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A viscous fluid flowing over plastic grains spontaneously generates single-thread channels. With time, these
laminar analogues of alluvial rivers reach a reproducible steady state, showing a well-defined width and cross
section. In the absence of sediment transport, their shape conforms with the threshold hypothesis which states
that, at equilibrium, the combined effects of gravity and of flow-induced stress maintain the bed surface at
the threshold of motion. This theory explains how the channel selects its size and slope for a given discharge.
In its light, laboratory rivers illustrate the similarity between the avalanche angle of granular materials and
Shields’s criterion for sediment transport.

I. INTRODUCTION

As alluvial rivers carve their bed in the sediment they
carry, they show a beautiful variety of shapes and sizes1.
The interaction between water flow and sediment trans-
port spontaneously generates a specific morphology and
selects a characteristic scale, in a remarkable illustration
of morphogenesis2,3. When the sediment discharge in-
creases, rivers typically develop a network of closely in-
tertwined threads to produce a braided pattern4–6. Con-
versely, at moderate transport rates, alluvial rivers ex-
hibit a well-defined channel over distances much longer
than their width. The morphology of single-thread rivers
obeys empirical scaling laws7,8 such as Lacey’s equation9,
which states that the width of a river is proportional to
the square root of its discharge. This universal behav-
ior suggests a common physical origin10, yet there is no
consensus about what this origin is.

A simple way to explain Lacey’s law is to assume
that the river bed is at the threshold of sediment
transport11–13. According to this theory, the sum of grav-
ity and fluid friction maintains the sediment exactly at
the threshold of motion, everywhere across the river bed.
For a given discharge, this mechanism sets the width and
the streamwise slope of a channel. Despite its simplicity,
this theory accords well with field data14–16, at least in or-
der of magnitude. However, it is often considered incom-
plete, as it cannot account for sediment transport17 while
most alluvial rivers are active. In addition, the threshold
theory neglects many aspects of natural streams, such
as bank cohesion and vegetation, sediment heterogeneity
or variations of the water discharge. It is therefore deli-
cate to discriminate between theories on the basis of field
measurements only18,19.

Laboratory flumes imitate natural rivers, while vastly
reducing the number of parameters susceptible to influ-
ence their shape20,21. This relative simplicity facilitates
the physical interpretation of experimental observations.
As long as the experimental set-up preserves the essential
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FIG. 1. (Color online) Schematic view of the experimental
set-up. Inset: top view of a laminar river, with the two laser
sheets used to measure the cross-section.

processes, laboratory experiments can greatly help us to
understand natural rivers.

Most laboratory flumes form braids22,23, probably due
to the growth of unstable bedforms24. To maintain a sin-
gle channel, Ikeda halved his flume with a solid wall25.
Here, we combine a viscous fluid with low-density sedi-
ment grains to increase the saturation length of sediment
transport, and thus stabilize the bed26,27. As a result,
our experimental set-up spontaneously generates stable
single-thread channels. We use these channels to evaluate
the threshold hypothesis.

II. LABORATORY RIVERS

The experimental set-up consists of an inclined plane
(190× 90 cm) covered with an initially flat layer of plas-
tic sediment (fig. 1). We use plastic grains (density
ρs ≈ 1520 ± 50 g L−1, grain diameter ds ≈ 220 ± 80µm)
to reduce their density, and thus increase the typical dis-
tance a grain travels over when transported by the flow.
The grains are irregularly shaped. At the outlet, the
sediment layer is held by a 25 mm-high slat, over which
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FIG. 2. (Color online) Example of a laminar river cross-
section at equilibrium. The brown (below) and blue (above)
lines show the sediment bed elevation and the average po-
sition of the water surface, respectively. The discharge is
Qw = 1.1 L min−1. The dashed red line shows the theoret-
ical cross-section (equations (9) and (13)).

water runs before leaving the experiment. The sediment
layer is always thicker than the river depth.

An experiment begins when water is allowed to flow
over the sediment bed at a constant discharge. To in-
crease the viscosity of the fluid, we mix glucose and wa-
ter (about 50% in weight, viscosity ν ≈ 15 · 10−6 ± 5 ·
10−6 m s−2, density ρf ≈ 1220 ± 30 g L−1). This main-
tains the Reynolds number at a low value, and guarantees
that the flow remains laminar (Re ≈ 20− 50, calculated
with the flow depth). Additionally, a high viscosity fur-
ther increases the sediment travel distance.

During the first minutes of an experiment, the flow
spreads over the entire sediment surface, forming a uni-
form sheet of water. After a few tens of minutes, a fa-
vored flow path appears near the center of the experi-
ment. As sediment is further removed from this higher-
flow area, a channel becomes apparent. Around it, the
sediment surface emerges from the flow.

