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1 Laboratoire de Rhéologie, UMR CNRS-UJF-INPG
13 rue de la Piscine, BP 53 Domaine Universitaire

F-38041 Grenoble cedex 9, France
Amine.Ammar@ujf-grenoble.fr

2 EADS Corporate Foundation International Chair
GeM: UMR CNRS-Ecole Centrale de Nantes

1 rue de la Noe, BP 92101, F-44321 Nantes cedex 3, France
Francisco.Chinesta@ec-nantes.fr

3 Aragón Institute of Engineering Research
University of Zaragoza

Maria de Luna s/n, E-50018 Zaragoza, Spain
ecueto@unizar.es

Abstract

Numerous models encountered in science and engineering remain nowa-
days, despite the impressive recent progresses attained in computational
simulation techniques, intractable when the usual and well experienced
discretization techniques are applied for their numerical simulation. Thus,
different challenging issues are waiting for the proposal of new alternative
advanced simulation techniques. Separated representations offer the pos-
sibility to address some challenging models with CPU time savings of some
orders of magnitude. In other cases, they allowed to address models never
until now solved. The number of published works concerning this kind
of approximation remains quite reduced, and then, numerous difficulties
that were successfully circumvented in the context of more experienced
discretization techniques, as is the case of the finite element method, must
be considered again within the separated representation framework. One
of these issues in the one that concerns the treatment of localized behav-
ior of model solutions. This work focuses on this topic and propose an
efficient finite element (or extended finite element) enrichment of usual
separated representation.
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1 Introduction

Numerous models encountered in science and engineering remain nowadays,
despite the impressive recent progresses attained in computational simulation
techniques, intractable when the usual and well experienced discretization tech-
niques are applied for their numerical simulation. Thus, different challenging
issues are waiting for the proposal of new alternative advanced simulation tech-
niques, the brut force approach being no more a valuable alternative.

A first challenging issue concerns the treatment of highly multidimensional
models arising from quantum mechanics or kinetic theory descriptions of solids
and complex fluids, including micro and nano-structured materials [9]. Other
multidimensional models are encountered in biology, genetics and chemistry
where the so called chemical master equation plays a key role [18]. Curse of
dimensionality also arises in stochastic models involving numerous random vari-
ables [16]. The main challenge in the treatment of this kind of models is related
to their multidimensionality because when one applies standard mesh based dis-
cretization techniques the number of degrees of freedom involved scales expo-
nentially with the dimension of the space concerned. Thus, in high dimensions,
usual meshes cannot be defined at all, needing the proposal of new advanced
strategies able to circumvent the terrible curse of dimensionality. Until now, the
treatment of this kind of models was restricted to the ones defined in moderate
multidimensional spaces where for example the sparse grid based methods works
[6].

We proposed in some of our former works [1] [2] a separated representation
strategy able to circumvent the curse of dimensionality that those models in-
volve. Thus, given a model involving the unknown field u(x1,x2, · · · ,xD), with
(x1,x2, · · · ,xD) ∈ Ω1 × Ω2 × · · · × ΩD, where Ωi ⊂ R

di , ∀i, 1 ≤ i ≤ D, the
solution is searched as

u(x1,x2, · · · ,xD) ≈

i=N
∑

i=1

αi F i
1(x1) · · ·F

i
D(xD) (1)

where the dimension of the model is DIM =
∑j=D

j=1 dj .

Obviously, if a mesh is defined in each domain Ωi consisting of N i
n nodes, the

whole mesh of Ω = Ω1 × · · · ×ΩD involves
∏i=D

i=1 N i
n nodes. We can notice that

the number of degrees of freedom increases exponentially with the dimension of
the space. On the contrary, by assuming the separated representation (1) the

number of degrees of freedom reduces to: N ×

(

∑i=D

i=1 N i
n

)

proving that the

complexity scales linearly with the dimension of the space.
Another issue concerns the solution of transient multiscale models (usually

strongly non linear and coupled, and always of high size). These models arise
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in computational mechanics (involving a large variety of constitutive behaviors,
couplings etc.). In this context, the use of standard incremental discretization
techniques becomes inefficient from the computational time viewpoint. More-
over, in general, these models involve different characteristic times differing
of several decades. Again, alternative advanced computational techniques are
needed. Pierre Ladeveze proposed several years ago a powerful technique for
addressing this kind of challenging models that he called the LATIN method
[13].

