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We consider some ordinary differential inclusions with maxima perturbed by a small parameter and give justification of the method of averaging for this type of inclusions.

Introduction and notations

It is known that equations and inclusions with maxima arise naturally when solving practical and phenomenon problems, in particular, in those which appear in the study of systems with automatic regulation and automatic control of various technical systems. Some works on these equations and inclusions are [START_REF] Cernea | On the existence of solutions for differential inclusions with maxima[END_REF][START_REF] Georgiev | On the existence and uniqueness of solutions for maximum equations[END_REF][START_REF] Gonzalez | Convergent solutions of certain nonlinear differential equations with maxima[END_REF][START_REF] Otrocol | Systems of functional-differential equations with maxima, of mixed type[END_REF][START_REF] Pinto | Stability and existence of multiple periodic solutions for a quasilinear differential equation with maxima[END_REF][START_REF] Stepanov | On solvability of some boundary value problems for differential equations with maxima[END_REF] (see also the monograp [START_REF] Bainov | Differential Equations with Maxima[END_REF]).

Differential equations and inclusions with maxima displaying nonlinear oscillations are ubiquitous in the scientific literature. The method of averaging is one of the main tool to analyze these oscillatory equations and inclusions. It was justified for ordinary differential equations with maxima in [START_REF] Kichmarenko | Full averaging scheme for differential equations with maximum[END_REF][START_REF] Plotnikov | A note on the averaging method for differential equations with maxima[END_REF][START_REF] Plotnikov | Averaging of differential equations with maxima[END_REF][START_REF] Shepakovich | The averaging method for differential equations with maxima[END_REF] and in the monograp [START_REF] Bainov | Differential Equations with Maxima[END_REF]Chap. 7], for fuzzy differential equations with maxima in [START_REF] Kichmarenko | Partial Averaging of Fuzzy Differential Equations with Maxima[END_REF] and for set valued differential equations with Hukuhara derivative and maxima in [START_REF] Kichmarenko | Averaging of differential equations with Hukuhara derivative with maxima[END_REF]. For ordinary differential inclusions (without maxima), many authors contributed to the development of the method of averaging as in [START_REF] Bourada | Some averaging results for ordinary differential inclusions[END_REF][START_REF] Gama | Stability and Optimality of Solutions to Differential Inclusions via Averaging Method[END_REF][START_REF] Klymchuk | 's research on averaging of differential inclusions[END_REF][START_REF] Lakrib | An Averaging Theorem for Ordinary Differential Inclusions[END_REF][START_REF] Plotnikov | Differential equations with multivalued righthand side: Asymptotic methods[END_REF][START_REF] Sokolovskaya | Generalization of the Krylov-Bogolyubov averaging principle for differential inclusions with non-Lipschitz right-hand side[END_REF] and the references therein. However, to our knowledge this method was not yet extended to ordinary differential inclusions with maxima.

In the present work, we consider ordinary differential inclusions with maxima perturbed by a small parameter and establish an averaging result for this type of inclusions under weak regularity assumptions. More precisely, we consider the following initial value problem

   ẋ ∈ εF t, x(t), max s∈S(t)
x(s) , t ≥ 0

x(0) = x 0 (1.1)
where ε > 0 is a small parameter, F and S are multifunctions, with S(t) ⊂ [0, t] for t ≥ 0, and max s∈S(t)

x(s) := max s∈S(t)

x 1 (s), • • • , max s∈S(t)
x n (s) .

The structure of the paper is as follows. In Section 2 we provide an existence result and a Filippov-Pliś type result for ordinary differential inclusions with maxima. In Section 3 we present our main result: Theorem 3.1. We state and prove some preliminary results in Section 4 and then give the proof of Theorem 3.1.

It is worth mention that the technical tools used in this paper are standard, however their exposition in the framework of problem (1.1) is new.