During the next day or two, the channel gets narrower
and deeper, as it transports less and less sediment, until
it reaches its equilibrium state (no visible moving grains).
At equilibrium, a channel is a few centimeters wide, de-
pending on the fluid discharge. In most experimental
runs, the channel is a single straight thread, although
some rivers show a weak sinuosity and multiple threads
near the outlet.

The channel planform is typically smooth, with a well-
defined width (fig. 1). The inlet deforms the channel mor-
phology over 5 to 20 cm, a distance much larger than the
expected saturation length for sediment transport (about
the grain size in a viscous flow28). The influence of the
outlet extends upstream over a comparable distance.

The equilibrium state of the channel does not depend
significantly on the initial conditions. Imperfections of
the sediment layer do not seem to force the final position
of the stream, nor does an initially fabricated channel. If
the plane is steeper than the equilibrium slope, the chan-
nel incises the sediment layer in the neighborhood of the
water inlet and deposits sediment near the outlet, creat-
ing a small alluvial fan. If, conversely, the initial slope
is too low, the channel reaches its equilibrium slope with

the inverse configuration. In both cases, the time to equi-
librium increases. We therefore start each experiment as
close to the equilibrium slope as possible, by trial and
error.

Once the channel has reached equilibrium, we mea-
sure its cross section with two laser sheets at different
incidence angles (fig. 1). This technique yields both the
sediment bed elevation and the position of the water
surface29. Most channels have a regular and symmetrical
cross-section (fig. 2), perturbed only by low-amplitude
bedforms or miniature terraces created by the lateral dis-
placement and the narrowing of the channel. In some
cases, the river has created small levees in the deposition
zone.

Overall the experiments are very reproducible. The
channel width is chiefly controlled by the water discharge,
and it varies by less than 30% along the river (except near
the plane limits).

III. RIVERS AT THRESHOLD

Our experimental rivers slowly evolve towards a sta-
tionary shape, which does not depend significantly on
the initial conditions. This behavior suggests that, at
the end of an experiment, the channel has reached a me-
chanical equilibrium. We suggest that this equilibrium
corresponds to the theory first proposed by Glover and
Florey11, namely that the river bed is at threshold for
sediment transport.

In this section, we re-derive the threshold theory from
basic principles, in order (i) to adapt it to laminar flows,
and (ii) to relate the Shields parameter, which defines the
threshold for sediment transport, to the avalanche angle
of granular materials.

A. Avalanche angle and Shields parameter

The conical shape of a heap of dry sand is determined,
at first order, by the avalanche angle of the sand. This
angle materializes the equilibrium of a grain lying at the
surface of the heap and submitted to gravity. The tan-
gential force ft tends to dislodge the grain, whereas the
normal force fn holds the grain in place. The maximum
slope a heap can sustain defines the Coulomb friction
coefficient µ as

µ =
‖ft‖
‖fn‖

= tanφr (1)

where φr is the avalanche angle. The slope of a slowly-
built heap of our sediment corresponds to a friction co-
efficient of µ ≈ 0.7, a typical value for a non-cohesive
granular material.

When a flow applies a force on a grain, the same rea-
soning holds. A fluid flowing above a horizontal layer
of sediments applies a tangential force to each grain, of
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norm

‖ft‖ = αd2s τ (2)

where ds, τ and α are the grain diameter, the shear stress
applied by the flow and a coefficient of order one, respec-
tively. The coefficient α depends on the grain’s shape,
and on the Reynolds number of the flow around it. At
low grain Reynolds number (Res = d2s τ/(ρf ν

2)), we ex-
pect no vertical force on the grain other than weight and
buoyancy. The normal force thus reads

‖fn‖ = β (ρs − ρf ) g d3s (3)

where g and β are the acceleration of gravity and a shape
factor of order 1 respectively. At the threshold of mo-
tion, the ratio of tangential and normal forces equals the
critical friction coefficient. This relationship is usually
expressed with the Shields parameter and its threshold
value θt

30:

τ

(ρs − ρf ) g ds
=
β

α
µ ≡ θt. (4)

The threshold Shields parameter depends weakly on the
grain Reynolds at the grain scale, with typical values
between 0.01 (turbulent flow) and 0.3 (viscous flow31).
We have measured the threshold of motion for our plas-
tic sediment in an independent 3 cm-wide, hard-walled
channel. At a grain Reynolds number of Res ≈ 0.03, we
find θt ≈ 0.25.