The LATIN method integrates many ingredients leading to a robust, pow-
erful, efficient and accurate discretization technique especially well adapted for
treating transient multi-scale non-linear models. The two most outstanding
ingredients are (i) the decoupling between a linear-global problem and a non-
linear-local one, both defined in the whole space-time domain; and (ii) a space-
time separated representation of the model variables in order to accelerate the
solution of the linear-global problem. The former separated representation was
called by Ladeveze in the 80’s ”radial approximation”, and in our knowledge it
was the first time that separated representations were applied in computational
mechanics. The interested reader can refers to [14] and the references therein for
a recent overview and the state of the art of the LATIN approach in multi-scale
modeling.

Thus, the radial approximation proposed by Ladeveze can be viewed as a
particular case of Eq. (1) with only two coordinates, i.e. u(x1,x2), x1 represent-
ing the physical space, i.e. x1 ≡ x ∈ Ω ⊂ R

d (d = 2 or d = 3); and x2 the time,
i.e. x2 ≡ t ∈ I ⊂ R

+. However, because the radial approximation was proposed
before the separated representation given by Eq. (1) (originally proposed in [1]
[2]) we could also state that Eq. (1) is no more than a generalization of the so
called radial approximation for models involving many coordinates.

Separated representations were applied before its use in computational me-
chanics in other branches of the computational physics. A remarkable example
concerns quantum chemistry that focuses in the modeling of atomic structure
and molecular bonds. In that case, one must solve the Schrödinger equation, or
some more advanced alternatives, as the fully relativistic Dirac equation. The
solution of these equations is of capital interest to describe the structure and me-
chanics of materials at the finest scale, descriptions that can be directly applied
in the framework of nanosciences and nanotechnologies, but that also allow de-
riving coarse grained models by applying appropriate multiscale bridges. Thus,
quantum chemistry leads to ”ab initio” simulations that at its turn leads to
molecular dynamics simulations. Coarse graining results first in Brownian dy-
namics simulations and then on statistical mechanics descriptions. The coarsest
scale concerns obviously the macroscopic modeling. This multiscale modeling
needs accurate models and solvers at each scale as well as appropriate bridges
for moving from one scale to the neighbor ones.

However, the solution of the quantum scale models is quite delicate because
the wavefunction that describe for example the electronic distribution, is defined
in a highly multidimensional space whose dimension scales with the number of
particles that the system involves. Thus, the only possibility of representing a
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function in such a space was the use of separated representations that consti-
tutes the basis of the Hartree-Fock and the post-Hartree-Fock approaches [7].
Despite the nice dream that this multiscale modeling (ranging from the quan-
tum to the macroscopic scale) opened, this procedure is in fact inapplicable at
present, and probably for many many years, because the starting point fails:
the Schrödinger or the Dirac equations remain intractable due to the Pauli’s
exclusion principle constraint. Simplified models are then mandatory (see [7]
for an excellent overview).

Numerous topics concerning the use of separated representation were and
are being addressed in our researches. Some recent developments concern:

• From the mathematical point of view some results concerning the conver-
gence were obtained, but nothing is known about the rate of convergence
[4]. Its connection with the POD (Proper Orthogonal Decomposition) was
also analyzed in [14]. In fact, introducing the separated representation into
the weak formulation of the model the different functions involved in the
separated representation can be computed. However, these functions that
are optimal from the point of view of the strategy considered, are no more
orthogonal. For this reason, we called the resulting approximation Proper

Generalized Decomposition (PGD).

• From the point of view of the applications, there is a huge catalogue [15]
[1] [2] [3] [8] among many others.

• From the point of view of the computing time savings, these are often of
some orders of magnitude and in some cases this technique allowed solving
models never until now solved, implying hundreds of dimensions, in the
context of deterministic or stochastic models [2].

• We proved recently that in some non-linear-local models arising from the
natural decoupling of a non-linear-global model (the LATIN strategy be-
ing the most natural choice) can be globalized by applying a separated
representation. Even for strongly non-linear behaviours (e.g. thermal
models involving strongly non-linear curing kinetics usually encountered
in polymer or composites forming processes) the CPU time savings are
impressive.

