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Abstract. Maximum likelihood estimator (MLE) is a well known es-
timator in statistics. The popularity of this estimator stems from its
asymptotic and universal properties. While asymptotic properties of MLEs
on Euclidean spaces attracted a lot of interest, their studies on manifolds
are still insufficient. The present paper aims to give a unified study of
the subject. Its contributions are twofold. First it proposes a framework
of asymptotic results for MLEs on manifolds: consistency, asymptotic
normality and asymptotic efficiency. Second, it extends popular testing
problems on manifolds. Some examples are discussed.

Keywords: Maximum likelihood estimator, consistency, asymptotic nor-
mality, asymptotic efficiency of MLE, statistical tests on manifolds.

1 Introduction

Density estimation on manifolds has many applications in signal and
image processing. To give some examples of situations, one can mention
Covariance matrices: In recent works [1–5], new distributions called
Gaussian and Laplace distributions on manifolds of covariance matrices
(positive definite, Hermitian, Toeplitz, Block Toeplitz...) are introduced.
Estimation of parameters of these distributions has led to various appli-
cations (image classification, EEG data analysis, etc).
Stiefel and Grassmann manifolds: These manifolds are used in var-
ious applications such as pattern recognition [6–8] and shape analysis
[9]. Among the most studied density functions on these manifolds, one
finds the Langevin, Bingham and Gaussian distributions [10]. In [6–8],
maximum likelihood estimations of the Langevin and Gaussian distribu-
tions are applied for tasks of activity recognition and video-based face
recognition.
Lie groups: Lie groups arise in various problems of signal and image
processing such as localization, tracking [11, 12] and medical image pro-
cessing [13]. In [13], maximum likelihood estimation of new distributions
on Lie groups, called Gaussian distributions, is performed and applica-
tions are given in medical image processing. The recent work [4] proposes
new Gaussian distributions on Lie groups and a complete program, based
on MLE, to learn data on Lie groups using these distributions.
The present paper is structured as follows. Section 2 focuses on consis-
tency of MLE on general metric spaces. Section 3 discusses asymptotic



normality and asymptotic efficiency of MLE on manifolds. Finally Sec-
tion 4 presents some hypothesis tests on manifolds.

2 Consistency

In this section it is shown that, under suitable conditions, MLEs on gen-
eral metric spaces are consistent estimators. The result given here may
not be optimal. However, in addition to its simple form, it is applicable
to several examples of distributions on manifolds as discussed below.
Let (Θ, d) denote a metric space and let M be a measurable space with
µ a positive measure on it. Consider (Pθ)θ∈Θ a family of distributions on
M such that Pθ(dx) = f(x, θ)µ(dx) and f > 0.
If x1, · · · , xn are independent random samples from Pθ0 , a maximum
likelihood estimator is any θ̂n which solves

max
θ

Ln(θ) = Ln(θ̂n) where Ln(θ) =
1

n

n∑
i=1

log f(xi, θ)

The main result of this section is Theorem 1 below. The notation Eθ[g(x)]
stands for

∫
M g(y)f(y, θ)µ(dy).

Theorem 1. Assume the following assumptions hold for some θ0 ∈ Θ

(1) For all x, f(x, θ) is continuous with respect to θ.
(2) Eθ0 [| log f(x, θ)|] < ∞ for all θ, L(θ) = Eθ0 [log f(x, θ)] is continuous

on Θ and uniquely maximized at θ0.
(3) For all compact K of Θ,

Q(δ) := Eθ0 [sup{| log f(x, θ)− log f(x, θ′)| : θ, θ′ ∈ K, d(θ, θ′) ≤ δ}]

satisfies limδ→0 Q(δ) = 0.
Let x1, · · · , xn, · · · be independent random samples of Pθ0 . For every
compact K of Θ, the following convergence holds in probability

lim
n→∞

sup
θ∈K

|Ln(θ)− L(θ)| = 0

Assume moreover
(4) There exists a compact K0 ⊂ Θ containing θ0 such that

Eθ0 [| sup{log f(x, θ) : θ ∈ Kc
0}|] < ∞

and
Eθ0 [sup{log f(x, θ) : θ ∈ Kc

0}] < L(θ0)

Then, whenever θ̂n exists and is unique for all n, it satisfies θ̂n converges
to θ0 in probability.

