 0 . Consequently, (2.4) implies that

(T -c)E(0) ≤ T 0 L 0 (ρ 1 |ϕ t | 2 + ρ 2 |ψ t | 2 + ρ 1 |ω t | 2 )dxdt
and the proof of the inverse inequality of (2.2) is achieved, where T 0 = c. Concerning the proof of the direct inequality is trivial from the definition of the energie E. Now, we need the following lemma which is the crucial ingredient in the proof of theorem 2.1. This lemma is a generalization of the lemma 3.4.2 page 123 introduced in [START_REF] Youssef | Contrôle et stabilisation de systèmes élastiques couplés[END_REF] for Timoshenko system.

Lemma 2.3. For all (ϕ 1 , ψ 1 , ω 1 ) ∈ F := H -1 (Ω) × [H 1 * (0, L)] 2 , the system (2.5)        -Gh((u xx + v + lp) x -lEh(p x -lu) = ρ 1 ϕ 1 , -EIv xx + Gh(u x + v + lp) = ρ 2 ψ 1 , -Eh(p x -lu) x + lGh(u x + v + lp) = ρ 1 ω 1 , u(0) = u(L) = v x (0) = v x (L) = p x (0) = p x (L) = 0 has a unique solution (u, v, p) in F . Proof. The system (2.2) is equivalent to (2.6)                  Gh Ω (u x + v + lp)(u x + v + lp) + EI Ω v x v x +Eh Ω (p x -lu)(p x -lu) = -ρ 1 ϕ 1 , u H -1 Ω,H 1 0 (0,L) + -ρ 2 ψ 1 , v [H 1 * (0,L)] ,H 1 * (0,L) + -ρ 1 ω 1 , p [H 1 * (0,L)] ,H 1 * (0,L)
.

Define the following bilinear form

χ : F × F -→ R,
given by (2.7)

     χ (u, v, w), (u, v, w) := Gh Ω (u x + v + lw)(u x + v + lw) +EI Ω v x v x + El Ω (w x -lu)(w x -lu).
It is clear that χ bilinear form, coercive, and continuous on E. Consequently, by Lax-Milgram theorem, there exists a unique (u, v, w) ∈ E satisfying (2.5). Now, we return to the proof of theorem 2.1.

Proof. Let

U 0 = (ϕ 0 , ϕ 1 , ψ 0 , ψ 1 , ω 0 , ω 1 ) ∈ L 2 (Ω) × H -1 (Ω) × L 2 (Ω) × [H 1 * (0, L)] 2
and (u, v, p) be the solution of (2.2). We shall adapt multiplier method introduced by J. L. Lions [START_REF] Lions | Contrôlabilité exacte et stabilisation de systèmes distribués[END_REF]. If (ϕ, ψ, ω) solution of (1.1) which corresponds to the given (ϕ 0 , ϕ 1 , ψ 0 , ψ 1 , ω 0 , ω 1 ), then the functions (η, ζ, δ) defined by

               η(x, t) := t 0 ϕ(x, s)ds + u(x), ζ(x, t) := t 0 ψ(x, s)ds + v(x), δ(x, t) := t 0 ω(x, s)ds + p(x)
is a solution of (1.1) which corresponds to the initial data (u, ϕ 0 , v, ψ 0 , p, ω 0 ). Thus, by the lemma 2.2, we have

(2.8)      (T -c) T 0 Ω η t 2 0 + ζ t 2 0 + δ t 2 0 ≥ C 1 u 2 1 + ϕ 0 2 0 + v 2 * + ψ 0 2 0 + p 2 * + ω 0 2 0 .
On the other hand, we know that

-∆ = - ∂ 2 ∂x 2 is a linear continuous mapping from H 1 * (Ω) to [H 1 * (Ω)
] and also from H 1 0 (Ω) to H -1 (Ω) i.e. there exist positive constants M and M such that

(-∆)γ * ≤ M γ * , ∀γ ∈ H 1 * (0, L)
and

(-∆)γ -1 ≤ M γ 1 , ∀γ ∈ H 1 0 (Ω).
Hence, we have

                                                                 u 1 + v * + p * ≥ c -u xx -1 + c -v xx * + c -p xx * = c ρ 1 Gh ϕ 1 + (v x + lp x ) + lEh(p x -lu) -1 +c ρ 2 EI ψ 1 - Gh EI (u x + v + lp) * + c ρ 1 Eh ω 1 - l Eh u x - Gh E (u x + v + lp) * ≥ c ϕ 1 -1 + ψ 1 * + ω 1 * -c v x + lp x -1 + p x -lu -1 + u x * + u x + v + lp * ≥ c ϕ 1 -1 + ψ 1 * + ω 1 * -c v x + lp x 0 + p x -lu 0 + u x 0 + u x + v + lp 0 ≥ c ϕ 1 -1 + ψ 1 * + ω 1 * -c u 1 + v * + p * .