• Some proposals concerning the adaptivity and the error estimation have
been done. However, further developments are needed to improve their
efficiency.

• The stabilization of models involving advective terms is another issue that
needs further developments. Another open issue concerns the stabiliza-
tions of mixed formulations for verifying the stability (LBB) conditions.

• Separated representations of the 3D physical space can be performed, and
easily coupled with standard or enriched finite element descriptions for
capturing evolving discontinuities, singularities or to perform subdomains
coupling.
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This paper focuses in one of the just referred topics, the one concerning
the separated representation of variables defined in usual physical spaces (2D
or 3D). In [10] we applied such one approach to perform high resolution ho-
mogenization where the representative volume (a 3D cube in that case) was
described using thousand nodes along each of the coordinate directions. In that
case, instead of using a mesh involving 109 degrees of freedom, we considered a
separated representations that only involved few thousands of degrees of free-
dom. At present other groups are considering this separated representation to
perform direct numerical simulation in flows involving turbulence, identification
of permeability in porous media and homogenization in heterogenous media.

Recently, we extended the use of separated representations to domains oth-
ers that cubes or hyper-cubes where the issue of non-homogeneous boundary
conditions were also addressed [12]. However, models can also involve interfaces
where the field or some of its derivatives could be discontinuous. In this case
the use of separated representation seems to be delicate. We prove in this work
that a coupling between the separated representation for describing the smooth
solution behavior and a finite element (or an enriched finite element) descrip-
tion in some patches of the domain where the solution is expected to exhibit
localization or some kind of discontinuity, seems to be an appealing choice to
address these models.

Other issue concerns the coupling of different subdomains, each one involving
a different separated representation of the solution. Thus, the required continu-
ity conditions at those interfaces must be enforced. The present work analyzes
this difficulty and propose an efficient strategy for coupling subdomains also
based on the use of appropriate finite element patches. A direct consequence of
this last procedure is the coupling of two subdomains, one of them involving a
separated representation of the unknown fields, whereas the other one considers
a finite element description. Thus, one could easily couple the finite element
technology, well experienced and very powerful, with a reduced modeling per-
formed by using separated representations in the regions of the domain where
the solution is expected evolving smoothly (in many cases these regions repre-
sent the largest part of the domain in which the model is defined, as in the case
of many models in fracture mechanics where the evolving crack is very localized
and only affects a small region of the material domain; models in fluid-structure
interaction, where that interaction only occurs in a very localized region of a
larger domain, ...)

Next section revisits the algorithm related to the PGD of the unknown field.
In section 3 this strategy is generalized by considering a finite element based
enrichment of the separated representation for capturing localized behavior.
Finally, section 4 describes some potential applications of this enriched formu-
lation, in particular a model that exhibits localization and another one involving
subdomains coupling.
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2 The Proper Generalized Decomposition revis-

ited

For the sake of simplicity we are considering a simple 2D model in wich the
unknown field depends on the coordinates x and y, defined in the domains Ωx

and Ωy respectively. Now, the solution is searched in the form:

u(x, y) ≈
i=N
∑

i=1

αiF i(x) · Gi(y) (2)

In order to build-up this separated representation, an iterative algorithm is
proposed, solving at each iteration a projection and an enrichment problem.

If we assume that the first n functions in the sum has been already computed

u(x, y) ≈

i=n
∑

i=1

αiF i(x) · Gi(y) (3)

the projection stage consists of finding the n best alpha-coefficients. Then, the
enrichment stage lies in finding the best functions R(x) and S(y) such that
the updated representation given by

u(x, y) ≈
i=n
∑

i=1

αiF i(x) · Gi(y) + R(x) · S(y) (4)

satisfies the weak formulation for particular test functions.
We are assuming a generic equation

K (u(x, y)) + L (u(x, y)) = 0 (5)

where K and L are two differential operators. For the sake of simplicity we
are assuming that the first one only involves derivatives with respect to the
x-coordinate, the second one involving the derivatives with respect to the other
coordinate.

