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Maximum likelihood estimator (MLE) is a well known estimator in statistics. The popularity of this estimator stems from its asymptotic and universal properties. While asymptotic properties of MLEs on Euclidean spaces attracted a lot of interest, their studies on manifolds are still insufficient. The present paper aims to give a unified study of the subject. Its contributions are twofold. First it proposes a framework of asymptotic results for MLEs on manifolds: consistency, asymptotic normality and asymptotic efficiency. Second, it extends popular testing problems on manifolds. Some examples are discussed.

Introduction

Density estimation on manifolds has many applications in signal and image processing. To give some examples of situations, one can mention Covariance matrices: In recent works [START_REF] Said | Riemannian Gaussian distributions on the space of symmetric positive definite matrices[END_REF][START_REF] Hajri | Riemannian laplace distribution on the space of symmetric positive definite matrices[END_REF][START_REF] Hajri | A geometric learning approach on the space of complex covariance matrices[END_REF][START_REF] Said | Gaussian distributions on Riemannian symmetric spaces: statistical learning with structured covariance matrices[END_REF][START_REF] Zanini | Parameters estimate of Riem. gaussian distribution in the manifold of covariance matrices[END_REF], new distributions called Gaussian and Laplace distributions on manifolds of covariance matrices (positive definite, Hermitian, Toeplitz, Block Toeplitz...) are introduced. Estimation of parameters of these distributions has led to various applications (image classification, EEG data analysis, etc). Stiefel and Grassmann manifolds: These manifolds are used in various applications such as pattern recognition [START_REF] Turaga | Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision[END_REF][START_REF] Aggarwal | A system identification approach for video-based face recognition[END_REF][START_REF] Turaga | Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition[END_REF] and shape analysis [START_REF] Kendall | Shape manifolds, procrustean metrics, and complex projective spaces[END_REF]. Among the most studied density functions on these manifolds, one finds the Langevin, Bingham and Gaussian distributions [START_REF] Chikuse | Statistics on Special Manifolds[END_REF]. In [START_REF] Turaga | Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision[END_REF][START_REF] Aggarwal | A system identification approach for video-based face recognition[END_REF][START_REF] Turaga | Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition[END_REF], maximum likelihood estimations of the Langevin and Gaussian distributions are applied for tasks of activity recognition and video-based face recognition. Lie groups: Lie groups arise in various problems of signal and image processing such as localization, tracking [START_REF] Kwon | A geometric particle filter for template-based visual tracking[END_REF][START_REF] Trumpf | Analysis of nonlinear attitude observers for time-varying reference measurements[END_REF] and medical image processing [START_REF] Fletcher | Gaussian distributions on Lie groups and their application to statistical shape analysis[END_REF]. In [START_REF] Fletcher | Gaussian distributions on Lie groups and their application to statistical shape analysis[END_REF], maximum likelihood estimation of new distributions on Lie groups, called Gaussian distributions, is performed and applications are given in medical image processing. The recent work [START_REF] Said | Gaussian distributions on Riemannian symmetric spaces: statistical learning with structured covariance matrices[END_REF] proposes new Gaussian distributions on Lie groups and a complete program, based on MLE, to learn data on Lie groups using these distributions. The present paper is structured as follows. Section 2 focuses on consistency of MLE on general metric spaces. Section 3 discusses asymptotic normality and asymptotic efficiency of MLE on manifolds. Finally Section 4 presents some hypothesis tests on manifolds.

Consistency

In this section it is shown that, under suitable conditions, MLEs on general metric spaces are consistent estimators. The result given here may not be optimal. However, in addition to its simple form, it is applicable to several examples of distributions on manifolds as discussed below. Let (Θ, d) denote a metric space and let M be a measurable space with µ a positive measure on it. Consider (P θ ) θ∈Θ a family of distributions on M such that P θ (dx) = f (x, θ)µ(dx) and f > 0. If x1, • • • , xn are independent random samples from P θ 0 , a maximum likelihood estimator is any θn which solves

max θ Ln(θ) = Ln( θn) where Ln(θ) = 1 n n ∑ i=1 log f (xi, θ)
The main result of this section is Theorem 1 below. The notation

E θ [g(x)] stands for ∫ M g(y)f (y, θ)µ(dy).
Theorem 1. Assume the following assumptions hold for some θ0 ∈ Θ (1) For all x, f (x, θ) is continuous with respect to θ.

(2)

E θ 0 [| log f (x, θ)|] < ∞ for all θ, L(θ) = E θ 0 [log f (x, θ)
] is continuous on Θ and uniquely maximized at θ0.