Thus

(2.9)

u 1 + v * + p * ≥ c ϕ 1 -1 + ψ 1 * + ω 1 * .
Taking into consideration that (2.10)

       T 0 Ω |η t | 2 = T 0 Ω |ϕ| 2 , T 0 Ω |ζ t | 2 = T 0 Ω |ψ| 2 , T 0 Ω |δ t | 2 = T 0 Ω |ω| 2 .
Thus, thanks to (2.6) and (2.7), we conclude from (2.5) the estimation

       T 0 Ω |ϕ| 2 + |ψ| 2 + |ω| 2 dx dt ≥ c ϕ 0 2 0 + ϕ 1 2 -1 + ψ 0 2 0 + ( ψ 1 * ) 2 + ω 0 2 0 + ( ω 1 * ) 2 .
The direct inequality is trivial. So, the proof of theorem is complete.

Remark 2.1. We can also obtain a main result when the system is subject to the Dirichlet-Dirichlet-Dirichlet boundary conditions by repeating the same previous procedure of proofs. Then, there exist a time T 1 > 0 and a positive constant K 1 such that for every T > T 0 , for all

U 0 = (ϕ 0 , ϕ 1 , ψ 0 , ψ 1 , ω 0 , ω 1 ) ∈ L 2 (Ω) × H -1 (Ω)
3 the solution (ϕ, ψ, ω) of the system satisfies (2.11)

   T 0 Ω |ϕ| 2 + |ψ| 2 + |ω| 2 ≥ K |ϕ 0 2 0 + |ϕ 1 2 -1 +|ψ 0 2 0 + |ψ 1 2 -1 + |ω 0 2 0 + |ω 1 2 -1 , where K 1 is dependent of T, L, ρ 1 , ρ 2 , k and b.
In this case, we interchange the space F in the lemma 2.3 by F 1 := H -1 (Ω) 3 .

The Discrete Problem

In this section, we introduce a numerical scheme based on implicit Euler in time and finite elements in space. We briefly describe the method and we study the convergence of the proposed scheme. At the end of this section, a new definition of discrete observability based on the finite elements method is proposed and compared with the obtained theoretical result in the previous section.

3.1. Description of the Discrete Problem. For the space discretization, we define a regular familly of triangulations (T h ) h of Ω in the following way:

(1)

T h = {K ⊂ Ω; K is closed in Ω} (2) ∀(K, K ) ∈ T h ×T h ; |K| = |K | and K∩K =
empty set or end point of both of them.

(

) Ω = K∈T h K. 3 
As usual, h denotes the lengths of K. For a given integer N ∈ N * and a given final time T > 0, we define the times step ∆t = T N and the nodes

t n = n∆t, n = 0, 1, ... , N.
Now, P k (K) denotes the space of restrictions to K of polynomials with one variable and degree less than or equal to k. Then, the discrete space, denoted by S h , is defined by

(3.12) S h = {u h ∈ H 1 (Ω); ∀K ∈ T h ; u h | K ∈ P 1 (K)}
We also define the spaces

S 0 h = S h ∩ H 1 0 (Ω) and S * h = S h ∩ H 1 * (Ω).
On the other hand, the projection operators

P * h : H 1 * (Ω) → S * h , P 0 h : H 1 0 (Ω) → S 0 h
are respectively defined by

∀ζ h ∈ S * h , ((P * h η -η) x , ζ hx ) = 0 and ∀ζ h ∈ S 0 h , ((P 0 h η -η) x , ζ hx ) = 0.
The projection operators defined above satisfy the following estimates (see [START_REF] Crouzeix | On Numerical Approximation in Bifurcation Theory[END_REF]):