The computer implementation of these steps needs for a discrete represen-
tation of all the functions: F i(x), Gi(y), R(x) and S(y) using a finite element
interpolation in their associated domains Ωx and Ωy. For this purpose we in-
troduce the vectors M and N containing the shape functions associated with
the meshes of Ωx and Ωy respectively. Finally Fi,Gi,R and S represent the
nodal description of the associated functions. We define the following matrices
related to the weak formulation of equation (5):



















M =
∫

Ωx
MMT dΩx

N =
∫

Ωy
NNT dΩy

K =
∫

Ωx
MKMT dΩx

L =
∫

Ωy
NLNT dΩy

(6)
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These integrals take into account the specific character of each operator. For
example integration by parts is used in second order operators, upwinding for
stabilizing advective terms, etc.

1. Projection stage

In this stage we consider the test functions given by

u∗(x, y) =

n
∑

i=1

αi∗F i(x) · Gi(y) (7)

which writes in the discrete form:

u∗(x, y) =
n

∑

i=1

αi∗FiT MGiT N (8)

Using the discrete form of function u(x, y):

u(x, y) =

n
∑

i=1

αiMTFiNTGi (9)

the weak formulation of Eq. (5) leads after numerical integration to:

n
∑

i=1

n
∑

j=1

αi∗Hijα
j = 0 (10)

where

Hij = FiT
KFj ·GiT

NGj + FiT
MFj ·GiT

LGj (11)

This system must be solved taking into account boundary and/or normal-
ity conditions. For example, we could consider a first term in the sums
decomposition verifying the boundary conditions, and then the other ones
must vanish on the domain boundary (this condition is enforced in the
enrichment stage). In this case we must enforce α1 = 1.

2. Enrichment stage

In this stage we consider the unknown field given by

u(x, y) =

n
∑

i=1

αiF i(x) · Gi(y) + R(x) · S(y) (12)

and the test functions by

u∗(x, y) = R∗(x) · S(y) + R(x) · S∗(y) (13)
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whose discrete form writes

u∗(x, y) =
[

R∗T S∗T
]

(

M(STN)
(RTM)N

)

(14)

The weak form of Eq. (5) becomes, in the framework of a fixed point
strategy, in:

• For a given S(y) (that implies u∗(x, y) = R∗(x) · S(y))

(

KST
NS + MST

LS
)

R =

= −

n
∑

i=1

αi
(

KFiST
NGi + MFiST

LGi
)

(15)

• For a given R(x) (that implies u∗(x, y) = R(x) · S∗(y))

(

RT
KRN + RT

MRL
)

S =

= −

n
∑

i=1

αi
(

RT
KFi

NGi + RT
MFi

LGi
)

(16)

It must be noticed that the number of the degrees of freedom involved in
such non linear solution is the sum of the degrees of freedom involved in
each direction (instead the product of them that mesh based discretiza-
tions strategies would have involved).

Finally, after convergence, the new approximation functions Fn+1 and
Gn+1 are obtained by normalizing R and S:

{

Fn+1 = R(RT
MR)−

1

2

Gn+1 = S(ST
NS)−

1

2

(17)

The projection and enrichment stages must continue until reaching convergence.

3 Finite elements based separated representa-

tions enrichment

In this section we are modifying the technique just presented in order to capture
localized behaviors such as high gradients or weak and strong discontinuities.

This kind of behaviors induces too many functional products within a stan-
dard separated representation. However, it is well known that they can be easily
taken into account within the finite element framework, by using adaptive local
mesh refinement in the first case or any of the techniques able to represent weak
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and strong discontinuities (meshes compatible with the interfaces or enriched
approximations when the meshes are not compatible with the interfaces).

Thus, the mail goal is how combining separated representations, able to
approximate the solution in the most part of the domain where the model is
defined, reducing significantly the computational cost, and a localized finite ele-
ment description, that even if it is expensive in nature, it only applies in a small
region of the whole domain where the solution is expected to exhibit localized
behavior. To this end, we propose a multi-scale approach that somewhat resem-
bles the s-version of the finite element method by J. Fish [11] or the multi-scale
FEM proposed by Rank [17], but in this case in a global (Ritz) and separated
basis function setting.

We come back to the model described in the previous section (Eq. (5))
defined in Ω = Ωx × Ωy and we imagine that the solution u(x, y) is smooth
enough everywhere except in a small region Ωl ⊂ Ω. Now, we could imagine
an approximation combining both, the separated representation and a finite
element approximation, where the last one only applies in Ωl. We assume a
mesh on Ωl composed of Nl nodes. We also assume that the finite element
shape functions related to the finite element approximation cannot be expressed
from the tensor product of the one dimensional bases employed to build-up
the separated representation according to the description given in the previous
section.

