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This paper reports recent experimental findings and rheological modeling on chemically treated
single-walled carbon nanotubes �CNTs� suspended within an epoxy resin. When a CNT suspension
was subject to a steady shear flow, it exhibited a shear-thinning characteristic, which was
subsequently modeled by a Fokker–Planck �FP� based orientation model. The model assumes that
the shear flow aligns CNT in the flow direction, but there are events such as Brownian motion and
tube–tube interaction trying to randomize the orientation. In the FP orientation model, randomizing
events were modeled with an appropriate rotary diffusion coefficient �Dr� and the shear-thinning
behavior was explained in terms of progressive alignment of CNTs toward the shear direction. In
terms of linear viscoelasticity �LVE�, small-amplitude oscillatory measurements revealed mild
elasticity for semidilute treated CNT suspensions. The exact origin for this elasticity is not clear
and both tube–tube interaction and bending/stretching of CNTs have been proposed by other
authors as possible origins. It is, however, clear from the current modeling that the experimental
evolution of storage modulus �G�� cannot be described using a single-mode Maxwell model or
simple Brownian rod modeling. In this paper, experimental LVE data of the treated CNT
suspensions were fitted using the FP orientation model with an “effective diffusion coefficient”
term and an empirical relation was subsequently identified for the effective diffusion term.
Intuitively, chemical treatment has created a weakly interconnected network of CNT and it is
believed that the mild elasticity originated from this weak network as well as other randomizing
events �Brownian motion and tube–tube hydrodynamic interaction�. Finally, step strain
experiments confirmed the presence of a weak network at small strains, which at large strains was
found to be destroyed. Incorporation of a strain softening factor allowed for the formulation of a
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self-consistent FP based orientation model describing both the steady shear and LVE responses of 
treated CNT suspensions.

I. INTRODUCTION

Carbon nanotubes �CNTs� are cylinders of rolled graphite sheets possessing high
mechanical strength, low density, and special electronic properties �Iijima �1991�;
Dresselhaus and Dai �2004��. They belong to a relatively new class of fibrous material
that can potentially be used for high-performance nanocomposites and nanodevices
�Ajayan et al. �1994�; Calvert �1999�; de Heer et al. �1995�; Rinzler et al. �1995�; Saito
�1997�; Collins et al. �2000�; Kong et al. �2000�; Tans et al. �1998��. Most of these
applications involve suspending the CNTs in a matrix and thereby allows for further
processing such as fiber spinning, film casting, extrusion, and inkjet printing �Vigolo et
al. �2000�; Safadi et al. �2002�; Ericson et al. �2004�; Kozlov et al. �2005�; Kordás et al.
�2006��. Both in terms of processing and product, a uniformly dispersed suspension of
CNT is generally desirable �Shaffer et al. �1998�; Sandler et al. �1999��; however, CNTs
have low solubility in most common solvents and therefore obtaining a homogenous
dispersion of CNT can be laborious and difficult �Calvert �1999�; Dresselhaus and Dai
�2004��. For instance, Huang et al. �2006� reported that a mixing time of several hours
was required to establish a stable rheology for CNT suspensions and even then uniformity
at nanoscale is not guaranteed. In this regard, introducing functional groups onto the
wall/cap of CNTs also known as functionalization has proven to be one of the most
effective ways to enhance dispersion of CNT in a processing matrix �Kinloch et al.
�2002�; Banerjee et al. �2003�; Dyke and Tour �2003�; Dyke and Tour �2004��. Despite
the potential of functionalization, a limited amount of work has been carried out on the
rheological modeling of chemically treated CNT suspensions. This paper presents experi-
mental results and modeling of chemically treated CNTs suspended in an epoxy resin,
considering both steady shear and linear viscoelastic �LVE� responses for this type of
suspension.

II. EXPERIMENTAL DETAILS

CNTs used were single-walled CNTs produced by high pressure carbon monoxide
disproportionation �HiPco� method and they were supplied by Nanocomposites Inc.,
USA. The exact length and diameter distribution for the treated CNTs have not been fully
characterized; however, according to the supplier, each individual CNT was 0.5–1 �m
long and with a typical diameter of 1.2 nm. In the case of treated CNTs, effective �-�
stacking between CNTs and subsequent aggregation was prevented by covalently attach-
ing arene diazonium salts onto the sidewall of CNTs �Dyke and Tour �2003�; Dyke and
Tour �2004��. For comparison, some examples of basic rheology and microstructure of
untreated CNTs are also considered in this paper.

0.6 g of CNTs was dispersed in 60 g of epoxy resin �Araldite LY556, Huntsman Inc.�
to give a 1% masterbatch suspension. Suspensions with lower CNT concentrations were
obtained by a dilution of the masterbatch. Mixing was carried out for 5 h using a
Silverson-L4R homogenizer and the microstructure of resulting mixtures was optically
characterized using the Cambridge shear system �Linkam Scientific Instruments Ltd.�
�Bower et al. �1998�; Mackley et al. �1999��. Figure 1 compares the typical optical
texture of a suspension with chemically treated CNTs and that with untreated CNTs.
Some impurities of amorphous carbon and metal catalyst residue were present in the
chemically treated CNT suspension �Fig. 1�a��; however it was clear from the micrograph
that the suspension showed no optically resolvable aggregates of CNTs, and the mixture
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was well dispersed at the micronlevel. In addition, no formation of optically resolvable
aggregates was observed in the presence of shear flow, as shown in Fig. 2. By contrast,
the untreated CNT suspension consisted of optically resolvable CNT aggregates �Fig.
1�b�� as discussed by Rahatekar et al. �2006� and Ma et al. �2008a�.