We finish this section with some definitions and notations. Throughout this paper we denote by R n the real n-dimensional space. The set of nonnegative real numbers is denoted by R + . For X ⊆ R and Y = R + or R n , the set of (locally) Lebesgue integrable functions δ :

X → Y is denoted by L 1 (loc) (X, Y ).
In R n we use the notations < , > and |•| for the usual inner product and Euclidean norm, respectively. The set of all nonempty compact (nonempty compact and convex, respectively) subsets of

R n is denoted Comp(R n ) (Conv(R n ), respectively). The distance from α ∈ R n to C ∈ Comp(R n ) is given by d(α, C) = inf |α -c|, c ∈ C and the Hausdorff distance between A, B ∈ Comp(R n ) is defined as H(A, B) = max sup a∈A d(a, B), sup b∈B d(b, A) . Endowed with the Hausdorff distance, Comp(R n ) is a complete separable metric space. The support function of the set A ∈ Comp(R n ) is σ(b, A) = sup{ b, a , a ∈ A} for b ∈ R n . Notice that for A ∈ Conv(R n ), σ(•, A) uniquely determines A.
The definition of the one-sided Lipschitz condition for multifunctions [START_REF] Donchev | Functional differential inclusions with monotone right hand side[END_REF], adapted to the multifunction F in problem (1.1), reads as follows:

Definition 1.1. A multifunction F : R + × R n × R n → Conv(R n
) is said to be onesided Lipschitz (OSL) (with respect to (x, y)), if there exists λ ∈ R such that, for every t ∈ R + , x 1 , y 1 , x 2 , y 2 ∈ R n and all z 1 ∈ F (t, x 1 , y 1 ), there exists z 2 ∈ F (t, x 2 , y 2 ) such that

z 2 -z 1 , x 2 -x 1 ≤ λ |x 2 -x 1 | 2 + |x 2 -x 1 ||y 2 -y 1 | .
This is equivalently expressed by the support function :

σ(x 2 -x 1 , F (t, x 1 , y 1 ))-σ(x 2 -x 1 , F (t, x 2 , y 2 )) ≤ λ |x 2 -x 1 | 2 + |x 2 -x 1 ||y 2 -y 1 | for every t ∈ R + and x 1 , y 1 , x 2 , y 2 ∈ R n .
Notice that the constant λ in Definition 1.1 can take negative values. As in the case of Lipschitz condition, λ is called the OSL constant.

It is well known that the OSL condition generalizes the Lipschitz condition with respect to the Hausdorff metric. Note however that it does not imply continuity.

Existence and Filippov-Pliś type results

First we recall that a function x is called solution of an ordinary differential equation (resp. inclusion) with a maximum if x is absolutely continuous on some interval and satisfies the differential equation (resp. inclusion) almost everywhere on this interval.

By an application of Schauder's fixed point theorem [START_REF] Zeidler | Functional Analysis and Its Applications I: Fixed Point Theorems[END_REF]Chap.2], one can easily prove the following result on existence of solutions of ordinary differential equations with maxima. Lemma 2.1. Let f : R + × R n × R n → R n be a continuous function. Suppose that f is uniformly bounded by some locally Lebesgue integrable function. Let S : R + → Comp(R) be a continuous multifunction, with S(t) ⊂ [0, t] for t ≥ 0. Let x 0 ∈ R n and L > 0. The initial value problem, associated to an ordinary differential equation with a maximum

   ẋ = f t, x(t), max s∈S(t) x(s) , t ∈ [0, L] x(0) = x 0 (2.1)
admits at least one solution defined on [0, L].

By use of the Michael's selection theorem [6, Chap.2] and Lemma 2.1, it is not hard to prove the following result on existence of solutions of ordinary differential inclusions with maxima.

Lemma 2.2. Let F : R + × R n × R n → Conv(R n ) be a continuous multifunction.
Suppose that F is uniformly bounded by some locally Lebesgue integrable function. Let S : R + → Comp(R) be a continuous multifunction, with S(t) ⊂ [0, t] for t ≥ 0. Let x 0 ∈ R n and L > 0. The initial value problem associated to an ordinary differential inclusion with a maximum

   ẋ(t) ∈ F t, x(t), max s∈S(t) x(s) , t ∈ [0, L] x(0) = x 0 (2.2)
admits at least one solution defined on [0, L].

We need the following lemma which is a Filippov-Pliś type result for ordinary differential inclusions with maxima. Its proof follows the same pattern as in [START_REF] Donchev | Stability and Euler approximation of one-sided Lipschitz differential inclusions[END_REF] where a similar result is obtained in the without maxima case.