Equation (4) illustrates the fundamental equivalence
between the threshold for sediment transport, and the
onset of avalanches in dry granular materials32. This
equivalence manifests itself in the geometry of laminar
rivers.

B. Equilibrium theory

As long as we consider a horizontal layer of sediments,
the shape factors α and β may seem artificial, since exper-
iments yield directly the critical Shields parameter (al-
though Shields himself introduces shape factors30). How-
ever, the configuration of alluvial rivers requires that we
explicitly distinguish between the effect of gravity and
the effect of the flow.

We consider a straight laminar river, which has carved
its bed in a layer of uniform sediment (fig. 3). We further
assume that the equilibrium channel is such that, every-
where across the bed, sediment grains are at the thresh-
old of motion. Noting that gravity and the flow-induced
stress are orthogonal components of the tangential force,
the threshold condition reads(

α τ

β (ρs − ρf ) g ds

)2

+ sin2 φ = µ2 cos2 φ (5)

where φ is the angle of the bed with respect to the hor-
izontal, in the transverse direction. We have neglected
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FIG. 3. (Color online) Schematic representation of a labora-
tory river. Both the depth D and the velocity U are functions
of the transverse coordinate y. The river is invariant in the
streamwise direction x.
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FIG. 4. (Color online) Aspect ratio of laminar laboratory
rivers at equilibrium, as a function of the water discharge
(blue dots). The red line corresponds to the theoretical aspect
ratio π2/(2µ) ≈ 7.0. Each data point is the average of 2 or
3 cross-sections measured on the same river (for the fifth run
only, width and depth were measured with a ruler). The
width varies by less than 30% along the river (vertical error
bars). During an experiment, the water discharge varies by
less than 0.1 `min−1 (horizontal error bars).

the longitudinal slope of the river in the expression of
the grain weight (the effect of slope is embedded in the
fluid friction only). In our experiments, the resulting er-
ror is less than 1%.

The shear stress τ results from the flow which, in turn,
depends on the river’s shape. Equation (5) thus defines a
free-boundary problem —the channel cross-section must
be such that the flow satisfies it. At low Reynolds num-
ber, the flow in a straight channel is laminar and sat-
isfies a two-dimensional Poisson equation in the trans-
verse plane (y, z). However, the exact two-dimensional
free-boundary problem is not solvable analytically, and
proves numerically challenging. For the sake of simplic-
ity, we assume that the channel is flat enough to use
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the shallow-water approximation (that is, we neglect the
cross-stream transfer of momentum). Consequently, the
fluid friction on the river bed balances gravity:

τ = ρf g S D (6)

where S is the longitudinal slope of the channel. In accor-
dance with the shallow-water approximation, the trans-
verse slope is moderate (cosφ ≈ 1) and equation (5) be-
comes a first-order differential equation:(

S D

L

)2

+

(
∂D

∂y

)2

= µ2 (7)

where we define the characteristic length

L =
θt (ρs − ρf ) ds

µρf
(8)

based on equation (4). This length, which depends on the
sediment only, is of the order of the grain size (except
for almost buoyant materials). After equation (7), the
typical scale of the channel is L/S. A small slope thus
induces a clear separation between the grain scale and
the channel size.

A solution to the differential differential equation (7)
is

D =
µL

S
cos

(
S y

L

)
. (9)

The cross-section of our laboratory channels resemble a
cosine (fig. 2). More specifically, the theory predicts an
aspect ratio of π2/(2µ) ≈ 7.0 (width over average depth),
regardless of the water discharge. Despite considerable
scatter in the data, our experiments conform to this pre-
diction reasonably (fig. 4).

According to equation (9), the banks are at the angle
of repose. This remark holds beyond the shallow-water
approximation, since the fluid friction vanishes at the
bank.

As illustrated by equation (7), a river at threshold em-
bodies the two end-members of a grain equilibrium: the
force balance introduced by Shields at the center of the
channel (∂D/∂y = 0), and Coulomb’s equilibrium at the
banks (D = 0).

C. Scaling laws for laminar rivers

So far, the threshold hypothesis predicts the river’s
shape, but not its size. Indeed, the scale of the cosine
channel represented by equation (9) depends on the river
slope S. To go further, we need to consider the mass and
momentum balances for the fluid.