The extensional rheology of the same treated CNT sample was characterized and
reported by Ma et al. �2008c�. By fitting the experimental extensional viscosity data to
the models of Batchelor �1971� and Shaqfeh and Fredricksen �1990�, the average aspect
ratio was estimated to be 180, which is in reasonable agreement with the atomic force
microscopy �AFM� results where small bundles with a typical diameter of 5 nm were
observed after high shear mixing. It should, however, be noted that the CNTs were not
“monodispersed” and there was a certain length �and diameter� distribution associated
with the CNTs used in the actual experiments—originated from the synthesis, mixing,
and subsequent chemical treatment processes �Ma et al. �2008b��. In this study, the aspect
ratio distribution of CNT has not been studied in detail. In terms of modeling, given an
average aspect ratio in the order of 180, the shape factor k in the Jeffery equation �Eq.
�4�� was assumed to be 1. The aspect ratio distribution could have an influence on the
overall rheological behavior of the system �as discussed, for example, in the paper of

FIG. 1. Optical micrograph of �a� 0.33% chemically treated and �b� 0.33% untreated CNTs suspended in epoxy
resin �optical depth=130 �m�.
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FIG. 2. Optical micrographs of a 0.3% treated SWNT-epoxy suspension �a� after dispersion and sheared at
different rates as indicated in the figures. No buildup of aggregate structures was observed even in the presence
of shear. Optical depth=130 �m. Shear time=300 s. Temperature=25 °C. The images were captured imme-
diately after the cessation of flow to maximize clarity.
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Pittman and Bayram �1990��, but the effect of length distribution has not been considered
explicitly in the current modeling. If there is any effect due to the “polydispersity” of the
CNTs, this would have been accounted for in the subsequent model fitting, as represented
by the parameter Np in Eq. �12�, which combines the effect of concentration and aspect
ratio.

Rheological measurements were made using an Advanced Rheometric Expansion Sys-
tem �ARES� strain-controlled rheometer with 50 mm parallel plates and a gap size of 0.3
mm. The temperature was maintained at 25 °C by an air oven. In steady shear experi-
ments, the apparent viscosity of the sample was measured after a particular shear rate was
applied for 100 s. In the small-amplitude oscillatory shear experiment, a strain amplitude
of 1% was used. In order to minimize possible complication from sample loading,
samples were squeezed between the parallel plates slowly and were rested for at least 2
h before any measurements were carried out. Step strain experiments were carried out in
order to explore the transition from small to large strain deformations.

III. STEADY SHEAR FLOW

A. Experimental results

Steady shear experimental plots of the apparent viscosity ��a� as a function of shear
rate ��̇� for chemically treated and untreated CNT suspensions are shown in Fig. 3. Both
suspensions were shear thinned asymptotically to the matrix viscosity �also shown�, but
given the same weight concentration of 0.33%, the suspension with untreated CNTs
showed a significantly larger viscosity enhancement effect than the suspension with
chemically treated CNTs. Previous work �Rahatekar et al. �2006�� identified the viscosity
enhancement for untreated CNT suspensions with the optically observed aggregate mi-
crostructure and similar observations were also reported in a comparative study of chemi-
cally treated and untreated carbon nanofiber �CNF� suspensions �Xu et al. �2005��. The
data obtained in Fig. 3 were found to be consistent irrespective of whether a particular
shear rate was approached from either a higher or lower shear rate provided an adequate
equilibration time was allowed at each respective shear rate.
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FIG. 3. Apparent viscosity ��a� as a function of shear rate ��̇� for �a� 0.33% chemically treated and �b� 0.33%
untreated CNT suspensions.
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B. Fokker–Planck based simple-orientation model

In order to model the steady shear-thinning response of treated CNTs, an orientation
model was developed. In this model, the CNTs were assumed to be an assembly of high
aspect ratio rigid fibers subjected to shear and rotary diffusion. Similar models have been
used to model short fiber suspensions; however, the numerical values of key parameters
in the current modeling were identified by fitting to experimental data and no theoretical
relations as described, for example, in Petrie �1999�, were used. The model proposed is
consistent with the shear-induced alignment of CNTs as observed using optical micros-
copy �Rahatekar et al. 2006�� and transmission electron microscopy �Fan and Advani
�2005, 2007��. In terms of the mathematical treatment of CNT orientation distribution, a
Fokker–Planck �FP� description, instead of the readily available closure approximations
for the orientation tensors, was used in the steady shear modeling. Nonlocal effects such
as tube–tube interaction and CNT-polymer interaction can be introduced as proposed in
the work of Forest and Wang �2005�, where they considered blends of rodlike liquid
crystal polymer and flexible polymers. The latter approach, however, requires some ad-
ditional information that is not readily available. This includes detailed descriptions for
�i� tube–tube interaction, �ii� CNT conformation, and �iii� CNT-polymer interaction. Be-
sides that, taking into consideration nonlocal interactions would lead to extraelastic body
forces that cannot be written as the divergence of a second order tensor and therefore
cannot be directly introduced in the general expression for the stress tensor. As pointed
out by Forest and Wang �2005�, it is necessary to introduce the extraelastic body forces in
the momentum balance equation, making this type of analysis more complicated to per-
form. This study aims to derive a simple constitutive model for chemically treated CNT
suspensions and for this reason, tube–tube interaction is represented using an effective
diffusion coefficient and CNT-polymer interaction is neglected in our current system
where the suspending matrix is made up of small prepolymer molecules. Experimentally,
similar steady shear and LVE rheological responses were obtained when the epoxy matrix
was replaced by an acrylic resin and this further confirms the belief that CNT-polymer
interaction plays a relatively weak role in terms of the overall rheology of the chemically
treated CNT suspensions.

1. Model formulation

The momentum balance equation neglecting the mass and inertia terms reads as

div��=� = 0, �1�

where �= is the total stress tensor.
The mass balance equation for an incompressible fluid gives

div�v� �x��� = 0, �2�

where v� �x�� is the velocity field.
The constitutive equation for a dilute suspension with high aspect ratio rigid fibers can

be written as �Batchelor �1970�; Hinch and Leal �1975, 1976�; Petrie �1999��

�= = − PI= + 2�D= + �= f = − PI= + �= , �3�

where P denotes the pressure, I= is the unit tensor, � is the suspending medium viscosity,
D= is the strain rate tensor �symmetric component of the velocity gradient tensor�, and �= f

is the stress contribution due to the presence of fibers.
The suspension microstructure can be defined using the fiber orientation. It was as-

sumed that the fibers are ellipsoidal and rigid and that they are immersed in a Newtonian
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matrix whose kinematics are defined by grad�v� �x���. If p denotes the unit vector aligned in
the fiber axis direction, then, its evolution will be given by the Jeffery equation �Jeffery
�1922��,

dp�

dt
= �= · p� + kD= · p� − k�D=:�p� � p� ��p� , �4�

where k= ��2−1� / ��2+1�, � is the �effective� fiber aspect ratio, and �= denotes the vor-
ticity tensor. The tensor product � of vectors a and b is defined as �a� � b� �ij=aibj, and “:”
denotes the tensor product contracted twice �i.e., �a= :b=�=��aijbji �.