Now, the approximation in the whole domain can be written as:

u(x, y) = uSR(x, y) + uFE(x, y) (18)

where uSR(x, y) is defined in the whole domain Ω = Ωx ×Ωy whereas the finite
element enrichment uFE(x, y) is only defined within Ωl vanishing in Ω−Ωl. In
order to ensure the continuity of the resulting approximation we must enforce
the nullity of the enrichment uFE(x, y) on the boundary of Ωl, ∂Ωl.

The resulting approximation writes:

u(x, y) ≈

i=N
∑

i=1

αiF i(x) · Gi(y) +

j=Nl
∑

j=1

Ψj(x, y)uj (19)

where Ψj(x, y) are the standard finite element shape functions and uj the associ-
ated weights. Because the contribution of uSR(x, y) in Ωl, uj do not correspond
to the values of the unknown field u(x, y) at the nodal positions (xj , yj).

Remark.- We are assuming that the enrichment is performed by using standard
finite elements, but in fact any kind of compact support approximation could
be used. In order to represent interfaces involving weak discontinuities one
could proceed within the standard finite element method by ensuring that the
interface coincides with the elements edges. If the interface passes across the
elements an enriched version of the finite element method should be considered
(e.g. the extended finite element [19]).
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Now, to build-up the just defined approximation (19) we proceed as in the
previous section by alternating a projection and an enrichment step until reach-
ing convergence. The degrees of freedom related to the finite element contribu-
tion uj will be computed at the projection step because at this step we consider
all the approximation functions known and we look for the associated weights.
At the enrichment step a new functional couple of the separated representation
will be calculated by assuming known all the previously computed functional
couples as well as the just updated finite element enrichment. We are summa-
rizing both steps.

1. Projection stage

At this stage we consider the test functions given by

u∗(x, y) =

n
∑

i=1

αi∗F i(x) · Gi(y) +

Nl
∑

j=1

Ψj(x, y)u∗

j (20)

which writes in the discrete form:

u∗(x, y) =

n
∑

i=1

αi∗FiT MGiT N + U∗TΨ (21)

where Ψ is the vector that contains the finite element shape functions
related to the set of nodes considered within the enrichment region Ωl,
and U the vector that contains the nodal degrees of freedom.

Using the discrete form of function u(x, y):

u(x, y) =

n
∑

i=1

αiMTFiNTGi + ΨTU (22)

the weak formulation of Eq. (5) leads after numerical integration to the
linear system

(α∗TU∗T )

(

H B
C Q

) (

α

U

)

= 0 (23)

In Eq. (23) matrix H is coming from the contribution of uSR∗

and uSR

and therefore it results the same that the one concerned in Eq. (10).
On the other hand Q concerns the contribution coming from uFE∗

and
uFE that represents a classical finite element discretization in Ωl. The
remaining terms B and C represent the crossing contributions.

In order to give an explicit form of the different matrices involved in Eq.
(23), we introduce the following notation



















M
SR =

∫

Ωx
MMT dΩx

N
SR =

∫

Ωy
NNT dΩy

K
SR =

∫

Ωx
MKMT dΩx

L
SR =

∫

Ωy
NLNT dΩy

(24)
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{

K
FE =

∫

Ωl
ΨKΨT dΩ

L
FE =

∫

Ωl
ΨLΨT dΩ

(25)

{

K
SR−FE
j =

∫

Ωl
MNTKΨT

j dΩ

L
SR−FE
j =

∫

Ωl
MNTLΨT

j dΩ
(26)

and

{

K
FE−SR
j =

∫

Ωl
ΨjKMNT dΩ

L
FE−SR
j =

∫

Ωl
ΨjMLNT dΩ

(27)

where, as mentioned in the previous section, these integrals take into ac-
count the specific character of each operator, as for example integration
by parts or upwinding for stabilizing advective terms. These integrals,
when they involves finite elements are performed using standard Gauss
quadrature schemes. In the previous expressions Ψj denotes the shape
function related to node j, that is, the j-component of vector Ψ.