Lemma 2.3. Let F : R + × R n × R n → Conv(R n
) and S : R + → Comp(R) be multifunctions that satisfy the following conditions:

• F is continuous.

• F is uniformly bounded by some locally Lebesgue integrable function, i.e., there exists m ∈ L

1 loc (R + , R + ) such that H(F (t, x, y), 0) ≤ m(t), ∀t ∈ R + , ∀x, y ∈ R n . • F is OSL with constant λ ∈ R. • S is continuous, with S(t) ⊂ [0, t] for t ≥ 0. Let L > 0 and δ ∈ L 1 ([0, L], R + ). If x 1 : [0, L] → R n is an absolutely continuous function satisfying d ẋ1 (t), F (t, x 1 (t), max s∈S(t) x 1 (s)) ≤ δ(t), ∀t ∈ [0, L] then, for each x 0 ∈ R, there exists a solution x of problem (2.2) such that, for t ∈ [0, L] |x 1 (t) -x(t)| ≤ |x 1 (0) -x 0 | + L 0 δ(t)dt exp 2λ + t , (2.3) 
where λ + = max{λ, 0}.

Proof. We define, for t ∈ [0, L] and α, β ∈ R n , the set:

G(t, α, β) =      x ∈ F (t, α, β) : ẋ1 (t) -x, x 1 (t) -α ≤ λ|x 1 (t) -α| 2 + |x 1 (t) -α| λ max s∈S(t) x 1 (s) -β + δ(t)      .
We first prove that G(t, α, β) is nonempty for every t ∈ [0, L] and all α, β ∈ R n . Let w ∈ F (t, x 1 (t), max

s∈S(t)
x 1 (s)) be such that

| ẋ1 (t) -w| = d ẋ1 (t), F (t, x 1 (t), max s∈S(t) x 1 (s)) ≤ δ(t).
From assumption (H3) it follows that there exists x ∈ F (t, α, β) such that

w -x, x 1 (t) -α ≤ λ |x 1 (t) -α| 2 + |x 1 (t) -α| max s∈S(t) x 1 (s) -β . Therefore ẋ1 (t) -x, x 1 (t) -α ≤ w -x, x 1 (t) -α + | ẋ1 (t) -w||x 1 (t) -α| ≤ λ|x 1 (t) -α| 2 + |x 1 (t) -α| λ max s∈S(t) x 1 (s) -β + δ(t) , i.e., G(t, α, β) = ∅.
Obviously, G is compact and convex valued and is continuous. Furthermore G(t, α, β) ⊂ F (t, α, β). Therefore, by Lemma 2.2, there exists a solution x of problem 

   ẋ(t) ∈ G t, x(t), max s∈S(t) x(s) , t ∈ [0, L] x(0) = x 0 (2.4) such that, for t ∈ [0, L], ẋ1 (t) -ẋ(t), x 1 (t) -x(t) ≤ λ|x 1 (t) -x(t)| 2 + |x 1 (t) -x(t)| λ max s∈S(t) x 1 (s) -max s∈S(t) x(s) + δ(t) ≤ λ|x 1 (t) -x(t)| 2 + |x 1 (t) -x(t)| λ max s∈S(t) |x 1 (s) -x(s)| + δ(t) . (2.5) Let r(t) = |x 1 (t) -x(t)|, t ∈ [0, L].
r(s) + δ(t), t ∈ [0, L] r(0) = r(0).
Tacking into account that

r(t) ≤ r(0) + t 0 2λ + r(τ ) + δ(τ ) dτ,
by the Gronwall Lemma [2, Chap.1] we deduce the desired boundedness in (2.3).

Averaging result

Let F : R + × R n × R n → Conv(R n
) and S : R + → Comp(R) be multifunctions, with S(t) ⊂ [0, t] for all t ≥ 0. Let ε > 0 be a small parameter. We are interested in the limiting behavior of the trajectories of the initial value problem

   ẋ ∈ εF t, x(t), max s∈S(t) x(s) , t ≥ 0 x(0) = x 0 (3.1)
on intervals of time [0, L/ε], L > 0, as the perturbation parameter ε tends to zero. For this purpose we make use of the averaging method.