Although the Jeffery equation was first proposed for an isolated fiber immersed in a
Newtonian fluid, it can also be applied to a population of fibers if the suspension is dilute
and the interaction between the fibers is negligible. However, defining the fluid micro-
structure using the orientation of each fiber in the suspension is not helpful for the
formulation of a mesoscale model. Instead, a more useful way of describing the micro-
structure is to use a kinetic theory approach which introduces an orientation distribution
function 	�x� ,p� , t� such that 	�x� ,p� , t�dp� represents the probability of finding at point x�
and time t: a fiber whose orientation is within the interval defined by p� and p� +dp� . In this
expression, the physical coordinates �x� , t� �space and time� can be distinguished from the
conformation coordinate p� , which describes the orientation defined on the surface of the
unit sphere S�0,1�. This distribution function satisfies the normality condition,

�
S�0,1�

	�x� ,p� ,t�dp� = 1, ∀ x� , ∀ t . �5�

The consideration of an orientation distribution function allows certain moments to be
defined: namely, the second order moment, also known as the second order orientation
tensor,

a=�x� ,t� = �
S�0,1�

p� � p�	�x� ,p� ,t�dp� �6�

and the fourth order moment also known as the fourth order orientation tensor,

a=
=

�x�,t� = �
S�0,1�

p� � p� � p� � p�	�x� ,p� ,t�dp� . �7�

The evolution of the orientation distribution function is governed by the FP equation
�see, for example, Hinch and Leal �1972��,

d	

dt
+

�

�p�
· �dp�

dt
	� =

�

�p�
· �Dr

�	

�p�
� , �8�

where the advection field dp� /dt is given by the Jeffery’s equation �Eq. �4��, and d	 /dt is
the material derivative, i.e.,

d	

dt
=

�	

�t
+ v� · grad�	� , �9�

where

grad�	� =
�	

�x�
. �10�
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Dr given in Eq. �8� is the rotary diffusion coefficient of the fibers and is a key
adjustable parameter within the model to describe both orientation and randomizing
events in semidilute suspensions. Folgar and Tucker �1984� proposed the use of an

empirical effective rotary diffusion �D̂r� and in their treatment, D̂r is proportional to the
shear rate.

As the flow kinematics induce a homogeneous distribution state, the material deriva-
tive reduces to the partial derivative, which vanishes when looking for the steady solu-
tion. In the present work, it is assumed that the orientation does not depend on the
physical coordinates, and therefore 	=	�p� , t�. By integrating Eq. �8� in the conformation
space �the unit sphere surface S�0,1��, it is easy to verify that

�

�t��S�0,1�
	�p� ,t�dp�� = 0, ∀ t , �11�

which implies that if Eq. �8� is solved using an initial distribution that satisfies the
normality condition, its time evolution will also verify the normality condition. On the
other hand, if one is looking directly for the steady orientation distribution, the normality
condition related to the searched distribution should be imposed using an appropriate
technique �e.g., Lagrange multipliers�.

An appropriate way to derive a constitutive equation for the suspension involves the
use of spatial homogenization and statistical averaging. Together with other simplifying
hypotheses for high aspect ratio fibers, the stress tensor �= f due to the presence of fibers
can be defined �Batchelor �1971�; Hinch and Leal �1975�; Hinch and Leal �1976��,

�= f = 2�Np�a=
=
:D=� + 
Dr�a= −

I=

3
� , �12�

where Np is a scalar parameter that depends on the fiber concentration as well as the
aspect ratio of fibers in dilute suspensions whereas for dilute suspensions 
=6��str �� is
the number concentration and �str is the viscous drag coefficient� �Larson �1999��. The
second term on the right-hand side of Eq. �12� essentially accounts for the effect of
Brownian motion; but in general, other randomizing events, such as fiber-fiber hydrody-
namic interaction, can be accounted for by replacing Dr with an “effective diffusion
term.” In terms of steady shear or large strain deformations, the second term becomes
negligible compared with the first term involving the fourth order orientation tensor. The
second term in Eq. �12� was, however, found to be important in explaining the mild
elasticity observed in small-strain LVE measurements. The second term is included in the
LVE modeling, but it can be neglected in steady shear data fitting. It should be noted that
although the expression proposed by Hinch and Leal �1975, 1976� is used in the current
study, there exist alternative formulae as reported by Chan and Terentjev �2007� and
Grmela �2008�.

Instead of using a kinetic theory model �Eqs. �3�, �7�, �8�, and �12��, some authors
prefer to use purely macroscopic models because of lower computation requirements.
The simplest macroscopic model can be derived by taking the time derivative of Eq. �6�
and then introducing both the Jeffery equation �Eq. �4�� and the FP equation �Eq. �8��.
Prager �1957� showed that

da=

dt
= �= · a= − a= · �= + k�D= · a= + a= · D= − 2�a=

=
:D=�� − 6Dr�a= −

I=

3
� . �13�

As shown in the equation above, the evolution of the second order orientation tensor �a=�
depends on the fourth order orientation tensor �a=

=
� and closure relations that express the
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fourth order orientation tensor as a function of the lower order orientation tensors is
commonly used to solve the mathematical problem in a closed form. Different forms of
closure relationship, including quadratic, linear, hybrid and natural relations, can be
found in the literature �Advani and Tucker �1990�; Dupret and Verleye �1999��. However,
it is worth noting that these closure relations have their own constraints and the use of
these relations could sometimes adversely influence the computed numerical solutions.
For instance, the quadratic closure relation becomes exact only for perfectly aligned
fibers whereas the linear closure relation becomes exact only for randomly orientated
fibers �Petrie �1999��. In steady shear modeling, the orientation distribution of CNT was
expected to be neither completely isotropic nor randomly orientated �for most shear
conditions�; closure approximations were therefore avoided and the FP equation was
solved directly instead �Öttinger and Laso �1992�; Chaubal et al. �1997�; Chinesta et al.
�2003�; Lozinski and Chauviere �2003�; Chauviere and Lozinski �2004�; Keunings
�2004�; Ammar and Chinesta �2005�; Ammar et al. �2006a, 2006b��. In the subsequent
LVE modeling, given that the orientation distribution of CNT during small-amplitude
oscillations was expected to remain close to an initial isotropic distribution, a linear
closure relation was used.

