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Résumé — Une méthode de collocation espace-temps sans maillage est utilisée pour la modé-
lisation des biofilms. Dans le modèle proposé, les biofilms sont représentés comme deux fluides
incompressibles décrits par les équations de Stokes. Les exemples numériques démontrent le com-
portement typique des biofilms à savoir la formation de structures fongiformes en eau dormante.

Mots clés — biofilms, méthodes numériques sans maillage, formulation forte, spatio-temporelle,
interpolating moving least squares.

1 Biofilms

In environments where moisture, nutrient, and a surface are present, one will most probably
also find biofilms, which may consist of one or different species of bacteria, archaebacteria, al-
gae as well as fungi or corrosion products. Biofilms can be found in 80% of all infections, e.g.
infections of the urinary tract, catheter, and middle-ear, formation of dental plaque or sinusitis. A
number of various models dealing with biofilms as a continuum has been proposed, e.g. [12, 8, 2].
We are interested in simulating the biofilm growth problem as a continuum without any probabilis-
tic rules, applying a novel truly meshfree collocation method that uses a consistent discretization
for both space and time.

2 A Space-Time Meshfree Collocation Method

The Space-Time Meshfree Collocation Method (STMCM) has been proposed by the first au-
thor for coupled problems on irregularly-shaped domains in [9]. In the following we apply the
STMCM within a monolithic framework to a coupled problem of biofilm growth. Biofilm is mo-
delled as a continuum using a two-biofluid representation governed by a system of incompressible
Stokes equations and the moving interface is being implicitly tracked by solving the level-set equa-
tion. The presented technique is a truly meshfree method in both space and time which provides a
straightforward and consistent way of solving partial differential equations in a monolithic setup.



3 A mathematical model of biofilm growth

The whole space-time domain of interest Q = Ω× I, where Ω is the spatial part, and I = [0,T ]
the temporal one, consists of two parts : Q = Qa,i = Qa∪Qi, where Qa is representing the biofilm
itself – the active biofluid, and Qi – representing the liquid substrate around – the inactive biofluid.
In the proposed mathematical model the active biofluid is representing the biofilm and must model
its behaviour, e.g. biofilm growth due to nutrients present in the domain, and the surrounding water,
the inactive biofluid, is an auxiliary construction used for the solution strategy.

Fig. 1 shows the two subdomains Ωa and Ωi of the active and inactive biofluids, respectively,
at some moment in time t = const. The interface Σ(t) at time t between Ωa and Ωi is described
by a zero-level of a function φ, which is chosen to be negative in the domain Ωa and positive in
Ωi. The interface between the active and inactive biofluids is assumed to be sharp which agrees
with the experimental observations, since the length scales of the problems under consideration
are much larger in comparison with the transition area.

3.1 Material description

In the proposed model the biofilm and the fluid around are considered to be incompressible
fluids with different densities and viscosities. The unknowns to model the biofilm growth problem
are :~va,~vi – the velocity fields of the active and inactive biofluid respectively, pa, pi – the respective
pressures of the biofluids, the level set function φ which zero-level describes the interface between
Qa and Qi, and the nutrient concentration n varying from zero to one.
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Fig. 1 – Biofilm growth model setup.

In process of a biofilm growth the fluid velocities are very slow and inertial forces are negli-
gible compared to viscous forces. Hence, in the proposed model the set of incompressible Stokes
equations governs the behaviour of biofluids, whereas equation (1) is the balance of momentum
of the active and inactive biofluids. The incompressibility condition is given by equation (2) and
the initial and boundary conditions are equations (3)-(4). The source term fg in the equation (2)
is important for the growth of the active biofluid and it will be defined later, and the inactive bio-
fluid is not growing but rather flows out through the outer boundary Γ. The system of governing



equations reads as

−div Ta,i = ~0 in Qa,i, (1)

ρ
a,idiv~va,i = fg in Qa,i, (2)

~va,i(~x, t = 0) = ~va,i
0 in Qa,i

t=0, (3)

~va,i(~x) = ~̄va,i on Γ, (4)

with the Cauchy stress tensor Ta,i =−pa,i I+2µa,i Da,i, describing the inner stress state of the
active and inactive biofluids, and the fluid kinematics with the strain rate tensor Da,i = 1

2(∇~va,i +
(∇~va,i)T). The assumed material model of the biofilm is a Newtonian fluid with linear dependence
between shear stresses and strain rate represented by the kinematic viscosity µa,i. The stress state
of a biofluid at rest is defined by the hydrostatic pressure pa,i. For an incompressible Newtonian
fluid the equation (1) reads as

−µ∇
2~va,i +∇pa,i = 0. (5)

3.2 Nutrient description

Equation (6) is the advection-diffusion-reaction equation with a standard Monod reaction term
fc for nutrient consumption [7, 2, 3, 6] in the inactive biofluid only. In the active biofluid the
nutrient of concentration n is consumed via the source term fg in equation (2), which is responsible
for the new biomass formation, i.e. the biofilm growth.