∀η ∈ H 1 * (Ω); P * h η -η 0 ≤ C 1 h η x 0 and ∀η ∈ H 1 0 (Ω); P 0 h η -η 0 ≤ C 2 h η x 0
. Now, we have all ingredients to propose a numerical scheme. Firstly, multiplying system (1.1) by appropriate test functions and taking into consideration the boundary conditions, we obtain the following weak form of the Bresse system (1.1)

(W P )    ρ 1 (ϕ tt , ϕ) + Gh(ϕ x + ϕ + w, ϕ x ) -Eh(w x -ϕ, ϕ) = 0, ρ 2 (ϕ tt , ϕ) + EI(ψ x , ψ x ) + Gh(ϕ x + ψ + w, ψ) = 0, ρ 1 (w tt , w) + Eh(w x -ϕ, w x ) + Gh(ϕ x + ψ + w, w) = 0.
Combining the implicit Euler scheme in time and the finite elements method in space, we propose the following numerical scheme:

(N P )                    Find (ϕ n h , ψ n h , w n h ) ∈ S 0 h × (S * h ) 2 , ρ1 ∆t ( ϕ n h -ϕ n-1 h , ϕ h ) + Gh(ϕ n hx + ϕ n h + w n h , ϕ hx ) -Eh(w n hx -ϕ n h , ϕ h ) = 0, ρ2 ∆t ( ψ n h -ψ n-1 h , ψ h ) + EI(ψ n hx , ψ hx ) + Gh(ϕ n hx + ψ n h + w n h , ψ h ) = 0, ρ1 ∆t ( w n h -w n-1 h , w h ) + Eh(w hx -ϕ h , w hx ) + Gh(ϕ n hx + ψ n h + w n h , w h ) = 0, ϕ n h = ϕ n-1 h + ∆t ϕ n h , ψ n h = ψ n-1 h + ∆t ψ n-1 h , w n h = w n-1 h + ∆t w n h .
For simplicity, all physical constants in the Bresse system will be replaced by 1.

The energy E n of the solution (ϕ n h , ψ n h , w n h ) of the discrete problem (NP) defined by

   E n := 1 2 ϕ n h 2 0 + ψ n h 2 0 + w n h 2 0 + ψ n hx 2 0 + ϕ n hx + ψ n h + w n h 2 0 + w n hx -φ n h 2 0 . satisfies E n ≤ E n-1 .
Therefore, for all n, we have

(3.13) E n ≤ E 0 .
Proof. By replacing ϕ h by ϕ n h , ψ h by ψ n h , and w h by w h in (NP), by adding the resulting equations, and thanks to the inequality, we deduce

(a -b, a) = 1 2 a -b 2 + a 2 -b 2 ,
we deduce:

1 2 [ ϕ n h -ϕ n-1 h 2 0 + ϕ n h 2 0 -ϕ n-1 h 2 0 + 1 2 ψ n h -ψ n-1 h 2 0 + ψ n h 2 0 -ψ n-1 h 2 0 + 1 2 w n h -w n-1 h 2 0 + w n h 2 0 -w n-1 h 2 0 + 1 2 ψ n hx 2 0 -ψ n-1 hx 2 0 + ψ n hx -ψ n-1 hx 2 0 + 1 2 (ϕ n hx + ψ n h + w n h ) -(ϕ n-1 hx + ψ n-1 h + w n-1 h ) 2 0 + 1 2 ϕ n hx + ψ n h + w n h 2 0 -ϕ n-1 hx + ψ n-1 h + w n-1 h 2 0 + 1 2 (w n hx -ϕ n h ) -(w n-1 hx -ϕ n-1 h ) 2 0 + 1 2 w n hx -ϕ n h 2 -w n-1 hx -ϕ n-1 h 2 0 = 0
and so

E n -E n-1 = - 1 2 ϕ n h -ϕ n-1 h 2 0 - 1 2 ψ n h -ψ n-1 h 2 0 - 1 2 w n h -w n h 2 0 - 1 2 ψ n hx -ψ n-1 hx 2 0 - 1 2 (ϕ n hx + ψ n h + w n h ) -(ϕ n-1 hx + ψ n-1 h + w n-1 h ) 2 0 - 1 2 (w n hx -ϕ n h ) -(w n-1 hx -ϕ n-1 h ) 2 0 ≤ 0.
Attention should be paid that the conervation of discrete energy is not studied. Only, we are intrested to the inequality (3.1).

The main goal of this section, which is summerized in the following theorem, is to show a priori error estimate which leads to the convergence of the proposed scheme (N P ).