(3) For all compact K of Θ, Q(δ) := E θ 0 [sup{| log f (x, θ) -log f (x, θ ′ )| : θ, θ ′ ∈ K, d(θ, θ ′ ) ≤ δ}] satisfies lim δ→0 Q(δ) = 0. Let x1, • • • , xn, • • •
be independent random samples of P θ 0 . For every compact K of Θ, the following convergence holds in probability

lim n→∞ sup θ∈K |Ln(θ) -L(θ)| = 0
Assume moreover (4) There exists a compact K0 ⊂ Θ containing θ0 such that

E θ 0 [| sup{log f (x, θ) : θ ∈ K c 0 }|] < ∞ and E θ 0 [sup{log f (x, θ) : θ ∈ K c 0 }] < L(θ0)
Then, whenever θn exists and is unique for all n, it satisfies θn converges to θ0 in probability.

Proof. Since L is a deterministic function, it is enough to prove, for every compact K, (i) Convergence of finite dimensional distributions: (Ln(θ1), • • • , Ln(θp))

weakly converges to (L(θ1),

• • • , L(θp)) for any θ1, • • • , θp ∈ K.
(ii) Tightness criterion: for all ε > 0,

lim δ→0 lim sup n→∞ P ( sup θ,θ ′ ∈K,d(θ,θ ′ )<δ |Ln(θ) -Ln(θ ′ )| > ε ) = 0
Fact (i) is a consequence of the first assumption in (2) and the strong law of large numbers (SLLN). For (ii), set

F = {(θ, θ ′ ) ∈ K 2 , d(θ, θ ′ ) < δ} and note P ( sup F |Ln(θ) -Ln(θ ′ )| > ε ) ≤ P(Qn(δ) > ε)
where

Qn(δ) = 1 n ∑ n i=1 sup F | log f (xi, θ) -log f (xi, θ ′ )|. By assumption (3), there exists δ0 > 0 such that Q(δ) ≤ Q(δ0) < ε for all δ ≤ δ0. An application of the SLLN shows that, for all δ ≤ δ0, limn Qn(δ) = Q(δ) and consequently lim sup n→∞ P(Qn(δ) > ε) = lim sup n→∞ P(Qn(δ) -Q(δ) > ε -Q(δ)) = 0
This proves fact (ii). Assume (4) holds. The bound

P( θn / ∈ K0) ≤ P(sup K c 0 Ln(θ) > sup K 0 Ln(θ)) ≤ P(sup K c 0 Ln(θ) > Ln(θ0))
and the inequality sup

θ∈K c 0 Ln(θ) ≤ 1 n ∑ n i=1 sup θ∈K c 0 log f (xi, θ) give P( θn / ∈ K0) ≤ P ( 1 n n ∑ i=1 sup θ∈K c 0 log f (xi, θ) > Ln(θ0)
)

By the SLLN, lim sup n P( θn / ∈ K0) ≤ 1 {E θ 0 [sup θ∈K c 0 log f (x,θ)]≥L(θ 0 )} = 0. With K0(ε) := {θ ∈ K0 : d(θ, θ0) ≥ ε}, one has P(d( θn, θ0) ≥ ε) ≤ P( θn ∈ K0(ε)) + P( θn / ∈ K0)
where P( θn ∈ K0(ε)) ≤ P(sup K 0 (ε) Ln > Ln(θ0)). Since Ln converges to L uniformly in probability on K0(ε), sup K 0 (ε) Ln converges in probability to sup K 0 (ε) L and so lim sup n P(d( θn, θ0) ≥ ε) = 0 using assumption (2).

Some examples

In the following some distributions which satisfy assumptions of Theorem 1 are given. More examples will be discussed in a forthcoming paper. 

(x, θ) = 1 Zm(σ) exp ( -d 2 (x,θ) 2σ 2 
) where σ > 0 and Zm(σ) > 0 is a normalizing factor only depending on σ. Points (1) and (3) in Theorem 1 are easy to verify. Point (2) is proved in Proposition 9 [START_REF] Said | Riemannian Gaussian distributions on the space of symmetric positive definite matrices[END_REF]. To check (4), define O = {θ : d(θ, θ0) > ε} and note

E θ 0 [sup O (-d 2 (x, θ))] ≤ E θ 0 [sup O (-d 2 (x, θ))1 2d(x,θ 0 )≤ε-1 ] (1) 
By the triangle inequality -d 2 (x, θ) ≤ -d(x, θ0) 2 + 2d(θ, θ0)d(x, θ0)d 2 (θ, θ0) and consequently (1) is smaller than