Once the distribution function is known, the fourth order orientation tensor and the
stress tensor can then be computed. For simple shear flow and with an assumption that
the flow is not perturbed by the presence and orientation of fibers,

v� = 	u

v

w

 = 	�̇y

0

0

 . �14�

In the case of steady shear or large strain deformation, the stress contribution from
Brownian motion and other randomizing effects is negligible compared with the aniso-
tropic viscous term involving the fourth order orientation tensor; the shear stress accord-
ing to Eq. �12� is therefore given by

�12 = ��̇ + 2�Npa1212�̇ �15�

and the apparent viscosity is therefore

�a =
�12

�̇
= ��1 + 2Npa1212� . �16�

The described model was originally developed for dilute suspensions, it has however
been used in several commercial simulation codes and has been successfully applied to
model semi-dilute and concentrated suspensions generally encountered in industrial ap-
plications �Advani �1994��. In such cases, the model previously described could still be
used to compute the flow kinematics and the microstructure evolution, but rheological
parameters in the model, such as Np and Dr, should be determined from experimental
data. As an alternative, there also exists models that allows for the estimation of Dr and
Np �see, for example, Larson �1999��, but the hypothesis of which they are based on is
only valid under certain circumstances.

C. Model fitting

The FP based simple-orientation model has been applied to the treated CNT suspen-
sions and Fig. 4�a� shows the model fitting of chemically treated CNT suspensions with
four different weight concentrations �0.05%, 0.2%, 0.33%, and 0.5%�. Taking the 0.33%
CNT suspension as an example, the evolution of �a in the orientation model is controlled
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by the values of Dr and Np and the best constant-Dr fit was obtained for Dr=0.005 s−1

and Np=7. In Fig. 4�b�, different values of Dr were used to illustrate the sensitivity of the
model on the fitting parameter Dr. In general, there is a good agreement between �a

predicted by the model and the experimental data; but for high shear rates ��̇�, the
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FIG. 4. �a� Orientation model fitting for epoxy, 0.05%, 0.2%, 0.33% and 0.5% chemically treated CNTs
suspended in epoxy where Np and Dr are model fitting parameters. �b� Sensitivity of the orientation model to the
fitting parameter Dr for the 0.33% treated CNT suspension and Np=7. �c� The scalar order parameter �S�
calculated by fitting apparent shear viscosity data to the orientation model for a rotary diffusion coefficient of
0.005 s−1. �Note: by setting Np=0, the fiber contribution term in Eq. �16� becomes zero and therefore, �a=�
where � is the suspending medium viscosity.�

9



predicted �a is slightly higher than the experimental value. For instance, at �̇=60 s−1, �a

of the 0.33% suspension was found experimentally to be 10.5 Pa s, but the orientation
model predicted a viscosity of 11.3 Pa s �with a constant Dr=0.005 s−1� and this gives
an error of about 8%. Although there is an error of a few percents in predicting high
shear-rate data, the use of a constant Dr should be sufficient to provide a reasonably good
estimation of �a for general engineering problems, and this also saves the effort in
determining the exact relationship between Dr and �̇. However, in cases where a more
accurate description of high shear viscosity is needed, the dependence of Dr on �̇ should
be carefully evaluated �see, for example, Folgar and Tucker �1984� and Larson �1999��.
In terms of low shear-rate data, although the torque generated by �̇0.1 s−1 was too
small to be measured accurately and corresponding �a data was not available experimen-
tally, the model predicted a low shear-rate Newtonian plateau and the level of the plateau
depends on the parameter Np �Fig. 4�a��. As shown in the inset figure, Np scaled linearly
with the CNT concentration.

Given the best-fit value for Dr to be 0.005 s−1, one can compare this value to the
theoretical prediction by Doi and Edwards �1986� for dilute suspensions where interpar-
ticle interactions are absent and rotary diffusion is due to Brownian motion only,

Dr0 =
3kBT�ln�L/d� − 0.8�

��sL
3 , �17�

where kB is the Boltzmann constant �1.38�10−23 J /K�, T is the temperature �in Kelvin�,
L is the CNT length, d is the CNT diameter, and � is the viscosity of the suspending
medium.

For the treated CNTs having an aspect ratio �L /d� of about 180 and epoxy resin with
a base viscosity of 10 Pa s, Eq. �17� predicted a Brownian rotary diffusion �Dro� of
0.002 s−1, which is in the same order of magnitude as the Dr determined from the
experimental data fitting. The higher value of Dr could probably be explained by extrain-
terparticle interactions in the case of semidilute suspensions.

To quantify the degree of CNT alignment, a scalar order parameter �S� can be used
�see, for example, Fry et al. �2005�� and the definition can be found in many liquid
crystalline polymer textbooks such as Donald et al. �2006� and Laso et al. �2006�,

S =�3

2
�Q
=

:Q
=

� , �18�

where Q
=

= �a=− I= /3�, a= is the second order orientation tensor as defined in Eq. �6�, and I= is
the identity matrix. S is a scalar parameter varies between 0 and 1 and the larger the
magnitude of S, the higher the degree of alignment. Figure 4�c� presents the scalar order
parameter �S� as a function of shear rate as predicted by the orientation modeling. At a
shear rate of 100 s−1, the model predicted an order parameter of 0.92.

The orientation model, in principle, could be used to model CNT suspensions where
the CNTs do not aggregate in the presence of shear flow. However, recent modeling work
carried out by us �Ma et al. �2008a�� suggests that such a model cannot satisfactorily
describe the shear-thinning characteristics for �untreated� CNT suspensions where opti-
cally resolvable CNT aggregates are present �see, for example, Rahatekar et al. �2006��.
For CNT suspensions where the CNTs aggregated in shear flow, a more advanced model
named the “aggregation/orientation �AO� model” has been developed to explain the
shear-thinning behavior observed experimentally. The AO model considered a hierarchy
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of aggregate structures within the CNT suspensions and the evolution of CNT orientation
depended on the flow conditions as well as the entanglement state of CNTs �Ma et al.
�2008a��.