First, let us formulate the assumptions on the multifunctions F and S we will need to prove our averaging result.

(H1) F = F (t, x, y) is continuous and the continuity in (x, y) is uniform with respect to t. (H2) There exist m ∈ L 1 loc (R + , R + ) and a constant M > 0 such that

H(F (t, x, y), 0) ≤ m(t), ∀t ∈ R + , ∀x, y ∈ R n with t2 t1 m(t)dt ≤ M (t 2 -t 1 ), ∀t 1 , t 2 ∈ R + , t 1 ≤ t 2 .
(H3) F is OSL with constant λ ∈ R. (H4) S is uniformly continuous. (H5) For all x, y ∈ R n , there exists a limit

F (x, y) := lim T →+∞ 1 T T 0 F (t, x, y)dt, (3.2) 
i.e., lim

T →+∞ H F (x, y), 1 T T 0 F (t, x, y)dt = 0.
Note that in (3.2) and in what follows the integral of a multifunction G is understood in the Lebesgue-Aumann sense [START_REF] Castaing | Convex analysis and measurable multifunctions[END_REF]

, i.e t2 t1 G(t)dt = t2 t1 g(t)dt : g ∈ L 1 ([t 1 , t 2 ], R n ), g(t) ∈ G(t) , ∀t 1 , t 2 ∈ R, t 1 ≤ t 2 .

Consider now problem (3.1) together with the initial value averaged problem

   ẏ ∈ εF y(t), max s∈S(t) y(s) , t ≥ 0 y(0) = x 0 . (3.3)
The main result of this paper is contained in the following theorem. Theorem 3.1. Suppose that (H1)-(H5) are fulfilled. Let x 0 ∈ R n . Then, for any L > 0 and η > 0, there exists ε 0 = ε 0 (x 0 , L, η) > 0 such that, for any ε ∈ (0, ε 0 ], the following holds:

(i) for any solution x of problem (3.1), there exists a solution y of problem

(3.3) such that |x(t) -y(t)| ≤ η, ∀t ∈ [0, L/ε]; (3.4) 
(ii) for any solution y of problem (3.3), there exists a solution x of problem (3.1) such that inequality (3.4) holds.

Let x 0 ∈ R n . For L > 0, denote by Sol(εF, x 0 , L) and Sol(εF , x 0 , L) the solutions set on [0, L/ε] of problems (3.1) and (3.3), respectively, and consider the associated reachable sets at time t ∈ [0, L/ε] given by: R(εF, x 0 , t) = {x(t) / x ∈ Sol(εF, x 0 , L)} and R(εF , x 0 , t) = {y(t) / y ∈ Sol(εF , x 0 , L)}. In view of Theorem 3.1 we obtain the following corollary. In [START_REF] Plotnikov | Averaging of differential equations with maxima[END_REF], the authors considered problem (3.1) in single-valued case (differential equations with maxima) with S an interval valued multifunction which is uniformly continuous, that is, S(t) = [g(t), γ(t)], where g, γ : R + → R + are uniformly continuous functions such that 0 ≤ g(t) ≤ γ(t) ≤ t, for all t ∈ R + . • If a multifunction F = F (t, x, y) is continuous in t and satisfies a Lipschitz condition on (x, y) (as assumed in [START_REF] Plotnikov | Averaging of differential equations with maxima[END_REF]), then assumptions (H1) and (H3) are automatically fulfilled. • In assumption (H5), when the limit (3.2) is uniform with respect to (x, y), then ε 0 in the conclusion of Theorem 3.1 does not depend on the initial condition x 0 .

Proof of the main result

To prove Theorem 3.1 we need to establish the following preliminary lemmas. So the proof Theorem 3.1 is postponed to subsection 4.2. 

. Let R + × R n × R n → Conv(R n ) be a multifunction.
(i) If F satisfies assumptions (H1) and (H2), then its average F in (H5) is uniformly bounded by the constant M and is continuous. (ii) If F satisfies assumption (H3) then its average F in (H5) satisfies the OSL condition with constant λ in (H3).