We remark Theorem 3.1. Let γ > 1. If the solution (ϕ, ψ, w) of the Bresse system (1.1) belongs to the space

W := H 4 0, T ; L 2 (Ω) ∩ H 3 0, T ; H 1 (Ω) 3 and h 2 = ε(∆t)(∆t) 2+γ
, where ε(∆t) -→ 0 as ∆t -→ 0, then the following priori error estimate holds:

(3.14)              ϕ n h -ϕ t (t n ) 2 0 + ψ n-1 h -ψ t (t n ) 2 0 + w n h -w(t n ) 2 0 + ψ n h x -ψ x 2 0 + ϕ n h x + ψ n h + w n h -ϕ(t n ) + ψ(t n ) + w(t n ) 2 0 + w n h x -ϕ n h -w x (t n ) -ϕ 2 0 ≤ C h 2 + (∆t) 2 + (∆t) γ + ε(∆t) .
Proof. We define the following terms

e n = ϕ n h -P 0 h ϕ(t n ), y n = ϕ n h -P 0 h ϕ t (t n ), q n = ψ n h -P * h ψ(t n ), p n = ψ n-1 h -P * h ψ t (t n ), a n = w n h -P * h ω(t n ), b n = w n h -P * h ω t (t n ).
For the proof, several steps are required.

Step 1: In the first equation of (NP), substituting ϕ h by y n and using the definitions of e n , y n , q n , p n , a n , and b n leads to

(3.15)          1 ∆t y n + P 0 h ϕ t (t n ) -y n-1 -P 0 h ϕ t (t n-1 ), y n -a n x + P * h w(t n ) x -e n -P 0 h ϕ(t n ), y n + e n x + P 0 h ϕ(t n ) x + q n + P * h ψ(t n ) + a n + P * h w(t n ), y n x = 0.
By replacing ϕ by y n in the first equation of (WP) and adding the resulting equation with (3.15), we obtain

         1 ∆t y n -y n-1 , y n + 1 ∆t P 0 h ϕ t (t n ) -P 0 h ϕ t (t n-1 ) -∆tϕ tt (t n ), y n + e n x + P 0 h ϕ(t n ) x + q n + P * h ψ(t n ) + a n + P * h w(t n ) -ϕ x (t n ) -ψ(t n ) -w(t n ), y n x -a n x + P * h w(t n ) x -e n -P 0 h ϕ(t n ) -w x (t n ) + ϕ(t n ), y n = 0.
Therefore,

(3.16)                      1 2∆t y n -y n-1 2 0 + y n 2 0 -y n-1 2 0 + e n x + q n + a n , y n x -a n x -e n , y n = ϕ tt (t n ) - P 0 h ϕ t (t n ) -P 0 h ϕ t (t n-1 ) ∆t , y n + ϕ x + ψ + w -P * h ϕ(t n ) x + P * h ψ(t n ) + P * h w(t n ) , y n x -w x -ϕ(t n ) -P * h w(t n ) x -P 0 h ϕ(t n ) , y n .
Step 2: In a similar way, by replacing ψ h by p n in the second equation of (NP) and ψ by p n in the second equation of (WP) respectively, we get (3.17)

                     1 2∆t p n -p n-1 2 0 + p n 2 0 -p n-1 2 0 + q n x , p n x + e n x + q n + a n , p n = ψ tt (t n ) - P * h ψ t (t n ) -P * h ψ t (t n-1 ) ∆t , p n + ψ x -P * h ψ(t n ) x , p n x + ϕ x -P 0 h ϕ(t n ) x , p n + ψ -P * h ψ(t n ), p n + w -P * h w(t n ), p n .
Step 3: Similarly, we apply the same arguments in the two previous steps to the third equations in (NP) and (WP) together by replacing w h by b n and w by b n respectively, we obtain

(3.18)                      1 2∆t b n -b n-1 2 0 + b n 2 0 -b n-1 2 0 + a n x -e n , b n x + e n x + q n + a n , b n = w tt (t n ) - P * h w t (t n ) -P * h w t (t n-1 ) ∆t , b n + w x -P * h w(t n ) x , b n x + P 0 h ϕ(t n ) -ϕ, b n x + ϕ x -P 0 h ϕ(t n ) x , b n + ψ -P * h ψ(t n ), b n + w -P * h w(t n ), b n .
Step 4: Adding (3.16), (3.17), and (3.18) gives