∂n
∂t

+~va,i ·∇n−∇ · (dn ∇n) = fc in Qa,i, (6)

n(~x, t = 0) = n0 in Qa,i
t=0, (7)

where dn is the diffusion coefficient. The nutrients are being convected, i.e. transported through
the domain, by the flow velocity field~va,i.

3.3 Interface description

Various techniques exist on how to track moving interfaces [14, 10]. The level-set equation
[14, 11] describes an evolution of a high-dimensional function φ, and the zero-level of this function
φ is used for a description of a moving and deforming interface. The function φ in the level-set
equation is in most of the cases defined as a signed distance function from an arbitrary domain
point to the interface. Thus, the different domains can be easily distinguished by simply looking at
the sign of φ. In the cases where the velocity is known at the interface only the velocity extension
technique is used [1]. In our model this is not necessary, since the velocity field is defined in the
whole domain. The level-set function φ is chosen to be negative in the active biofluid domain
Ωa and positive in the inactive biofluid Ωi, so that using the Heaviside function one can easily
distinguish between the inactive and active biofluids in an implicit way and the material constants
(densities and viscosities) are defined as follows

ρ
a,i = (1−H(φ)) ·ρa +H(φ) ·ρi, (8)

µa,i = (1−H(φ)) ·µa +H(φ) ·µi, (9)

where ρa,µa are respectively the density and kinematic viscosity of the active biofluid, and
ρi,µi – those of the inactive biofluid.



3.4 Nutrient consumption and biomass formation

The standard Monod terms for nutrient consumption fc and growth fg, respectively, [7], which
are made dependent on the level-set function φ in order to ensure that the nutrient is consumed in
the active biofluid only, read as

fc(φ) =−(1−H(φ)) · γn
n

ηn +n
=− fg(φ), (10)

with γn – specific growth rate, ηn – Monod reaction coefficient. Parameters of the model used in
the following validation example are given in Table 1.

Tableau 1 – Parameters used for simulations of biofilm growth.

Parameter Symbol Units Value Source
Specific growth rate γn s−1 0.417 [13]
Monod reaction coefficient ηn mg·l−1 0.100 [13]
Nutrient diffusion coefficient dn m2·s−1 9.67e-06 [13]
Ratio of viscosities µa/µi – 1 ÷ 1000 [4]
Ratio of densities ρa/ρi – 1 ÷ 10 assumed

3.5 An anisotropic biofilm growth in a channel

An anisotropic biofilm growth of several colonies in a channel with in- and outflow is modelled
as shown in Fig. 2, on the channel walls non-slip conditions are implied. If the inactive biofluid
is a stagnant one, the nutrient is not transported with the flow, but is diffused and consumed by
the active biofluid, i.e. the biofilm, as in the previous example. Furthermore, we consider two
configurations where individual colonies are located initially near to or far from to each other.

We note that in stagnant waters the biofilm tends to build mushroom- or finger-like structures.
This observation is consistent with other reports, see e.g. [15, 5]. As long as nutrient is available
in the whole system, the biofilm grows in all directions. However, with growing biomass the
larger colonies start to dominate over the smaller ones due to their higher nutrient consumption
and mushroom-like structures develop. The STMCM solution of the anisotropic biofilm growth
example with several individual colonies located near to each other demonstrating the formation
of mushroom-like structures is presented in Fig. 3.
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Fig. 2 – An anisotropic biofilm growth of several colonies in a stagnant fluid.



Fig. 3 – STMCM solution of the anisotropic biofilm growth example in a stagnant fluid : : forma-
tion of mushroom-like structures.

Depending on parameters, the behaviour of biofilm growth processes might be different. Indi-
vidual biofilm colonies might remain isolated and grow upwards, as it was shown by the STMCM
solutions. Such a behaviour is observed for higher values of the specific growth rate γn and low
values of the nutrient diffusion coefficient, see e.g. [5, 7]. For smaller values of γn, however, the
biofilms also move horizontally so that the colonies merge, see e.g. [7].

In order the presented model be used to simulate this kind of behaviour, certain rules for
applying slip conditions at the channel walls must be incorporated, allowing tangential movement
at the wall.
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