Proof. For (i) see [START_REF] Bourada | Some averaging results for ordinary differential inclusions[END_REF].

(ii) Note that, for x ∈ R n and A, B ∈ Conv(R n ), we have

|σ(x, A) -σ(x, B)|≤ |x| σ x |x| , A -σ x |x| , B ≤ |x|H(A, B). (4.1)
Now, let x 1 , x 2 , y 1 , y 2 ∈ R n . Using inequality (4.1), by assumption (H5), we can easily deduce that, for any η > 0 there exists T 0 = T 0 (x 1 , x 2 , y 1 , y 2 , η) > 0 such that, for all T ≥ T 0 we have

σ(x 2 -x 1 , F (x 1 , y 1 )) -2 -x 1 , F (x 2 , y 2 )) ≤ σ(x 2 -x 1 , F (x 1 , y 1 )) -σ x 2 -x 1 , 1 T T 0 F (t, x 1 , y 1 )dt + σ x 2 -x 1 , 1 T T 0 F (t, x 1 , y 1 )dt -σ x 2 -x 1 , 1 T T 0 F (t, x 2 , y 2 )dt + σ x 2 -x 1 , 1 T T 0 F (t, x 2 , y 2 )dt -σ(x 2 -x 1 , F (x 2 , y 2 )) ≤ |x 2 -x 1 |H F (x 1 , y 1 ), 1 T T 0 F (t, x 1 , y 1 )dt + 1 T T 0 σ(x 2 -x 1 , F (t, x 1 , y 1 )) -σ(x 2 -x 1 , F (t, x 2 , y 2 )) dt +|x 2 -x 1 |H 1 T T 0 F (t, x 2 , y 2 )dt, F (x 2 , y 2 ) ≤ 2|x 2 -x 1 |η + λ |x 2 -x 1 | 2 + |x 2 -x 1 ||y 2 -y 1 | .
Since the value of η is arbitrary, in the limit we obtain that

σ(x 2 -x 1 , F (x 1 , y 1 )) -σ(x 2 -x 1 , F (x 2 , y 2 )) ≤ λ |x 2 -x 1 | 2 + |x 2 -x 1 ||y 2 -y 1 | ,
which finishes the proof that F is OSL with constant λ.

Lemma 4.2. Suppose that (H1)-(H4) are fulfilled. Let x 0 ∈ R n . Then, for every solution x of (3.1) and L > 0 there exists a solution z

: [0, L/ε] → R n of the discrete problem    ż(t) ∈ εF t, z(t i ), max s∈S(ti) z(s) , t ∈ [t i , t i+1 ] z(0) = x 0 (4.2)
where

0 = t 0 < t 1 < • • • < t p = L/ε with t i+1 = t i + L/εp, i = 0, • • • , p -1, such that, for t ∈ [0, L/ε] |z(t) -x(t)| ≤ L exp(2λ + L) ω F M p (L + ω S (L)) + εM ω S (L)
where λ + = max{λ, 0} and ω G is the modulus of continuity of multifunction G.

Remark 4.3. Notice that on [0, L/ε], L > 0, of (4.2) are contained in the ball in R n of radius M L, centered at x 0 .

Proof of Lemma 4.2. We present a proof consisting of two steps.

Step 1. Let z(0) = x 0 and suppose that z exists on [0, t i ]. We prove inductively that it exists on [t

i , t i+1 ], i = 0, • • • , p -1.
For given t ∈ [t i , t i+1 ] and α, β ∈ R n consider the map

G(t, α, β) = E(t, α, β) ∩ εF t, z(t i ), max s∈S(ti) z(s)
where

E(t, α, β) =    z ∈ R n : ẋ(t) -z, x(t) -α ≤ ε λ|x(t) -α| 2 + |x(t) -α| λ max s∈S(t) x(s) -β + δ(t)    with δ(t) = H F (t, α, β), F t, z(t i ), max s∈S(ti)
z(s) .