(3.19)                                                            1 2∆t y n -y n-1 2 0 + y n 2 0 -y n-1 2 0 + 1 2∆t p n -p n-1 2 0 + p n 2 0 -p n-1 2 0 + 1 2∆t b n -b n-1 2 0 + b n 2 0 -b n-1 2 0 + e n x + q n + a n , y n x + p n + b n + a n x -e n , b x n -y n + q n x , p n x = ϕ tt (t n ) - P 0 h ϕ t (t n ) -P 0 h ϕ t (t n-1 ) ∆t , y n + ψ tt (t n ) - P * h ψ t (t n ) -P * h ψ t (t n-1 ) ∆t , p n + w tt (t n ) - P * h w t (t n ) -P * h w t (t n-1 ) ∆t , b n + ϕ x + ψ + w -P 0 h ϕ(t n ) x -P * h ψ(t n ) -P * h w(t n ), y n x + p n + b n + w x -ϕ -P * h w(t n ) x -P 0 h ϕ(t n ) , b n x -y n + ψ x -P * h ψ(t n ) x , p n x .
From the definition of P * h the last term vanishes.

Step 5: In this step, we shall calculate in details the term

Y n := e n x + q n + a n , y n x + p n + b n .
Using the definitions of y n , p n , b n , ϕ n h , ψ n-1 h and w n h , we get

Y n = e n x + q n + a n , ( ϕ n h ) x -P 0 h ϕ t (t n ) x + ψ n-1 h -P * h ψ t (t n ) + w n h -P * h ω t (t n ) = e n x + q n + a n , (ϕ n h ) x -(ϕ n-1 h ) x ∆t -P 0 h ϕ t (t n ) x + ψ n h -ψ n-1 h ∆t -P * h ψ t (t n ) + w n h -w n-1 h ∆t -P * h ω t (t n ) = e n x + q n + a n , e n x + (P 0 h ϕ(t n )) x -e n-1
x

-(P 0 h ϕ(t n-1 )) x ∆t -P 0 h ϕ t (t n ) x + q n + P * h ψ(t n ) -q n-1 -P * h ψ(t n-1 ) ∆t -P * h ψ t (t n ) + a n + P * h w(t n ) -a n-1 -P * h w(t n-1 ) ∆t -P * h ω t (t n ) .
It follows that

Y n = 1 ∆t e n x + q n + a n -(e n-1 x + q n-1 + a n-1 ), e n x + q n + a n + (P 0 h ϕ(t n )) x -(P 0 h ϕ(t n-1 )) x ∆t -P 0 h ϕ t (t n ) x , e n x + q n + a n + P * h ψ(t n ) -P * h ψ(t n-1 ) ∆t -P * h ψ t (t n ), e n x + q n + a n + P * h w(t n ) -P * h w(t n-1 ) ∆t -P * h ω t (t n ), e n x + q n + a n .
Finally, we have (

                               Y n = 1 2∆t e n x + q n + a n -(e n-1 x + q n-1 + a n-1 ) 2 0 + e n x + q n + a n 2 0 -e n-1 x + q n-1 + a n-1 2 0 + ϕ x (t n ) -ϕ x (t n-1 ) ∆t -ϕ tx (t n ), e n x + q n + a n + P * h ψ(t n ) -P * h ψ(t n-1 ) ∆t -P * h ψ t (t n ), e n x + q n + a n + P * h w(t n ) -P * h w(t n-1 ) ∆t -P * h ω t (t n ), e n x + q n + a n . 3.20) 
By repeating the same arguments, we conclude that

(3.21)                      a n x -e n , b n x -y n = 1 2∆t
a n

x -e n -(a n-1

x -e n-1 )

2 0 + a n x -e n 2 0 -a n-1 x -e n-1 2 0 + w x (t n ) -w x (t n-1 ) ∆t -w tx (t n ), a n x -e n - P 0 h ϕ(t n ) -P 0 h ϕ(t n-1 ) ∆t -P 0 h ϕ t (t n ), a n x -e n and (3.22) 
   q n x , p n x = 1 2∆t q n x -q n-1 x 2 0 + q n x 2 0 -q n-1 x 2 0 + ψ x (t n ) -ψ x (t n-1 ) ∆t -ψ tx (t n ), q n x . 0 + 1 2∆t e n x + q n + a n -(e n-1
x