Using these notations, the different matrices in Eq. (23) write:

Hij = FiT
K

SRFj · GiT
N

SRGj + FiT
M

SRFj ·GiT
L

SRGj (28)

Qij =
(

K
FE + L

FE
)

ij
(29)

Bij = FiT
(

K
SR−FE
j + L

SR−FE
j

)

Gi (30)

Cij = FjT
(

K
FE−SR
i + L

FE−SR
i

)

Gj (31)

We can notice from the previous expressions that system (23) is non-
symmetric.

Eq. (23) must be solved again taking into account boundary and/or nor-
mality conditions.

2. Enrichment stage

At this stage we consider the unknown field given by

u(x, y) =

n
∑

i=1

αiF i(x) · Gi(y) +

Nl
∑

j=1

Ψj(x, y) · uj + R(x) · S(y) (32)

where the first two sums in the right member are assumed known (com-
puted at the projection stage).

The test function reads:

u∗(x, y) = R∗(x) · S(y) + R(x) · S∗(y) (33)
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whose discrete form writes

u∗(x, y) =
[

R∗T S∗T
]

(

M(STN)
(RTM)N

)

(34)

The weak form of Eq. (5) becomes, in the framework of a fixed point
strategy, in:

• For a given S(y) (that implies u∗(x, y) = R∗(x) · S(y))

(

K
SRST

N
SRS + M

SRST
L

SRS
)

R =

= −

n
∑

i=1

αi
(

K
SRFiST

N
SRGi + M

SRFiST
L

SRGi
)

−HR−FE (35)

where the finite element enrichment contribution HR−FE writes:

HR−FE =

j=Nl
∑

j=1

((

K
SR−FE
j + L

SR−FE
j

)

S
)

uj (36)

• For a given R(x) (that implies u∗(x, y) = R(x) · S∗(y))

(

RT
K

SRRN
SR + RT

M
SRRL

SR
)

S =

= −

n
∑

i=1

αi
(

RT
K

SRFi
N

SRGi + RT
M

SRFi
L

SRGi
)

−HS−FE (37)

where the finite element enrichment contribution HS−FE writes:

HS−FE =

j=Nl
∑

j=1

(

(

K
SR−FE
j + L

SR−FE
j

)T
R

)

uj (38)

It must be noticed that the number of the degrees of freedom involved
in such non linear solution is the sum of the degrees of freedom involved
in each one-dimensional discretization, instead the product of them that
results in mesh based discretization strategies.

Finally, after convergence, the new approximation functions Fn+1 and
Gn+1 are obtained by normalizing R and S:

{

Fn+1 = R(RT
MR)−

1

2

Gn+1 = S(ST
NS)−

1

2

(39)

The projection and enrichment stages must continue until reaching convergence.
Two simple possibilities exist: (i) evaluating the norm of R(x) and S(y) and
use these norms as stopping criterion (this criterion does not guarantee the
convergence), or (ii) evaluate the norm of the strong formulation residual that
is more expensive but it guarantees the convergence. In what follows we are
using the second stopping criterion.
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4 A first numerical example involving localiza-

tion

To illustrate the capabilities of the just described strategy we are solving a
simple Poisson equation

−∆u = s(x, y), (x, y) ∈ Ω =
(

−
π

2
,
π

2

)

×

(

−
π

2
,
π

2

)

(40)

with homogeneous boundary conditions, i.e.

u(x ∈ ∂Ω) = 0 (41)

The source term s(x, y) considered in the numerical experiment described in
this section was:

s(x, y) = 1 +
−4f(s1 + s2s3)

s4
(42)

with














s1 = −1 + 2d2f + fx2 + fy2 + 2df(x + y)

s2 = e4df(x+y)

s3 = (−1 + 2d2f − 2df(x + y) + f(x2 + y2))

s4 = ef(2d2+x2+y2+2d(x+y))

(43)

where coefficient d controls the location of the localized behavior whereas co-
efficient f controls the support of such localized behavior. In the numerical
experiment that follows we considered f = 40 and d = 1.4. The above source
term admits a separated representation involving 5 functional products.

The particular form of this source term leads to a localized behavior of the
solution in the neighborhood of the upper-right and lower-left corners. This
behavior allows to analyze the improvement that an eventual finite element
based enrichment of the separated representation could bring.