Proof. Since L is a deterministic function, it is enough to prove, for every
compact K,
(i) Convergence of finite dimensional distributions: (Ln(θ1), · · · , Ln(θp))

weakly converges to (L(θ1), · · · , L(θp)) for any θ1, · · · , θp ∈ K.



(ii) Tightness criterion: for all ε > 0,

lim
δ→0

lim sup
n→∞

P
(

sup
θ,θ′∈K,d(θ,θ′)<δ

|Ln(θ)− Ln(θ
′)| > ε

)
= 0

Fact (i) is a consequence of the first assumption in (2) and the strong law
of large numbers (SLLN). For (ii), set F = {(θ, θ′) ∈ K2, d(θ, θ′) < δ}
and note

P
(
sup
F

|Ln(θ)− Ln(θ
′)| > ε

)
≤ P(Qn(δ) > ε)

where Qn(δ) =
1
n

∑n
i=1 supF | log f(xi, θ)− log f(xi, θ

′)|. By assumption
(3), there exists δ0 > 0 such that Q(δ) ≤ Q(δ0) < ε for all δ ≤ δ0. An
application of the SLLN shows that, for all δ ≤ δ0, limn Qn(δ) = Q(δ)
and consequently

lim sup
n→∞

P(Qn(δ) > ε) = lim sup
n→∞

P(Qn(δ)−Q(δ) > ε−Q(δ)) = 0

This proves fact (ii). Assume (4) holds. The bound

P(θ̂n /∈ K0) ≤ P(sup
Kc

0

Ln(θ) > sup
K0

Ln(θ)) ≤ P(sup
Kc

0

Ln(θ) > Ln(θ0))

and the inequality supθ∈Kc
0
Ln(θ) ≤ 1

n

∑n
i=1 supθ∈Kc

0
log f(xi, θ) give

P(θ̂n /∈ K0) ≤ P
(
1

n

n∑
i=1

sup
θ∈Kc

0

log f(xi, θ) > Ln(θ0)

)
By the SLLN, lim supn P(θ̂n /∈ K0) ≤ 1{Eθ0

[supθ∈Kc
0
log f(x,θ)]≥L(θ0)} = 0.

With K0(ε) := {θ ∈ K0 : d(θ, θ0) ≥ ε}, one has

P(d(θ̂n, θ0) ≥ ε) ≤ P(θ̂n ∈ K0(ε)) + P(θ̂n /∈ K0)

where P(θ̂n ∈ K0(ε)) ≤ P(supK0(ε)
Ln > Ln(θ0)). Since Ln converges to

L uniformly in probability onK0(ε), supK0(ε)
Ln converges in probability

to supK0(ε)
L and so lim supn P(d(θ̂n, θ0) ≥ ε) = 0 using assumption (2).

2.1 Some examples

In the following some distributions which satisfy assumptions of Theorem
1 are given. More examples will be discussed in a forthcoming paper.
(i) Gaussian and Laplace distributions on Pm. Let Θ = M =
Pm be the Riemannian manifold of symmetric positive definite matrices
of size m × m equipped with Rao-Fisher metric and its Riemannian
distance d called Rao’s distance. The Gaussian distribution on Pm as
introduced in [1] has density with respect to the Riemannian volume

given by f(x, θ) = 1
Zm(σ)

exp
(
− d2(x,θ)

2σ2

)
where σ > 0 and Zm(σ) > 0 is

a normalizing factor only depending on σ.
Points (1) and (3) in Theorem 1 are easy to verify. Point (2) is proved
in Proposition 9 [1]. To check (4), define O = {θ : d(θ, θ0) > ε} and note

Eθ0 [sup
O

(−d2(x, θ))] ≤ Eθ0 [sup
O

(−d2(x, θ))12d(x,θ0)≤ε−1] (1)



By the triangle inequality −d2(x, θ) ≤ −d(x, θ0)
2 + 2d(θ, θ0)d(x, θ0) −

d2(θ, θ0) and consequently (1) is smaller than

Eθ0 [sup
O

(2d(θ, θ0)d(x, θ0)− d2(θ, θ0))12d(x,θ0)≤ε−1]

But if 2d(x, θ0) ≤ ε− 1 and d(θ, θ0) > ε,

2d(θ, θ0)d(x, θ0)− d2(θ, θ0) < d(θ, θ0)(ε− 1− ε) < −ε

Finally (1) ≤ −ε and this gives (4) since K0 = Oc is compact.
Let x1, · · · , xn, · · · , ... be independent samples of f(·, θ0). The MLE based
on these samples is the Riemannian mean θ̂n = argminθ

∑n
i=1 d

2(xi, θ).