+ q n-1 + a n-1 ) 2 0 + e n x + q n + a n 2 0 -e n-1 x + q n-1 + a n-1 2 0 + 1 2∆t a n x -e n -(a n-1
x -e n-1 )

2 0 + a n x -e n 2 0 -a n-1 x -e n-1 2 0 + 1 2∆t q n x -q n-1 x 2 0 + q n x 2 0 -q n-1 x 2 0 = ϕ tt (t n ) - P 0 h ϕ t (t n ) -P 0 h ϕ t (t n-1 ) ∆t , y n + ψ tt (t n ) - P * h ψ t (t n ) -P * h ψ t (t n-1 ) ∆t , p n + w tt (t n ) - P * h w t (t n ) -P * h w t (t n-1 ) ∆t , b n + ϕ x + ψ + w -P 0 h ϕ(t n ) x -P * h ψ(t n ) -P * h w(t n ), y n x + p n + b n + w x -ϕ -P * h w(t n ) x -P 0 h ϕ(t n ) , b n x -y n + ϕ tx (t n ) - ϕ x (t n ) -ϕ x (t n-1 ) ∆t , e n x + q n + a n + P * h ψ t (t n ) - P * h ψ(t n ) -P * h ψ(t n-1 ) ∆t , e n x + q n + a n + P * h ω t (t n ) - P * h w(t n ) -P * h w(t n-1 ) ∆t , e n x + q n + a n + w tx (t n ) - w x (t n ) -w x (t n-1 ) ∆t , a n x -e n + P 0 h ϕ t (t n ) - P 0 h ϕ(t n ) -P 0 h ϕ(t n-1 ) ∆t , a n x -e n + ψ tx (t n ) - ψ x (t n ) -ψ x (t n-1 ) ∆t , q n x .
Step 6: We introduce

G n = y n 2 0 + p n 2 0 + b n 2 0 + e n x + q n + a n 2 + q n x 2 0 + a n x -e n 2 0 . +2c∆t ψ tt (t n ) - P * h ψ t (t n ) -P * h ψ t (t n-1 ) ∆t 2 0 :=I2 +2c∆t w tt (t n ) - P * h w t (t n ) -P * h w t (t n-1 ) ∆t 2 0 :=I3 +2c∆t P 0 h ϕ t (t n ) - P 0 h ϕ(t n ) -P 0 h ϕ(t n-1 ) ∆t 2 0 :=J1 +2c∆t P * h ψ t (t n ) - P * h ψ(t n ) -P * h ψ(t n-1 ) ∆t 2 0 :=J2 +2c∆t P * h ω t (t n ) - P * h w(t n ) -P * h w(t n-1 ) ∆t 2 0 :=J3 +2c∆t ϕ tx (t n ) - ϕ x (t n ) -ϕ x (t n-1 ) ∆t 2 0 :=L1 +2c∆t ψ tx (t n ) - ψ x (t n ) -ψ x (t n-1 ) ∆t 2 0 :=L2 +2c∆t w tx (t n ) - w x (t n ) -w x (t n-1 ) ∆t 2 0 :=L3 +2∆t ϕ x + ψ + w -P 0 h ϕ(t n ) x -P * h ψ(t n ) -P * h w(t n ), y n x + p n + b n :=M1 +2∆t w x -ϕ -P * h w(t n ) x -P 0 h ϕ(t n ) , b n x -y n :=M2
.

By using Taylor exapnsion and the linearity of P 0 h we deduce :

I 1 = ϕ tt (t n ) - P 0 h ϕ t (t n ) -P 0 h ϕ t (t n ) + ∆tP 0 h ϕ tt (t n ) -1 2 ∆t 2 P 0 h ϕ ttt (ξ n ) ∆t 2 0 = ϕ tt (t n ) -P 0 h ϕ tt (t n ) + 1 2 ∆tP 0 h ϕ ttt (ξ n ) 2 0 ≤ ϕ tt (t n ) -P 0 h ϕ tt (t n ) 2 0 + 1 4 ∆t 2 P 0 h ϕ ttt (ξ n ) 2 0 +∆t ϕ tt (t n ) -P 0 h ϕ tt (t n ) 0 P 0 h ϕ ttt (ξ n ) 0 ≤ h 2 ϕ ttx (t n ) 2 0 + 1 4 ∆t 2 ϕ ttt (ξ n ) 2 0 + h∆t ϕ ttx (t n ) 0 ϕ ttt (ξ n ) 0 .
Denote by f (ξ n ) := ϕ ttt (ξ n ) 0 . Applying Gagliardo-Neirenberg ineqaulity leads to