First, the problem is solved using the standard finite element method. Then,
it is solved again using a fully separated representation. Obviously, the exis-
tence of a localized behavior requires a fine enough resolution in both directions
(one-dimensional meshes fine enough to capture the localized behavior) and
also numerous functional products for approximating accurately the solution
behavior.

Finally, the use of a separated representation combined with a finite element
enrichment in the regions where the solution exhibits high gradients allows to
define a technique sharing the benefits of both the finite elements and the sep-
arated representations.

Figure 1 depicts the mesh considered for solving problem (40)-(42) by using
the finite element method. The associated solution is depicted in figure 2.

Now, we are solving the same problem by using a coarse fully separated
representation. The solution was computed by applying the technique described

13



Figure 1: Finite element mesh.
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Figure 2: Finite element solution.
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in section 2. We consider a very coarse separated representation, involving 7
nodes on each direction. As expected, the computed solution depicted in Fig.
3 does not account for the presence of the localized behavior. Figs. 4 depicts
the one-dimensional functions associated with the coordinates x, F i(x) (on the
left) and y, Gi(y) (on the right), involved in the separated representation.
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Figure 3: Solution computed using a coarse separated representation.
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Figure 4: One-dimensional functions involved in the separated representation:
F i(x) (left) and Gi(y) (right).

In this case, the regions in which the solution exhibits localization remain
invisible to the separated approximation. Obviously, finer approximations of the
one-dimensional approximation involved in the separated representation could
finally capture the solution localized behavior. Instead of proceeding by refining
the separated representation, our goal is capturing the localized behavior by
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superposing a finite element approximation in the regions exhibiting localization.
Figure 5 depicts the finite element meshes considered in the regions where

the solution localization is expected.

Figure 5: Finite element meshes on the regions that exhibit localization.

Now, we are using the finite element based enrichment of the separated
representation, that is the mixed approximation that involves the separated form
plus the contribution of the finite element approximation that is superposed to
the former one in the regions depicted in Fig. 5. In this case the computed
solution is shown in Fig. 6.

Obviously, as the one-dimensional meshes considered for defining the inter-
polations of functions F i(x) and Gi(y) are too coarse to detect the presence of
the localized behavior, the contribution of the separated representation to the
whole solution depicted in Fig. 6 coincides to the one computed previously by
using a fully separated representation (Fig. 3) and in consequence functions
F i(x) and Gi(y) involved in the enriched separated representation also coincide
to the ones depicted in Fig. 4. Obviously, finer separated representations could
represent a part of the localized behavior.

Obviously, the finite element enrichment captures the localized behavior as
Fig. 7 depicts. This figure only represents the finite element contribution. We
can notice that by construction, the finite element approximation vanishes on
the boundary of the finite element meshes.

The coarse separated representation without the finite element representa-
tion involves a L2 error of 0.23 (with respect to the finite element solution
previously depicted). Obviously, the introduction of more terms in the finite
sums decomposition cannot improve significantly this error because the one-
dimensional meshes cannot capture the localized behaviors as we commented
previously. However, as soon as the finite element enrichment applies the error
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Figure 6: Computed solution using a finite element enriched separated repre-
sentation.
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Figure 7: Finite element approximation contribution.
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is drastically reduced to 0.09. For further error reductions finer finite element
meshes should be considered. The use of finer separated representations could
be also a strategy, but the effect of finite element remeshing is more efficient,
because finite element interpolations are more adapted to capture localized be-
haviors.

5 A strategy for coupling subdomains

The enrichment procedure presented in this paper opens new possibilities for
extending the applicability of separated representations. One of these potential
applications lies in the coupling of subdomains, each one involving a separated
approximation of the model variable. To illustrate the coupling procedure just
described we are considering the solution of the model

−∆u = 2(y − y2) + 2(1 − x2), (x, y) ∈ Ω = (−1, 1) × (0, 1) (44)

with homogeneous boundary conditions, i.e.

u(x ∈ ∂Ω) = 0 (45)

The exact solution writes

uex(x, y) = (1 − x2)(y − y2) (46)

The domain Ω = (−1, 1) × (0, 1) can be decomposed in two subdomains
Ω1 = (−1, 0) × (0, 1) and Ω2 = (0.1) × (0, 1) such that Ω = Ω1 ∪ Ω2 and
Γ = Ω1 ∩ Ω2 (being Γ the interface between both subdomains). It is easy to
understand that the solution of such one model is quite delicate because we
should build-up a separated approximation of the solution in both subdomains
assuring the appropriate transfer conditions across the interface Γ. Obviously,
in the scenario just described the best alternative is the solution of the problem
directly in the whole domain Ω because as it is rectangular, its decomposition
in two subdomains is not needed. However, other kind of domains, e.g. L or T
shaped domains, need appropriate subdomain decompositions.