E θ 0 [sup O (2d(θ, θ0)d(x, θ0) -d 2 (θ, θ0))1 2d(x,θ 0 )≤ε-1 ] But if 2d(x, θ0) ≤ ε -1 and d(θ, θ0) > ε, 2d(θ, θ0)d(x, θ0) -d 2 (θ, θ0) < d(θ, θ0)(ε -1 -ε) < -ε
Finally (1) ≤ -ε and this gives (4

) since K0 = O c is compact. Let x1, • • • , xn, • • • , ... be independent samples of f (•, θ0).
The MLE based on these samples is the Riemannian mean θn = argmin θ ∑ n i=1 d 2 (xi, θ). Existence and uniqueness of θn follow from [START_REF] Afsari | Riemannian L p center of mass: existence, uniqueness and convexity[END_REF]. Theorem 1 shows the convergence of θn to θ0. This convergence was proved in [START_REF] Said | Riemannian Gaussian distributions on the space of symmetric positive definite matrices[END_REF] using results of [START_REF] Bhattacharya | Large sample theory of intrinsic and extrinsic sample means on manifolds[END_REF] on convergence of empirical barycenters. (ii) Gaussian and Laplace distributions on symmetric spaces. Gaussian distributions can be defined more generally on Riemannian symmetric spaces [START_REF] Said | Gaussian distributions on Riemannian symmetric spaces: statistical learning with structured covariance matrices[END_REF]. MLEs of these distributions are consistent estimators [START_REF] Said | Gaussian distributions on Riemannian symmetric spaces: statistical learning with structured covariance matrices[END_REF]. This can be recovered by applying Theorem 1 as for Pm. In the same way, it can be checked that Laplace distributions on Pm [START_REF] Hajri | Riemannian laplace distribution on the space of symmetric positive definite matrices[END_REF] and symmetric spaces satisfy assumptions of Theorem 1 and consequently their estimators are also consistent. Notice, for Laplace distributions, MLE coincides with the Riemannian median θn = argmin θ ∑ n i=1 d(xi, θ).

Asymptotic normality and asymptotic efficiency of the MLE

Let Θ be a smooth manifold with dimension p equipped with an affine connection ∇ and an arbitrary distance d. Consider M a measurable space equipped with a positive measure µ and (P θ ) θ∈Θ a family of distributions on M such that P θ (dx) = f (x, θ)µ(dx) and f > 0.

Consider the following generalization of estimating functions [START_REF] Heyde | Quasi-likelihood and its application: a general approach to optimal parameter estimation[END_REF].

Definition 1. An estimating form is a function

ω : M × Θ -→ T * Θ such that for all (x, θ) ∈ M × Θ, ω(x, θ) ∈ T * θ Θ and E θ [ω(x, θ)] = 0 or equivalently E θ [ω(x, θ)X θ ] = 0 for all X θ ∈ T θ Θ. Assume l(x, θ) = log(f (x, θ))
is smooth in θ and satisfies appropriate integrability conditions, then differentiating with respect to θ, the identity

∫ M f (x, θ)µ(dx) = 1, one finds ω(x, θ) = dl(x, θ) is an estimating form.
The main result of this section is the following Theorem 2. Let ω : M×Θ -→ T * Θ be an estimating form. Fix θ0 ∈ Θ and let (xn) n≥1 be independent samples of P θ 0 . Assume (i) There exist ( θN ) N ≥1 such that ∑ N n=1 ω(xn, θN ) = 0 for all N and θN converges in probability to θ0.

(ii) For all u, v ∈ T θ 0 Θ, E θ 0 [|∇ω(x, θ0)(u, v)|] < ∞ and there exists (ea)a=1,••• ,p a basis of T θ 0 Θ such that the matrix A with entries A a,b = E θ 0 [∇ω(x, θ0)(ea, e b )] is invertible. (iii) The function R(δ) = E θ 0 [ sup t∈[0,1],θ∈B(θ 0 ,δ) |∇ω(x, γ(t))(ea(t), e b (t)) -∇ω(x, θ0)(ea, e b )|] satisfies lim δ→0 R(δ) = 0 where (ea, a = 1 • • • , p) is a basis of T θ 0 Θ
as in (ii) and ea(t), t ∈ [0, 1] is the parallel transport of ea along γ the unique geodesic joining θ0 and θ. Let Log θ ( θN ) = ∑ p a=1 ∆aea be the decomposition of Log θ ( θN ) in the basis (ea)a=1,••• ,p. The following convergence holds in distribution as