IV. SMALL-AMPLITUDE LINEAR VISCOELASTIC OSCILLATORY DATA

A. Experimental results

LVE of CNT suspensions was studied using small-amplitude oscillatory measure-
ments. Epoxy resin showed scattered G� data with torque values very close to the detec-
tion limit of the transducer, implying that the elasticity of the matrix �Gepoxy� �0� is
negligible. Epoxy behaved essentially as a Newtonian fluid with viscous dissipation that
is consistent with steady shear measurements. Addition of CNTs increased the values of
both G� and G� as shown in Figs. 5�a� and 5�b�. Measurements were made at a strain of
1%, which was well within the linear strain response of the suspensions. The enhance-
ment of G� was concentration dependent and was more pronounced at high concentration
levels �0.2% and 0.5%�. The evolution of G� as a function of frequency is consistent with
experimental results reported by others �Song and Youn �2005�; Xu et al. �2005�� and
similar evolution of G� was also observed experimentally when the treated CNTs were
suspended in a Newtonian acrylic resin having a different base viscosity �dipropylene
glycol diacrylate �DPGDA�; Cytec Industries Inc.�. Figure 5�a� clearly illustrates that the
addition of CNTs increased the elasticity of the system as a whole. This response is very
different from that of a typical short fiber suspension, where in the latter case, the
addition of non-Brownian fibers was reported to have no extra contribution to the storage
modulus �G�� value of the suspending medium �Carter �1967�; Ganani and Powell
�1986��.

To assess the relative importance of viscous and elastic contributions at a given con-
centration, full G�, G�, and �� data of the 0.5% CNT suspension are presented in Fig.
5�c�. The value of G� was observed to be higher than G� within the full range of
frequency studied, which implies that the elasticity associated with the addition of CNTs
is relatively mild. Although the elastic response is relatively weak, it is interesting to note
that the experimental evolution of G� and G� does not follow the prediction of a single-
mode Maxwell model as predicted for Brownian rod systems �Larson �1999��.

B. Model fitting

In the case of CNFs which are analogous to CNTs, Xu et al. �2005� carried out
experiments and applied elastic and rigid dumbbell models to describe both shear and
viscoelastic behavior for treated and untreated CNF suspensions. For treated CNF sus-
pensions, they claimed that a Hookean elastic dumbbell model can successfully capture
the LVE response. For the system studied in this paper, the experimental shear thinning
was found and has successfully been modeled using the FP orientation diffusion model
using a constant diffusion coefficient. To model the LVE of treated CNT suspensions,
Eqs. �12� and �13� are considered in the context of small-amplitude oscillatory measure-
ments. Prior to any oscillatory measurements, CNTs are assumed to be isotropically
orientated �given that no preshear is applied to the sample�. In the presence of weak
small-amplitude oscillatory flows, the orientation of CNTs would remain very close to an
isotropic distribution. This allows for the application of a linear closure relation for the
fourth order orientation tensor, which takes the following form �see, for example, Advani
and Tucker �1990��:
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FIG. 5. �a� Loss modulus �G�� and �b� storage modulus �G�� as a function of frequency for different concen-
trations of treated CNT suspensions �with strain=1%�. �c� LVE data, which include the storage modulus �G��,
the loss modulus �G��, and the complex viscosity ���� as a function of frequency, for the 0.5% treated CNT
suspension.
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Given that the small-amplitude oscillatory flow does not perturb significantly the
isotropic orientation distribution state, the following approximation holds:

�a=
=
:D=�12 

�̇

15
. �20�

Combining Eqs. �13� and �20� gives

da=12

dt
=

�̇

5
− 6Dra=12, �21�

which can be rearranged as

��
da

dt
+ a = ���̇ , �22�

where a�a=12, ��=1 /6Dr, and �� =1 /30Dr���/5.
Equation �22� takes the form of a Maxwell viscoelastic model and for a small-

amplitude oscillatory flow where �̇�t�= i�0�ei�t, the real and imaginary components of a
�i.e., a=12 � are

a� =
�����0�2

1 + ��2�2 ,

a� =
���0�

1 + ��2�2 . �23�

The shear stress according to Eq. �12� is

�� + i�� = �0��i�1 +
2Np

15
� + 
Dr�a� + ia�� �24�

and the storage modulus �G�� and the loss modulus �G�� are therefore

G� = 
Dr
�����2

1 + ��2�2 , �25�

G� = ���1 +
2Np

15
� + 
Dr

���

1 + ��2�2 . �26�

This analysis is in perfect agreement with the expressions given in Larson �1999� for
high aspect ratio Brownian rods. It is clear from this theoretical analysis that the Brown-
ian motion of particles would result in Maxwell type elasticity, where G���2 at low
frequencies and there is a G� plateau at high frequencies. For the treated CNT suspen-
sions studied in this paper, a single-mode Maxwell model, however, could not describe
the experimental LVE data which showed G� scaling roughly as �0.5 over three decades
of frequency. To reconcile the difference between prediction by Eq. �25� and experimen-
tal LVE data, one might consider the concept of an “effective rotary diffusion coeffi-
cient.” Most notably, Folgar and Tucker �1984� proposed the use of an empirical diffusion

coefficient where D̂r=CI�̇�C� to account for fiber-fiber interactions in a semidilute
short fiber suspension �C is known as the Folgar–Tucker constant and was determined to

be about 0.003–0.016� �Larson �1999��. If it is assumed that D̂r=C�, this would give a
slope of 1 on a log-log plot of G� versus frequency, inconsistent with the experimental
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results obtained for the treated CNT suspensions. It is believed that the physics of chemi-
cally treated CNTs is more complex and that the LVE rheology of treated CNT involves
hydrodynamic interactions, Brownian motion, fiber-fiber collisions, as well as other pos-
sible effects, such as bending and repulsion, not considered by Folgar and Tucker �1984�.

In this paper, we assume that the effective diffusion coefficient can be written as

D̂r = Dr1 + ����Dr2, �27�

where

���� = ��c − �

�c
if � � �c

0 if � � �c.
� �28�

Dr1 is the base diffusion coefficient accounting for randomizing effects, such as Brownian
motion and tube–tube interaction, and was determined to be 0.005 s−1 in fitting the
orientation model to steady shear experimental data; Dr2 is the diffusion coefficient
corresponding to a weak network of CNT that is only present at small strain. ���� is a
function which approaches 1 at a very small strain and equals to 0 for an applied strain
��� larger than a critical strain ��c� that destroys the network.