Existence and uniqueness of θ̂n follow from [14]. Theorem 1 shows the
convergence of θ̂n to θ0. This convergence was proved in [1] using results
of [15] on convergence of empirical barycenters.
(ii) Gaussian and Laplace distributions on symmetric spaces.
Gaussian distributions can be defined more generally on Riemannian
symmetric spaces [4]. MLEs of these distributions are consistent estima-
tors [4]. This can be recovered by applying Theorem 1 as for Pm. In the
same way, it can be checked that Laplace distributions on Pm [2] and
symmetric spaces satisfy assumptions of Theorem 1 and consequently
their estimators are also consistent. Notice, for Laplace distributions,
MLE coincides with the Riemannian median θ̂n = argminθ

∑n
i=1 d(xi, θ).

3 Asymptotic normality and asymptotic
efficiency of the MLE

Let Θ be a smooth manifold with dimension p equipped with an affine
connection ∇ and an arbitrary distance d. Consider M a measurable
space equipped with a positive measure µ and (Pθ)θ∈Θ a family of dis-
tributions on M such that Pθ(dx) = f(x, θ)µ(dx) and f > 0.
Consider the following generalization of estimating functions [16].

Definition 1. An estimating form is a function ω : M × Θ −→ T ∗Θ
such that for all (x, θ) ∈ M× Θ, ω(x, θ) ∈ T ∗

θ Θ and Eθ[ω(x, θ)] = 0 or
equivalently Eθ[ω(x, θ)Xθ] = 0 for all Xθ ∈ TθΘ.

Assume l(x, θ) = log(f(x, θ)) is smooth in θ and satisfies appropriate in-
tegrability conditions, then differentiating with respect to θ, the identity∫
M f(x, θ)µ(dx) = 1, one finds ω(x, θ) = dl(x, θ) is an estimating form.
The main result of this section is the following

Theorem 2. Let ω : M×Θ −→ T ∗Θ be an estimating form. Fix θ0 ∈ Θ
and let (xn)n≥1 be independent samples of Pθ0 . Assume

(i) There exist (θ̂N )N≥1 such that
∑N

n=1 ω(xn, θ̂N ) = 0 for all N and

θ̂N converges in probability to θ0.
(ii) For all u, v ∈ Tθ0Θ, Eθ0 [|∇ω(x, θ0)(u, v)|] < ∞ and there exists

(ea)a=1,··· ,p a basis of Tθ0Θ such that the matrix A with entries
Aa,b = Eθ0 [∇ω(x, θ0)(ea, eb)] is invertible.



(iii) The function R(δ) =

Eθ0 [ sup
t∈[0,1],θ∈B(θ0,δ)

|∇ω(x, γ(t))(ea(t), eb(t))−∇ω(x, θ0)(ea, eb)|]

satisfies limδ→0 R(δ) = 0 where (ea, a = 1 · · · , p) is a basis of Tθ0Θ
as in (ii) and ea(t), t ∈ [0, 1] is the parallel transport of ea along γ
the unique geodesic joining θ0 and θ̄.

Let Logθ(θ̂N ) =
∑p

a=1 ∆aea be the decomposition of Logθ(θ̂N ) in the basis
(ea)a=1,··· ,p. The following convergence holds in distribution as N −→ ∞

√
N(∆1, · · · ,∆p)

T ⇒ N (0, (A†)−1ΓA−1)

where Γ is the matrix with entries Γa,b = Eθ0 [ω(x, θ0)ea.ω(x, θ0)eb].