N -→ ∞ √ N (∆1, • • • , ∆p) T ⇒ N (0, (A † ) -1 Γ A -1 )
where Γ is the matrix with entries

Γ a,b = E θ 0 [ω(x, θ0)ea.ω(x, θ0)e b ].
Proof. Take V a small neighborhood of θ0 and let γ : [0, 1] -→ V be the unique geodesic contained in V such that γ(0) = θ0 and γ(1) = θN . Let (ea, a = 1 • • • , p) be a basis of T θ 0 Θ as in (ii) and define ea(t), t ∈ [0, 1] as the parallel transport of ea along γ:

Dea(t) dt = 0, t ∈ [0, 1], ea(0) = ea where D is the covariant derivative along γ. Introduce ωN (θ) = N ∑ n=1 ω(xn, θ) and Fa(t) = ωN (γ(t))(ea(t))
By Taylor formula, there exists ca ∈ [0, 1] such that

Fa(1) = Fa(0) + F ′ a (ca) (2) 
Note Fa(1) = 0, Fa(0) = ωN (θ0)(ea) and

F ′ a (t) = (∇ωN )(γ ′ (t), ea(t)) = ∑ b ∆ b (∇ωN )(e b (t), ea(t)). In particular, F ′ a (0) = ∑ b ∆ b (∇ωN )(e b , ea). Dividing (2) by √ N , gives - 1 √ N ωN (θ0)(ea) = 1 √ N ∑ b ∆ b (∇ωN )(e b (ca), ea(ca)) (3) Define Y N = ( -1 √ N ωN (θ0)(e1), • • • , -1 √ N ωN (θ0)(ep)
) † and let AN be the matrix with entries AN (a, b) = 1 N (∇ωN )(ea(ca), e b (ca)). Then (3) writes as

Y N = (AN ) † ( √ N ∆1, • • • , √ N ∆p) † . Since E θ 0 [ω(x, θ0 
)] = 0, by the central limit theorem, Y N converges in distribution to a multivariate normal distribution with mean 0 and covariance Γ . Note

A N a,b = 1 N (∇ωN )(ea, e b ) + R N a,b where R N a,b = 1 N (∇ωN )(ea(ca), e b (ca)) -1 N (∇ωN )(ea, e b )
. By the SLLN and assumption (ii), the matrix BN with entries BN (a, b)

= 1 N (∇ωN )(ea, e b ) converges almost surely to the matrix A. Note |R N a,b | is bounded by 1 N N ∑ n=1 sup t∈[0,1] sup θ∈B(θ 0 ,δ) |∇ω(xn, γ(t))(ea(t), e b (t)) -∇ω(xn, θ0)(ea, e b )|
By the SLLN, for δ small enough, the right-hand side converges to R(δ) defined in (iii). The convergence in probability of θN to θ0 and assumption (iii) show that R N a,b → 0 in probability and so AN converges in probability to A. By Slutsky lemma ((

A † N ) -1 , YN ) converges in distribu- tion to ((A † ) -1 , N (0, Γ )) and so (A † N ) -1 YN converges in distribution to (A † ) -1 N (0, Γ ) = N (0, (A † ) -1 Γ A -1 ).
Remark 1 on ω = dl. For ω an estimating form, one has E θ [ω(x, θ)] = 0. Taking the covariant derivative, one gets

E θ [dl(U )ω(V )] = -E θ [∇ω(U, V )] for all vector fields U, V . When ω = dl, this writes E θ [ω(U )ω(V )] = -E θ [∇ω(U, V )]. In particular Γ = E θ 0 [dl ⊗ dl(ea, e b )] = -A and A † = A = E θ 0 [∇(dl)(ea, e b )] = E θ 0 [∇ 2 l(ea, e b )]
where ∇ 2 is the Hessian of l. The limit matrix is therefore equal to Fisher information matrix Γ -1 = -A -1 . This yields the following corollary. When ω = dl, it is furthermore positive but not definite.

Proposition 1. If M is positive definite, then E -1 < (A † ) -1 Γ A -1 .
Proof. Since M is symmetric positive definite, the same also holds for its inverse. By Schur inversion lemma,

E -F H -1 G is symmetric positive definite. That is E > F H -1 G or equivalently E -1 < (A † ) -1 Γ A -1 .
Remark 2. As an example, it can be checked that Theorem 2 is satisfied by ω = dl of the Gaussian and Laplace distributions discussed in paragraph 2.1. For the Gaussian distribution on Pm, this result is proved in [START_REF] Said | Riemannian Gaussian distributions on the space of symmetric positive definite matrices[END_REF]. More examples will be given in a future paper. It can be checked that as n → ∞, n × curvature terms → 0. Recall y converges in distribution to N (0, (A † ) -1 Γ A -1 ). Assume it is possible to interchange limit and integral, from Theorem 2 one deduces (A † ) -1 Γ A -1 ≥ L -1 which is similar to Proposition 1.