According to the shallow-water approximation (also re-
ferred to as the “lubrication approximation” for viscous
flows), the fluid friction at the bottom of the channel
balances gravity. The resulting Poiseuille flow satisfies

3 ν U

D
= g S D, (10)
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FIG. 5. (Color online) Width of laboratory rivers as a func-
tion of discharge (blue dots). The red line corresponds to
the threshold theory, without any fitted parameter (equation
(13)). Each data point is the average of 2 or 3 cross-sections
measured on the same river (for the fifth run only, width and
depth were measured with a ruler). The width varies by less
than 30% along the river (vertical error bars). During an ex-
periment, the water discharge varies by less than 0.1 `min−1

(horizontal error bars).

where U is the vertically-averaged water velocity. Finally,
the discharge reads

Qw =

∫
channel

U D dy. (11)

In combination with the momentum balance (10) and the
threshold cross-section (9), the water mass balance yields
two scaling laws:

S =

(
θt (ρs − ρf ) ds

ρf

)4/3(
4 g

9µ ν Qw

)1/3

(12)

W =
π L

S
=

π

µ2/3

(
9 ν ρf Qw

4 g θt (ρs − ρf ) ds

)1/3

. (13)

Equation (13) is the equivalent of Lacey’s law for a lam-
inar river, where the cubic root of the water discharge
takes the place of the classical square root dependence.

Our experimental data gather around this prediction
(fig. 5). Its significant dispersion results from the actual
variability of the river with, rather than from measure-
ment uncertainties. Indeed, the widest cross-section of a
river can be 30% wider than the narrowest one, whereas
the measurement uncertainty is of the order of the cap-
illary length only (a few millimeters).

With our experimental set-up, discharges smaller than
0.5 `min−1 or larger than 2.5 `min−1 are impracticable.
As a consequence, the data do not constrain strongly
the exponent of the width–discharge relation. However,
the threshold theory correctly predicts both its order of
magnitude and its trend, without any fitted parameter.
We thus believe that the balance between shear stress
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FIG. 6. (Color online) Average cross-section of laboratory
rivers (blue solid line). For each water discharge, the cross-
section is re-scaled with L/S (equations (8) and (12)). The
average is computed in polar coordinates relative to the center
of the cross-section. The shaded area indicates the variance
of the cross-sections sample. Red dashed line: cosine cross-
section predicted by equation (9).

and fluid friction embodied by equation (7) sets the size
of our laboratory rivers.

Assuming this is correct, we use equations (8) and (12)
to rescale the measured cross-section according to the wa-
ter discharge. Doing so for each run, we then compute the
mean cross-section for all our experiments (fig. 6). The
resulting shape resemble a cosine, with a more rounded
base. This slight disagreement might result from the flow
two-dimensionality, which we have neglected to derive the
cosine cross-section.

According to equation (12), the discharge of a river
not only sets its size, but also imposes its slope. Unfor-
tunately, assessing this prediction experimentally is dif-
ficult. In our experiments, we expect a slope of about
10−3; over the entire river, this corresponds to a change
of about a millimeter in bed elevation. We have not
reached this accuracy, despite an attempt with a moiré
technique33. However, before each experiment, we set the
slope of the initial flat bed close to its theoretical value.
If the initial bed is too steep, the river incises deeply into
the sediment layer near the water inlet. Conversely, too
small a slope generates an alluvial fan near the inlet, in-
dicating deposition. These observations suggest that the
river tends towards an equilibrium slope.

IV. DISCUSSION AND CONCLUSION

The characteristic size and shape of laminar labora-
tory channels accord closely with the threshold theory of
alluvial rivers. This need not have been the case, for two
reasons at least. First, the shallow-water hypothesis is a
rather severe approximation, especially since we expect
the slope to reach the avalanche angle at the bank. Sec-
ond, the cosine solution to the equilibrium equation (7)
is not unique. Indeed, as Henderson pointed out, a flat
section at threshold enclosed with two half cosines is also
a solution12. To understand why the narrowest solution

is selected, we need to consider the path towards equi-
librium. To take this history into account, we must add
sediment transport to the theory.

The threshold theory has been compared with reason-
able success to field data14,15, suggesting that the force
balance it is based on sets the shape of alluvial streams.
However, the aspect ratio of most rivers is significantly
larger than the theoretical value. Since alluvial rivers
generally transport a non-vanishing load of sediments,
the threshold theory appears as a limit case that explains
the orders of magnitudes, but still lacks an ingredient.

Assuming that the bed is slightly above threshold in
the framework proposed here leads to a paradox: moving
particles would be pulled towards the middle of the chan-
nel by gravity, thus preventing equilibrium17. Various
mechanisms have been invoked to compensate for grav-
ity: suspended particle diffusion34, diffusion of lateral
momentum17 or riparian vegetation35. None of them,
though, applies to laminar laboratory rivers, and the sta-
ble channel paradox remains a stimulating question for
future investigations.
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