We get existence of a solution of the initial value problem

   α ∈ G t, α(t), max s∈S(t) α(s) , t ∈ [t i , t i+1 ] α(t i ) = z(t i ). (4.3) 
We have, G(t, α, β) is nonempty for every t, α and β. Indeed, by assumption (H3) (OSL condition) there is w ∈ εF (t, α, β) such that ẋ(t) -w, x(t) -α ≤ ελ |x(t) -α| 2 + |x(t) -α| max s∈S(t)

x(s) -β .

Further, for w we find z ∈ εF t, z(t i ), max

s∈S(ti) z(s) such that |w -z|≤ εH F (t, α, β), F t, z(t i ), max s∈S(ti) z(s) = εδ(t). Then ẋ(t) -z, x(t) -α ≤ ε λ|x(t) -α| 2 + |x(t) -α| λ max s∈S(t) x(s) -β + δ(t) ,
that is, z ∈ G(t, α, β). Now, it is easy to see that G is compact and convex valued, and is continuous. Hence, problem (4.3) has a solution that we denote also by z. This completes the induction step.

Step 2. For t ∈ [0, L/ε], we have t ∈ [t i , t i+1 ] for some i = 0, z(s)

≤ ω F M p (L + ω S (L)) + εM ω S (L)
where ω F is the modulus of continuity of the multifunction F which is, by assumption (H1), independant of t.

• on the other hand

ẋ(t) -ż, x(t) -z ≤ ε λ|x(t) -z| 2 + |x(t) -z| λ max s∈S(t)
x(s) -max s∈S(ti) z(s) + δ(t) .

We repeat the arguments following inequality (2.5) in the proof of Lemma 2.3 to obtain that, for all t ∈ [0,

|z(t) -x(t)| ≤ L/ε 0 εδ(t)dt exp 2ελ + t ≤ L exp(2λ + L) ω F M p (L + ω S (L)) + εM ω S (L) ,
with λ + = max{λ, 0}. 

   ż(t) ∈ εF t, z(t i ), max s∈S(ti) z(s) , t ∈ [t i , t i+1 ] z(0) = x 0 where 0 = t 0 < t 1 < • • • < t p = L/ε with t i+1 = t i + L/εp, i = 0, • • • , p -1, such that, for t ∈ [0, L/ε] |z(t) -x(t)| ≤ L exp(2λ + L) ω F M p (L + ω S (L)) + εM ω S (L) (4.4) 
where λ + = max{λ, 0}. Let us notice that by assumption (H5) it follows that, for any µ > 0 there exists ε such that, for every ε ∈ (0, ε] we have the following inequality

H εp L ti+1 ti F t, z(t i ), max s∈S(ti) z(s) dt, F z(t i ), max s∈S(ti) z(s) ≤ µ. (4.5) For i = 0, • • • , p-1, let v i : [t i , t i+1 ] → R n be some continuous function satisfying, for t ∈ [t i , t i+1 ], v i (t) ∈ F t, z(t i ), max s∈S(ti) z(s) and z(t) = z(t i ) + ε t ti v i (s)ds.
There exists v i ∈ F z(t i ), max s∈S(ti) z(s) such that, by virtue of (4.5)

εp L ti+1 ti v i (t)dt -v i = εp L ti+1 ti (v i (t) -v i )dt ≤ µ.
Then we consider z 1 : [0, L] → R n the function given by:

z 1 (t) = z 1 (t i ) + ti+1 ti v i ds, t ∈ [t i , t i+1 ].
We have, for t ∈ [t i , t i+1 ]

|z 1 (t) -z 1 (t i )| ≤ ti+1 ti M εds ≤ M L p .
By definition of z 1 and z, we have

|z 1 (t i+1 ) -z(t i+1 )| ≤ |z 1 (t i ) -z(t i )| + ε ti+1 ti (v i (t) -v i )dt ≤ |z 1 (t i ) -z(t i )| + Lµ p ≤ • • • ≤ p Lµ p = Lµ.
Hence Therefore, for any η > 0, by appropriate choice of µ, sufficiently large p and sufficiently small ε, we get the inequality |x(t) -y(t)| ≤ η for t ∈ [0, L/ε]. The proof of assertion (i) is now complete.

Adopting the procedure presented above we will get assertion (ii). In this way the proof is completed. 

Corollary 3 . 2 .