Statistical tests.

Asymptotic properties of MLE have led to another fundamental subject in statistics which is testing. In the following, some popular tests on Euclidean spaces are generalized to manifolds.

Let Θ, M and f be as in the beginning of the previous section. Because of the lack of space, the proof of this theorem will be published in a future paper. One can also consider a generalization of Wilks test to manifolds. An extension of this test to the manifold Pm appeared in [START_REF] Said | Riemannian Gaussian distributions on the space of symmetric positive definite matrices[END_REF]. Future works will focus on applications of these tests to applied problems.

  (i) Gaussian and Laplace distributions on Pm. Let Θ = M = Pm be the Riemannian manifold of symmetric positive definite matrices of size m × m equipped with Rao-Fisher metric and its Riemannian distance d called Rao's distance. The Gaussian distribution on Pm as introduced in [1] has density with respect to the Riemannian volume given by f

Corollary 1 . 2 i

 12 Assume Θ = (M, g) is a Riemannian manifold and let d be the Riemannian distance on Θ. Assume ω = dl satisfies the assumptions of Theorem 2 where ∇ is the Levi-Civita connection on Θ. The following convergence holds in distribution as N → ∞.N d 2 ( θN , θ0) ⇒ p ∑ i=1 X where X = (X1, • • • , Xp) T is a random variable with law N (0, I -1 ) with I(a, b) = E θ 0 [∇ 2 l(ea, e b )].The next proposition is concerned with asymptotic efficiency of MLE. It states that the lower asymptotic variance for estimating forms satisfying Theorem 2 is attained for ω0 = dl. Take ω an estimating from and consider the matrices E, F, G, H with entriesE a,b = E θ 0 [dl(θ0, x)eadl(θ0, x)e b ], F a,b = E θ 0 [dl(θ0, x)eaω(θ0, x)e b ] = -A a,b , G a,b = F b,a , H a,b = E θ 0 [ω(θ0, x)eaω(θ0, x)e b ] = Γ a,b . Recall E -1is the limit distribution when ω0 = dl. Note M = (

Remark 3 on

 3 Cramér-Rao lower bound. Assume Θ is a Riemannian manifold and θn defined in Theorem 2 (i) is unbiased: E[Log θ 0 ( θn)] = 0. Consider (e1, • • • , ep) an orthonormal basis of T θ 0 Θ and denote by a = (a1, • • • , ap) the coordinates in this basis of Log θ 0 ( θn). Smith [17] gave an intrinsic Cramér-Rao lower bound for the covariance C(θ0) = E[aa T ] as follows C ≥ F -1 + curvature terms (4) where F = (Fi,j = E[dL(θ0)eidL(θ0)ej], i, j ∈ [1, p]) is Fisher information matrix and L(θ) = ∑ N i=1 log f (xi, θ). Define L the matrix with entries Li,j = E[dl(θ0)eidl(θ0)ej] where l(θ) = log f (x1, θ). By multiplying (4) by √ n, one gets, with y = √ na, E[yy T ] ≥ L -1 + n × curvature terms

Theorem 3 .

 3 Wald test. Given x1, • • • , xn independent samples of f (., θ) where θ is unknown, consider the test H0 : θ = θ0. Define the Wald test statistic for H0 by QW = n(∆1, • • • , ∆p)I(θ0)(∆1, • • • , ∆p) T where I(θ0) is Fisher matrix with entries I(θ0)(a, b) = -E θ 0 [∇ 2 l(ea, e b )] and ∆1, • • • , ∆p, (ea)a=1:p are defined as in Theorem 2. The score test. Continuing with the same notations as before, the score test is based on the statistic QS = U (θ0) T I(θ0)U (θ0)where U (θ0) = (U1(θ0), • • • , Up(θ0)), (Ua(θ0))a=1:p are the coordinates of ∇ θ 0 l(θ0, X) in the basis (ea)a=1:p and l(θ, X) = ∑ n i=1 log(f (xi, θ)). Assume ω = dl satisfies conditions of Theorem 2. Then, under H0 : θ = θ0, QW (respectively QS) converges in distribution to a χ 2 distribution with p = dim(Θ) degrees of freedom. In particular, Wald test (resp. the score test) rejects H0 when QW (resp. QS) is larger than a chi-square percentile.