Replacing the diffusion coefficient Dr term in Eq. �12� with the effective diffusion
coefficient defined in Eq. �27� gives

�= f = 2�Np�a=
=
:D=� + 
�Dr1 + ����Dr2��a= −

I=

3
� . �29�

Phenomenologically, if it is assumed that Dr2 scales as the square root of frequency
�i.e., Dr2=C���, reasonable fitting to experimental LVE data can be obtained. The best
fits for the 0.2% and 0.3% treated CNT suspensions are shown in Fig. 6. In these fittings,
C=0.05 s−0.5; whereas the concentration-dependent parameters Np and 
 scaled with the
CNT concentration. Although experimental G� and G� data were not available at frequen-
cies lower than 0.1 s−1 �due to the small torque generated�, the model predicted G�
��2 at very low frequencies and this is in agreement with the Brownian rod models
described, for example, in Larson �1999�. The only difference between the current model
and the Brownian rod model is that the latter model predicted a plateau at high frequen-
cies which was not observed experimentally for the treated CNT suspensions. Mathemati-
cally, the current model reduced to the rod model by setting C=0 as shown in Fig. 7.
Figures 7 and 8 show model predictions for G�, G� and �� by varying the values of C and

 respectively. It is clear from these figures that G� is very sensitive to the values of C
and 
 while G� is not.

The results shown in Fig. 6 were obtained by combining Eqs. �25� and �26� with the
assumption that Dr2 scaled with the square root of the frequency. The same results can be
obtained by applying the same assumption and solving Eqs. �12� and �13� with a linear
closure relation and an effective diffusion coefficient given by Eq. �27�. The consistency
of the results confirms the approximations introduced in the derivation of Eqs. �25� and
�26� were appropriate.

Despite the success of the fitting, an empirical relation where Dr2=C�� was assumed
and the exact physical meaning behind such a relation is unclear at this stage. It is,
however, worth noting in the context of polymer kinetic theories that similar evolution of
G� � has been predicted by the Rouse model. Rouse model predicted that at low frequen-
cies, G���2 and at higher frequencies, G���0.5. The factor of 0.5 is a result of the
spacing of relaxation times in the Rouse model �Bird et al. �1977�; Larson �1999�� and
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following a similar logic, it is probable that the experimental evolution of G� for chemi-
cally treated CNT suspensions was a result of multiple relaxation times. Experimental
LVE data can be fitted using the Rouse approach by assuming CNTs as curved and
elongated entities that can be divided into subsections; each represented by a pair of bead
and spring. Such an approach, however, also implies that the elasticity of CNTs origi-
nated from the stretching of CNTs. At present, there is no consensus over the origin of
mild elasticity for chemically treated CNT suspensions. Xu et al. �2005� proposed that the
elasticity was due to stretching and bending of CNFs, whereas Hough et al. �2004�
suggested that the elasticity originated from the interaction between CNTs instead of
bending or stretching. The latter belief was also held by Dinsmore et al. �2006� in their
treatment of colloidal dispersion, where they considered that the interactions between
particles could be represented by conceptual springs.

In the current modeling, the treated CNTs were assumed to be essentially rigid, but we
do not completely rule out the possibility that CNTs can bend in certain shear conditions.
Duggal and Pasquali �2006� tagged some surfactant-stablized CNTs with fluorescent dye
and were able to estimate the persistence length of CNT suspended in water. They
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computed the persistence length to be in the order of 7–74 �m �in the absence of any
external field�. Given the typical length of the treated CNTs in the current study was less
than 1 �m, we tend to believe that the treated CNTs were essentially rigid. For future
work, it is of interest to study in greater detail the bending stiffness of the chemically
treated CNT and identify the effect of bending �if any� on the rheological response of
treated CNT suspensions. Intuitively, the elastic energy can be stored up due to the
bending of CNT and could therefore potentially contribute toward the elasticity of the
suspension.

Based on LVE experimental data alone, the exact origin for the mild elasticity of
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treated CNT suspensions remains inconclusive. Both explanations are possible and are
not mutually exclusive. However, there is an evidence in step strain experiments showing
the presence of a weakly interconnected CNT network. Therefore, we tend to believe that
the weak network has contributed to the mild elasticity of treated CNT suspensions.

V. STEP STRAIN EXPERIMENTAL DATA

A series of step strain experiments were carried out in order to reveal more detailed
relaxation behavior of the treated CNT suspensions and offer insights into the origin of
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elasticity. A finite step strain ��0� was applied to the CNT suspensions and the process of
stress relaxation was followed using the ARES strain-controlled rheometer. Figure 9�a�
shows the time evolution of the relaxation modulus �G�, which is defined as G�� , t�
=� /�0, for suspensions with different concentrations of CNT. The stepper motor had a
response time of about 0.1s �as indicated in the figure� and for the epoxy matrix, the
stress dissipated almost instantaneously consistent with the fact that it behaved essentially
as a simple Newtonian fluid in both steady shear and LVE experiments. Addition of CNTs
prolonged the stress relaxation process and the CNT suspensions resembling the response
of a viscoelastic fluid. The effect was progressive as the CNT concentration increased and
this confirmed the earlier LVE experiments that the addition of CNTs effectively in-
creased the elasticity of the system as a whole.

Different magnitudes of strain were applied to the 0.5% CNT suspension. Figure 9�b�
shows a strain dependence in terms of the final mode of stress dissipation. At small
strains �1%, 5%, and 10%�, the CNT suspension responded essentially as an entangled
gel with a strain softening characteristic associated with a long relaxation time �see, for
example, Mours and Winter �1996� and Winter �1999��. At high strain, the CNT suspen-
sion dissipated in a dominantly viscous fluid manner. Similar strain-dependence phenom-
enon was reported by Guskey and Winter �1991� for a thermotropic liquid crystalline
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polymer in the nematic state. Intuitively, the strain-dependence relaxation process can be
explained by the yielding of a network �Mewis and Meire �1984�; Amari and Watanabe
�1980��. Depending on the strength of the network, if a large enough strain is applied, the
network will be broken down and will finally dissipate as a fluid. The network for the
0.5% suspension is considered to be a relatively weak one and broke down at a strain
level higher than 10%. The findings have two implications. First, it is highly probable that
the mild elasticity as observed in LVE measurements is linked to the presence of a weak
CNT network, and second, the effect of elasticity is negligible at high strain level, in line
with the concept of a nonlinear damping parameter proposed by Wagner �1976�.