An alternative lies in the construction of a separated representation in both
subdomains assuming that both separated representations vanish on the inter-
face Γ. Now, a finite element based enrichment is introduced in a strip Ωl of
width 2H covering the interface, Ωl = (−H, +H) × (0, 1). As described in sec-
tion 3, the nodal degrees of freedom related to nodes located on ∂Ωl are enforced
to vanish, to ensure the compatibility (continuity) of the approximations across
the enrichment domain boundary as well as for accounting the boundary condi-
tions prescribed on ∂Ω. Thus, the finite element model defined in Ωl ensures the
compatibility of the solutions computed in both subdomains in a finite element
sense.

To perform the coupling of the model described above, we consider a strip
covering the interface, Ωl = (−H, +H) × (0, 1), with H = 0.25, that is meshed
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Figure 8: Domain decomposition.

using linear triangular finite elements. Fig. 8 shows the domain decomposition
as well as the mesh of Ωl.

The exact solution is depicted in Fig. 9. Now, the solution in the whole
domain is computed by applying the strategy just described. Figure 10 depicts
the separated representation solution in Ω1 (left) and Ω2 (right) as well as
the finite element enrichment in Ωl (center). We can see that the separated
representation contribution in both domains vanish by construction on ∂Ω1 and
∂Ω2. Thus, the separated representation contributions do not introduce any
continuity issue across the interface. The accomplishment of the transmission
conditions (in our case the field continuity) is ensured by the finite element
contribution that does not compromise the required continuity.

Fig. 11 represents the functions F i(x) and Gi(y) related to the separated
representation contribution in domain Ω1. The ones concerning the domain Ω2

can be obtained from these ones: functions of the x-coordinate are derived by
symmetry considerations, and the ones concerning the y-coordinate are exactly
the same that the corresponding ones in domain Ω1.

By combining the separated representation and the finite element contribu-
tion we can define the solution in the whole domain. The combined solution
is depicted in Fig. 12. Fig. 13 depicts the error in the resulting solution for
different number of terms in the finite sums decomposition of the separated
representations (the finite element mesh remains unchanged). The solutions ob-
tained by using a single term in the separated representations define the so-called
Hartree approximations. Finally, Fig. 14 depicts the evolution of the L2-norm
of the error as a function of the number of terms involved in the separated repre-
sentation. As expected, the error stabilizes when the number of terms increases,
and further reduction needs both finer separated representations (involving finer
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Figure 9: Reference solution.
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Figure 10: Contributions to the whole solution: separated representation in Ω1

(left); finite element contribution (center) and separated representation in Ω2

(right).
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Figure 11: Functions F i(x) (left) and Gi(y) involved by the separated represen-
tation in domain Ω1.
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one-dimensional meshes) and finer finite element meshes.

Figure 12: Computed solution in the whole domain resulting of the combination
of contributions to the solution depicted in Fig. 10.

Figure 13: Error when the separated representations involve 1 (left), 3 (center)
and 10 terms (right).

6 Conclusions and perspectives

The proposed strategy can be used for enriching separated representations in
order to take into account localized behavior of the solution. A numerical exam-
ple proved the ability of defining reduced approximation bases able to capture
localized behavior.

This strategy can be also used for treating models involving strong or weak
discontinuities. In this case the separated representation should be coupled
with an appropriate finite element enrichment able to describe the involved
discontinuities. There is an extensive literature concerning the use of finite
elements for this purpose.
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There are many other potential applications. One could use this technique
to define bridges between finite element models and other making use of proper
generalized decompositions, or to make compatible subdomains making use of
proper generalized decompositions involving different functional products or dif-
ferent one dimensional meshes on the common interface. It could be also applied
for enforcing general boundary conditions by introducing a finite element de-
scription in a strip along the domain boundary, or to define proper generalized
decompositions in geometrically complex domains. The analysis of these and
other possibilities will be addressed in future works.
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