f (ξ n ) ≤ C f L 2 (0,T ) f t L 2 (0,T ) ≤ C T 0 |f (t)| 2 dt 1 2 T 0 |f t (t)| 2 dt 1 2 ≤ C T 0 ϕ ttt (t) 2 0 dt 1 2 T 0 ϕ tttt 2 0 dt 1 2 ≤ C ϕ H 3 (0,T,L 2 (Ω)) ϕ H 4 (0,T,L 2 (Ω)) .
In a similar way, the following estimate holds.

ϕ ttx (t n ) 0 ≤ C ϕ H 2 (0,T,H 1 (Ω)) ϕ H 3 (0,T,H 1 (Ω)) .
Consequently,

I 1 ≤ C h 2 + ∆t 2 ϕ 2 H 4 (0,T,L 2 (Ω)) + ϕ 2 H 3 (0,T,H 1 (Ω)) .
Similarly, we have

I 2 ≤ C h 2 + ∆t 2 ψ 2 H 4 (0,T,L 2 (Ω)) + ψ 2 H 3 (0,T,H 1 (Ω))
and

I 3 ≤ h 2 + ∆t 2 w 2 H 4 (0,T,L 2 (Ω)) + w 2 H 3 (0,T,H 1 (Ω)) .
The following estimates of L 1 , L 2 , and L 3 are straightforward consequence of the Taylor expansion.

L 1 ≤ 1 4 ∆t 2 ϕ 2 H 2 (0,T,H 1 (Ω)) , L 2 ≤ 1 4 ∆t 2 ψ 2 H 2 (0,T,H 1 (Ω)) , and 
L 3 ≤ 1 4 ∆t 2 w 2 H 2 (0,T,H 1 (Ω)) .
For estimate J 1 , J 2 , and J 3 , we shall use the definition of P 0 h and repeat the same procedures of the estimation of I 1 . Indeed, we have

J 1 ≤ c ϕ t (t n ) -P 0 h ϕ t (t n ) 2 0 + c ϕ t (t n ) - P 0 h ϕ(t n ) -P 0 h ϕ(t n-1 ) ∆t 2 0 ≤ ch 2 ϕ tx 2 0 + c h 2 + ∆t 2 ϕ 2 H 3 (0,T,L 2 (Ω)) + ϕ 2 H 2 (0,T,H 1 (Ω)) ≤ c h 2 + ∆t 2 ϕ 2 H 1 (0,T,H 1 (Ω)) + ϕ 2 H 3 (0,T,L 2 (Ω)) + ϕ 2 H 2 (0,T,H 1 (Ω)) .
Similarly,

J 2 ≤ c h 2 + ∆t 2 ψ 2 H 1 (0,T,H 1 (Ω)) + ψ 2 H 3 (0,T,L 2 (Ω)) + ψ 2 H 2 (0,T,H 1 (Ω))
and

J 3 ≤ c h 2 + ∆t 2 w 2 H 1 (0,T,H 1 (Ω)) + w 2 H 3 (0,T,L 2 (Ω)) + w 2 H 2 (0,T,H 1 (Ω)) .
It remains to estimate (∆t)M 1 and (∆t)M 2 . Using the definitions of P 0 h and P * h gives

(∆t)M 1 = ψ + w -P * h ψ(t n ) -P * h w(t n ), y n x + p n + b n ≤ c(∆t)h ψ x 0 + w x 0 . y n x + p n + b n 0 ≤ c η h 2 + η(∆t) 2 y n x + p n + b n 0 , ∀η > 0.
On the other hand, by (3.1) and the definitions of P 0 h and P * h , we have

y n x + p n + b n 0 = ( ϕ n h ) x -P 0 h ϕ t (t n ) x + ψ n-1 h -P * h ψ t (t n ) + w n h -P * h ω t (t n ) 0 = (ϕ n h ) x -(ϕ n-1 h ) x ∆t -P 0 h ϕ t (t n ) x + ψ n h -ψ n-1 h ∆t -P * h ψ t (t n ) + w n h -w n-1 h ∆t -P * h ω t (t n ) 0 = 1 ∆t (ϕ n h ) x + ψ n h + w n h + 1 ∆t (ϕ n-1 h ) x + ψ n-1 h + w n-1 h (∆t) 0 + P 0 h ϕ t (t n ) x + P * h ψ t (t n ) + P * h ω t (t n ) 0 ≤ 2 ∆t E 0 + c.
For all η > 0, it follows that