In terms of the orientation model, the first term in Eq. �12� involving the strain rate
tensor vanishes in the absence of flow after the application of step strain and the equation
reduces to

�12 = 
Dra12. �30�

Similarly, Eq. �13� becomes

da12

dt
= − 6Dra12. �31�

If Dr is assumed to be independent of a12, integration of Eq. �31� would give

a12 = Ce−6Drt, �32�

where C is an integration constant corresponding to the initial orientation. This gives

�12 = C
Dre
−6Drt or G�t� =

�12

�0
=

C


�0
Dre

−6Drt. �33�

Equation �33� predicts an exponential decay in stress relaxation after the application of
step strain. This is, however, inconsistent with the experimental results shown in Fig. 9
where relaxation modulus G�t� was found to exhibit essentially a power-law decay over
intermediate time scales �0.1 s t10 s�. Successful quantitative fitting to experimental
data requires the Dr in the orientation model to be a certain function of the orientation
a12, as in the case of liquid crystal polymer modeling where the nematic potential de-
pends on the molecular orientation distribution �see, for example, Doi and Edwards
�1986��. The orientation dependence of rotary diffusion coefficient could possibly be
explained by the presence of repulsion force between CNTs after chemical treatment.
This again supports the use of an effective diffusion coefficient term, which contains not
only rotary Brownian diffusion but also other possible randomizing events such as repul-
sion. It is conjectured that CNTs were isotropically oriented prior to the step strain and
subsequent step strain has led to the �partial� alignment of CNTs. In the absence of flow,
the orientation of the partially oriented CNTs then began to randomize as a result of the
Brownian motion and possible repulsion. Repulsion �if any� would be minimized when
the CNTs were isotropically oriented and with their relative distance maximized; whereas
the progressive alignment of CNTs would decrease the relative distance and therefore
increase the repulsion between CNTs. This implies that the effective diffusion coefficient
would start off at a high value after the initial step strain oriented some of the CNTs and
its magnitude would decrease as the orientation of CNT became randomized again. It is
clear from the analysis that quantitative fitting to step strain experimental data is possible,
but it also requires certain assumption about Dr as a function of a12, further increasing the
complexity of the current model. For this reason, the quantitative fitting to step strain
experimental data is not included in this paper, of which the main focus is to develop a
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self-consistent model for describing both steady shear and LVE data.

VI. A GENERALIZED ORIENTATION MODEL FOR DESCRIBING BOTH
STEADY SHEAR AND LINEAR VISCOELASTICITY DATA

In Sec. III, a FP based model was successfully developed for steady shear flow using
a rotary diffusion coefficient Dr1 as a primary variable parameter. In Sec. IV, again a FP
based equation can be derived to reproduce the LVE response and in this case using a
differently formulated diffusion coefficient Dr2. Clearly, it is desirable to have a consti-
tutive equation that is self-consistent for general deformation, including steady shear and
LVE. The situation has similarities to the viscometric response of molten polymers,
where Maxwell modeling successfully described LVE and an additional strain softening
parameter was introduced to describe the full nonlinear response �Wagner �1976��.

For the case of the FP formulation, it is possible to reconcile both LVE and nonlinear
steady shear response by formulating the constitutive equation in the following way:

Constitutive equation: �= f = 2�Np�a=
=
:D=� + 
�Dr1 + ����Dr2��a= −

I=

3
� ,

Fokker–Planck equation:
d	

dt
+

�

�p�
�dp�

dt
	� =

�

�p�
��Dr1 + ����Dr2�

�	

�p�
� ,

where

���̄� = ��c − �

�c
if � � �c

0 if � � �c,
�

and

Dr2 = C�� .

In general, the second term in the constitutive equation becomes negligible compared
with the first term in steady shear and large strain deformation �Eqs. �15� and �16�� and
the effect of randomizing events is mainly accounted for by the FP equation. In both the
constitutive equation and FP equation, the rotary diffusion coefficient is replaced by an

effective diffusion coefficient D̂r= �Dr1+����Dr2�. The effective diffusion coefficient
consists of two elements: �1� a constant diffusion coefficient Dr1 representing Brownian
motion and tube–tube hydrodynamic interactions. Its value can be identified from the
steady shear data fitting and a constant value was found to be sufficient in describing
steady shear responses; �2� an empirical diffusion coefficient Dr2 that corresponds to a
weakly interconnected CNT network and it is active only at small strains. Phenomeno-
logically, Dr2 was found to be proportional to the square root of frequency in small-
amplitude oscillatory flows. When the strain applied exceeds a certain critical strain ��c�,
the weak network is destroyed and only Dr1 remains.

VII. CONCLUSIONS

Experimental results for shear thinning and viscoelastic data have been presented for
treated CNT suspensions. A FP orientation diffusion model has been developed and has
been shown to predict the base shear-thinning response for certain chemically treated
CNT suspensions. Untreated CNT suspensions in epoxy resin have been reported to
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exhibit an optical microstructure �Rahatekar et al. �2006�; Ma et al. �2008a��; however,
treated CNT suspensions reported in this paper showed no discernable optical microstruc-
ture, indicating that the suspensions were well dispersed at least on a micronscale. The
modeling of treated CNTs involves solving the FP diffusion equation in a closed form and
fitting the experimental shear-thinning data to two adjustable parameters Np and Dr1. The
quality of the fit was considered reasonable although a single value of rotary diffusion
coefficient Dr1 was insufficient to fit the whole range of data exactly. The success of the
model suggests that the CNTs are behaving essentially as high aspect ratio rigid rods with
a very low rotary diffusion coefficient and that shear is able to align the rods in the
direction of flow. The findings have relevance to the processing of CNTs where in some
cases a preferential orientation can have a strategic advantage and there are other situa-
tions where an isotropic distribution of CNTs is desired.