Proof. Take V a small neighborhood of θ0 and let γ : [0, 1] −→ V be the
unique geodesic contained in V such that γ(0) = θ0 and γ(1) = θ̂N . Let
(ea, a = 1 · · · , p) be a basis of Tθ0Θ as in (ii) and define ea(t), t ∈ [0, 1]

as the parallel transport of ea along γ: Dea(t)
dt

= 0, t ∈ [0, 1], ea(0) = ea
where D is the covariant derivative along γ. Introduce

ωN (θ) =

N∑
n=1

ω(xn, θ) and Fa(t) = ωN (γ(t))(ea(t))

By Taylor formula, there exists ca ∈ [0, 1] such that

Fa(1) = Fa(0) + F ′
a(ca) (2)

Note Fa(1) = 0, Fa(0) = ωN (θ0)(ea) and F ′
a(t) = (∇ωN )(γ′(t), ea(t)) =∑

b ∆b(∇ωN )(eb(t), ea(t)). In particular, F ′
a(0) =

∑
b ∆b(∇ωN )(eb, ea).

Dividing (2) by
√
N , gives

− 1√
N

ωN (θ0)(ea) =
1√
N

∑
b

∆b(∇ωN )(eb(ca), ea(ca)) (3)

Define Y N =
(
− 1√

N
ωN (θ0)(e1), · · · ,− 1√

N
ωN (θ0)(ep)

)†
and let AN be

the matrix with entries AN (a, b) = 1
N
(∇ωN )(ea(ca), eb(ca)). Then (3)

writes as Y N = (AN )†(
√
N∆1, · · · ,

√
N∆p)

†. Since Eθ0 [ω(x, θ0)] = 0, by
the central limit theorem, Y N converges in distribution to a multivariate
normal distribution with mean 0 and covariance Γ . Note

AN
a,b =

1

N
(∇ωN )(ea, eb) +RN

a,b

where RN
a,b = 1

N
(∇ωN )(ea(ca), eb(ca)) − 1

N
(∇ωN )(ea, eb). By the SLLN

and assumption (ii), the matrixBN with entriesBN (a, b) = 1
N
(∇ωN )(ea, eb)

converges almost surely to the matrix A. Note |RN
a,b| is bounded by

1

N

N∑
n=1

sup
t∈[0,1]

sup
θ∈B(θ0,δ)

|∇ω(xn, γ(t))(ea(t), eb(t))−∇ω(xn, θ0)(ea, eb)|

By the SLLN, for δ small enough, the right-hand side converges to R(δ)
defined in (iii). The convergence in probability of θ̂N to θ0 and assump-
tion (iii) show that RN

a,b → 0 in probability and so AN converges in



probability to A. By Slutsky lemma ((A†
N )−1, YN ) converges in distribu-

tion to ((A†)−1,N (0, Γ )) and so (A†
N )−1YN converges in distribution to

(A†)−1N (0, Γ ) = N (0, (A†)−1ΓA−1).

Remark 1 on ω = dl. For ω an estimating form, one has Eθ[ω(x, θ)] = 0.
Taking the covariant derivative, one gets Eθ[dl(U)ω(V )] = −Eθ[∇ω(U, V )]
for all vector fields U, V . When ω = dl, this writes Eθ[ω(U)ω(V )] =
−Eθ[∇ω(U, V )]. In particular Γ = Eθ0 [dl ⊗ dl(ea, eb)] = −A and A† =
A = Eθ0 [∇(dl)(ea, eb)] = Eθ0 [∇2l(ea, eb)] where ∇2 is the Hessian of l.
The limit matrix is therefore equal to Fisher information matrix Γ−1 =
−A−1. This yields the following corollary.

Corollary 1. Assume Θ = (M, g) is a Riemannian manifold and let d
be the Riemannian distance on Θ. Assume ω = dl satisfies the assump-
tions of Theorem 2 where ∇ is the Levi-Civita connection on Θ. The
following convergence holds in distribution as N → ∞.

Nd2(θ̂N , θ0) ⇒
p∑

i=1

X2
i

where X = (X1, · · · , Xp)
T is a random variable with law N (0, I−1) with

I(a, b) = Eθ0 [∇2l(ea, eb)].

The next proposition is concerned with asymptotic efficiency of MLE. It
states that the lower asymptotic variance for estimating forms satisfying
Theorem 2 is attained for ω0 = dl.