(∆t)M 1 ≤ c η h 2 + η(∆t) 2 2 ∆t E 0 + c ≤ c h 2 η(∆t) + c h 2 η + cη(∆t).
Selecting η = (∆t) γ leads to

(∆t)M 1 ≤ c h 2 (∆t) 1+γ + c h 2 (∆t) γ + c(∆t) 1+γ ≤ c h 2 (∆t) 1+γ + c(∆t) 1+γ .
Similarly, we have

(∆t)M 2 ≤ c h 2 (∆t) 1+γ + c(∆t) 1+γ . Denote by R n := I 1 + I 2 + I 3 + J 1 + J 2 + J 3 + L 1 + L 2 + L 3 + M 1 + M 2 .
We deduce from the estimates of I 1 , I 2 , I 3 , J 1 , J 2 , J 3 , L 1 L 2 , L 3 , M 1 , and M 2 that

(∆t) n-1 k=0 R k ≤ c h 2 + (∆t) 2 + (∆t) γ + h 2 (∆t) 2+γ ,
where the contant c only depends on the norms of the solution (ϕ, ψ, w) in W. Finally, by applying the discrete Gronwall inequality to (3.24), we get

G n ≤ G 0 e cn∆t + (∆t) n-1 k=0
R k e c (n-k-1)∆t .

The estimate (3.27) allows us to obtain an observability inequality summarized in the following theorem of the continuous Bresse system (1.1), by observing the numerical value of the displacement. Theorem 3.2. For every T > T 0 , where T 0 is the same value of theorem 2.1, for every (ϕ, ψ, ω) ∈ W, there exists a positive constant µ independent from ∆t and h such that Proof. By using the lemma 2.1, the exist a constant C such that (3.26)

       ϕ x (t n ) -ϕ n hx 2 0 + ψ x (t n ) -ψ n hx 2 0 + w x (t n ) -w n hx 2 0 ≤ C ψ x (t n ) -ψ n hx 2 0 + w x (t n ) -ϕ(t n ) -(w n hx -ϕ n h ) 2 0 + ϕ x (t n ) + ψ(t n ) + w(t n ) -(ϕ n hx + ψ n h + w n h ) 2 0 .
By using Poicarré's inequality in H 1 0 (Ω) and H 1 * (Ω), we deduce Combining with the main estimate of the theorem 2.1, we deduce the result.

   (ϕ(t n ) -ϕ n h ) x 2 0 ≥ C 1 ϕ(t n ) -ϕ n h 2 0 , (ψ(t n ) -ψ n h ) x 2 0 ≥ C 1 ψ(t n ) -ψ n h 2 0 , (w(t n ) -w n h ) x 2 0 ≥ C 1 w(t n ) -w n

h 2 0 . 2 0 2 0 2 0 2 0 + ψ n h 2 0 + w n h 2 0+κT h 2 +

 02222222 By combining the Poicarré inequality,(3.26) and the a priori error estimate, we deduceϕ(t n )-ϕ n h + ψ(t n )-ψ n h + w(t n )-w n h ≤ κ h 2 + (∆t) 2 + (∆t) γ + h 2 (∆t) 2+γ ,where κ is a positive constant depends on the norm of the spaces which form W. Therefore,(3.27)    ϕ(t n ) 2 0 + ψ(t n ) 2 0 + w(t n ) 2 0 ≤ κ ϕ n h +κ h 2 + (∆t) 2 + (∆t) γ + h 2 (∆t) 2+γ .Multiplying (3.27) by ∆t and summing yield∆t (∆t) 2 + (∆t) γ + h 2 (∆t) 2+γ .It follows that the following estimate holds when ∆t tends to 0.

0 :=I1

Combining (3.20), (3.21), and (3.22) with (3.19) yields (3.23)

By using Young's inequality, we get

(1 -2c∆t)G n ≤ G n-1 + 2c∆t ϕ tt (t n ) -P 0 h ϕ t (t n ) -P 0 h ϕ t (t n-1 ) ∆t