In terms of LVE properties, CNT suspensions exhibited an elastic behavior that is
different from ordinary non-Brownian fiber or Brownian rod suspensions. Using a rotary
diffusion term that does not depend on the applied frequency was found to be inappro-
priate in describing the evolution of storage modulus �G�� and loss modulus �G�� as a
function of frequency. The experimentally observed elasticity was considered to be rela-
tively mild and suppressed when subject to large deformations, according to step strain
experiments. It is conjectured that the mild elasticity is due to the presence of a weakly
interconnected CNT network. Experimental G� and G� data were fitted using an effective
diffusion coefficient and an empirical relation was identified. Finally, a unified FP based
orientation model was formulated to describe both steady shear and viscoelastic re-
sponses of the treated CNT suspensions.
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APPENDIX: NUMERICAL ISSUES

To solve the FP equation, there are two simple options to discretize the unit sphere
surface: �i� the use of Cartesian coordinates or �ii� the use of a spherical coordinates
system. In the latter case, the equation is defined in the domain �� ,������0,2��
� �0,��. This essentially simplifies the application of discretization techniques, such as
finite differences and finite elements, and allows for a computation with higher accuracy.
The main difficulty associated with the use of spherical coordinates is the singularity at
angles �=0 and �=�, but this is not a problem if it is defined that �=0 is perpendicular
to both the shear and vorticity directions.

By assuming that the diffusion coefficient does not depend on the conformation coor-
dinates, the spherical representation of the FP equation reads as

�	

�t
+ �sph · �p�̇	� − Dr�sph	 = 0 ⇔ L�	� = 0, �A1�

with
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L�•� =
d�•�
dt

+ �sph · �ṗ� �•�� − Dr�sph�•� �A2�

and

�sph · �ṗ�	� =
1

sin �

�

��
�sin ��ṗ� ��	� +

1

sin �

�

��
��ṗ� ��	� , �A3�

where �ṗ� �� and �ṗ� �� refer to the � and � components of vector ṗ� , respectively; and finally

�sph	 =
1

sin �

�

��
�sin �

�	

��
� +

1

sin2 �

�2	

��2 . �A4�

If the finite difference method is applied and a grid on � is defined, consisting of N
�M nodes, then each grid node will be characterized by two indices �i , j� �1� i�N and
1� j�M� and the associated coordinates ��i ,� j� will be given as �i= �i−1�h� and � j

= �j−1�h�, where h�=2� /N and h�=� / �M −1�.
The coordinate transformation is given by

x = sin � cos � ,

y = sin � sin � , �A5�

z = cos � .

Now, the discrete form of the FP equation is considered at each internal grid point
�2� i�N−1 and 2� j�M −1�, assuming the following finite difference formulas:

� ��•�
��

�
i,j

=
�•��i+1,j − �•��i−1,j

2h�

,

� ��•�
��
�

i,j
=

�•��i,j+1 − �•��i,j−1

2h�

,

�A6�

� �2�•�
��2 �

i,j
=

�•��i+1,j − 2�•��i,j + �•��i−1,j

h�
2 ,

� �2�•�
��2 �

i,j
=

�•��i,j+1 − 2�•��i,j + �•��i,j−1

h�
2 .

Time discretization is performed using an appropriate difference formula. If the nth
time step �n�1� is denoted by the superscript n �i.e., �•�i,j

n = �•���=�i , �=� j , t=n�t��,
the time derivative can be approximated by

� ��•�
�t
�

i,j

n

=
�•�i,j

n − �•�i,j
n−1

�t
. �A7�

At the boundary nodes consisting of i=1 or i=N finite difference formulas can also be
defined taking into account the periodicity, that is, for �i , j� with i=1,
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� ��•�
��

�
1,j

=
�•��2,j − �•��N,j

2h�

,

�A8�

� �2�•�
��2 �

1,j
=

�•��2,j − 2�•��1,j + �•��N,j

h�
2 ,

and for �i , j� with i=N,

� ��•�
��

�
N,j

=
�•��1,j − �•��N−1,j

2h�

,

�A9�

� �2�•�
��2 �

N,j
=

�•��1,j − 2�•��N,j + �•��N−1,j

h�
2 .

Now, the finite difference form of the FP equation can be written for each node �i , j�
with 1� i�N and 2� j�M −1, at each time t=n�t �n�1�,

L�	��i,j
n = 0 ∀ �i, j� � �1, . . . ,N� � �2, . . . ,M − 1� , �A10�

which leads to a linear system of N� �M −2� algebraic equations involving N�M nodal
values 	i,j

n . This system of equations must be completed with the equations for the upper
and lower nodes �j=1 and j=M�. At these nodes, a numerical difficulty appears because
all the upper nodes �i, j=M� correspond to the same point on the unit sphere �the upper
pole� and the same for the lower ones. Due to the symmetry of the distribution function,
the same unknown value � is assigned to all these nodes, that is,

i,j=1
n = � ∀ i � �1, . . . ,N� ,

�A11�
i,j=M
n = � ∀ i � �1, . . . ,N� .

The N�M discrete equations involve N�M +1 unknowns, N�M nodal values 	i,j
n ,

and the introduced � value. An additional equation must be introduced to define the
solution. For this purpose, the discrete form of the normality condition �Eq. �5�� can be
introduced, which leads to

�
i=1

N

�
j=1

M

Aij	i,j
n = 1, �A12�

where Aij represents an area on the unit sphere that is related to the node �i , j�,

Aij = h� sin�� j�h�. �A13�

The linear system can then be solved to obtain the nodal values of the orientation
distribution function 	i,j

n at time t=n�t.
The discretisation of the Fokker–Planck equation leads to a system of algebraic linear

equations and each equation represents the evolution of a fraction of tubes oriented in a
certain direction. Each of these linear equations corresponds to a particular orientation on
the unit sphere and represents the balance between the tubes coming from and leaving to
its “neighboring” orientations, as a result of shear flow and other randomizing events
such as Brownian motion and tube–tube hydrodynamic interaction. It was verified that
the numerical solutions reported in this manuscript did not depend on the numbers N and
M, further confirming the solutions were good approximation to the actual solutions of
the kinetic equation Eq. �8�.
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The time step must be carefully chosen to ensure the stability conditions related to the
evolution problem and the convective character. If the time step becomes too small due to
large Peclet numbers defined at high shear rates, some upwinding stabilization could be
applied. �The Peclet number is defined as the ratio between the maximum fiber rotation
velocity and the diffusion coefficient.� However, it is well known that the upwinding
introduces certain amount of nonphysical over diffusion. To avoid these nonphysical
effects, simulations were performed without any stabilization, although more computa-
tion time is required.
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