 32 Suppose that (H1)-(H5) are fulfilled. Let x 0 ∈ R n . For any L > 0, we have:lim ε→0 sup H R(εF, x 0 , t), R(εF , x 0 , t) : t ∈ [0, L/ε] = 0. Remark 3.3.• In Theorem 3.1, solutions of problems (3.1) and (3.3) are defined globally in time. On any interval of time [0, L/ε], L > 0, they are contained in the compact ball in R n of radius M L, centered at x 0 . • In problem (3.1), S is a general multifunction which is uniformly continuous.

4. 1 .

 1 Technical lemmas. Lemma 4.1

4. 2 .

 2 Proof of Theorem 3.1. Let x 0 ∈ R n and x be a solution of (3.1). Let L > 0. By Lemma 4.2 there exists a solution z : [0, L/ε] → R n of the discrete problem

Remark 4 . 4 .

 44 In all the results above, it is not necessary to consider the whole space R + × R n × R n . One can restrict the domains of definition of function f in (2.1) and multifunctions F in (2.2) and (3.1) to R + × U × U for any open subset U ⊂ R n with additional technical assumptions.

  Define the set T = {t ∈ [0, L] : r(t) = 0} and let T 0 be the set of the points of density of T . It is known that meas(T 0 ) = meas(T ), where meas is the measure of Lebesgue. If t / If t ∈ T 0 and if ṙ(t) exists, then ṙ(t) = 0. Hence, (2.7) is satisfied for almost all t ∈ [0, L]. Therefore, one obtains that: r(t) ≤ r(t), for t ∈ [0, L], where r is the

	solution of					
	 	ṙ(t) = λ + r(t) + max	
					s∈S(t)	
						
	r(t) ṙ(t) =	1 2	d dt	s∈S(t) r 2 (t) ≤ λr(t) r(t) + max	r(s) + r(t)δ(t).	(2.6)

The function r is absolutely continuous. At every t ∈ [0, L] for which r is differentiable, by (2.5), we have the inequality ∈ T , then, from (2.6) we deduce ṙ(t) ≤ λ + r(t) + max s∈S(t) r(s) + δ(t).

(2.7)

  Tacking into account that εF is OSL with constant ελ, by Lemma 2.3 there exists a solution y of (3.3), such that, for t ∈ [0, L/ε],|z 1 (t) -y(t)| ≤ exp(2λ + L)By the inequalities (4.4), (4.6) and (4.7) it follows that, for t ∈ [0, L/ε],|x(t) -y(t)| ≤ |x(t) -z(t)| + |z(t) -z 1 (t)| + |z 1 (t) -y(t)|

	≤ L exp(2λ + L) F	M p	(L + ω S (L)) + εM ω S (L) + Lµ +	2M L p
		+ L exp(2λ + L) ω F 2Lµ +	4M L p	.
						+	p 2M L	(4.6)
	and				
	max s∈S(ti)	z 1 (s) -max s∈S(ti)	z(s) ≤ max s∈S(ti)	z 1 (s) -z(s) ≤ Lµ +	2M L p
	so that				
	H F z(t i ), max s∈S(ti)	z(s) , F z 1 (t), max s∈S(ti)	z 1 (s)	≤ ω F 2Lµ +	4M L p
	where ω s∈S(ti)	z 1 (s)
	s∈S(ti) ≤ εH F z(t i ), max	s∈S(ti) z(s) , F z 1 (t), max	z 1 (s)
	≤ εω F 2Lµ +	4M L p	.
						L/ε
						0	εω F 2Lµ +	4M L p	ds	(4.7)
			≤ L exp(2λ + L) ω F 2Lµ +	4M L p	.

we obtain, for t ∈ [t i , t i+1 ]

|z 1 (t) -z(t)| ≤ |z 1 (t) -z 1 (t i )| + |z 1 (t i ) -z(t i )| + |z(t i ) -z(t)| ≤ Lµ F is the modulus of continuity of the multifunction F . Therefore, for t ∈ [t i , t i+1 ], i = 0, • • • , p -1, d ż1 (t), εF z 1 (t), max s∈S(ti) z 1 (s)

≤ εd v i , F z 1 (t), max