Take ω an estimating from and consider the matrices E,F,G,H with en-
tries Ea,b = Eθ0 [dl(θ0, x)eadl(θ0, x)eb], Fa,b = Eθ0 [dl(θ0, x)eaω(θ0, x)eb] =
−Aa,b, Ga,b = Fb,a, Ha,b = Eθ0 [ω(θ0, x)eaω(θ0, x)eb] = Γa,b. Recall E−1

is the limit distribution when ω0 = dl. Note M =

(
E F
G H

)
is symmetric.

When ω = dl, it is furthermore positive but not definite.

Proposition 1. If M is positive definite, then E−1 < (A†)−1ΓA−1.

Proof. Since M is symmetric positive definite, the same also holds for its
inverse. By Schur inversion lemma, E − FH−1G is symmetric positive
definite. That is E > FH−1G or equivalently E−1 < (A†)−1ΓA−1.

Remark 2. As an example, it can be checked that Theorem 2 is sat-
isfied by ω = dl of the Gaussian and Laplace distributions discussed in
paragraph 2.1. For the Gaussian distribution on Pm, this result is proved
in [1]. More examples will be given in a future paper.

Remark 3 on Cramér-Rao lower bound. Assume Θ is a Riemannian
manifold and θ̂n defined in Theorem 2 (i) is unbiased: E[Logθ0(θ̂n)] = 0.
Consider (e1, · · · , ep) an orthonormal basis of Tθ0Θ and denote by a =
(a1, · · · , ap) the coordinates in this basis of Logθ0(θ̂n). Smith [17] gave

an intrinsic Cramér-Rao lower bound for the covariance C(θ0) = E[aaT ]
as follows

C ≥ F−1 + curvature terms (4)



where F = (Fi,j = E[dL(θ0)eidL(θ0)ej ], i, j ∈ [1, p]) is Fisher informa-
tion matrix and L(θ) =

∑N
i=1 log f(xi, θ). Define L the matrix with en-

tries Li,j = E[dl(θ0)eidl(θ0)ej ] where l(θ) = log f(x1, θ). By multiplying
(4) by

√
n, one gets, with y =

√
na,

E[yyT ] ≥ L−1 + n× curvature terms

It can be checked that as n → ∞, n × curvature terms → 0. Recall
y converges in distribution to N (0, (A†)−1ΓA−1). Assume it is pos-
sible to interchange limit and integral, from Theorem 2 one deduces
(A†)−1ΓA−1 ≥ L−1 which is similar to Proposition 1.

4 Statistical tests.

Asymptotic properties of MLE have led to another fundamental subject
in statistics which is testing. In the following, some popular tests on
Euclidean spaces are generalized to manifolds.
Let Θ,M and f be as in the beginning of the previous section.
Wald test. Given x1, · · · , xn independent samples of f(., θ) where θ is
unknown, consider the test H0 : θ = θ0. Define the Wald test statistic
for H0 by

QW = n(∆1, · · · ,∆p)I(θ0)(∆1, · · · ,∆p)
T

where I(θ0) is Fisher matrix with entries I(θ0)(a, b) = −Eθ0 [∇2l(ea, eb)]
and ∆1, · · · ,∆p, (ea)a=1:p are defined as in Theorem 2.
The score test. Continuing with the same notations as before, the score
test is based on the statistic

QS = U(θ0)
T I(θ0)U(θ0)

where U(θ0) = (U1(θ0), · · · , Up(θ0)), (Ua(θ0))a=1:p are the coordinates
of ∇θ0 l(θ0, X) in the basis (ea)a=1:p and l(θ,X) =

∑n
i=1 log(f(xi, θ)).

Theorem 3. Assume ω = dl satisfies conditions of Theorem 2. Then,
under H0 : θ = θ0, QW (respectively QS) converges in distribution to a
χ2 distribution with p = dim(Θ) degrees of freedom. In particular, Wald
test (resp. the score test) rejects H0 when QW (resp. QS) is larger than
a chi-square percentile.

Because of the lack of space, the proof of this theorem will be published
in a future paper. One can also consider a generalization of Wilks test
to manifolds. An extension of this test to the manifold Pm appeared
in [1]. Future works will focus on applications of these tests to applied
problems.
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