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Abstract

Assume that you observe trajectories of a non-diffusive non-stationary process and that you are in-
terested in the average number of times where the process crosses some threshold (in dimension d = 1)
or hypersurface (in dimension d ≥ 2). Of course, you can actually estimate this quantity by its empirical
version counting the number of observed crossings. But is there a better way? In this paper, for a wide
class of piecewise smooth processes, we propose estimators of the average number of continuous crossings
of an hypersurface based on Kac-Rice formulae. We revisit these formulae in the uni- and multivariate
framework in order to be able to handle non-stationary processes. Our statistical method is tested on
both simulated and real data.

Keywords: Piecewise deterministic process; Average number of crossings; Plug-in estimators

1 Introduction

We consider a random but non-diffusive trajectory X that models some physical or biological phe-
nomenon. In order to set the ideas down, X may be issued from a piecewise deterministic Markov
process (PDMP) [7] but our theoretical results will be established for a more general class of stochastic
models. In this paper, we are not interested in the estimation of the parameters that govern the un-
derlying model that has generated the trajectory X but in a functional of this trajectory. Indeed, in
numerous situations, the main quantity of interest is related to the average number of crossings of some
level (in dimension 1) or hypersurface (in dimension d ≥ 2) within a given time window. For instance, if
X models the cumulative exposure to some food contaminant [3], the toxic effects depend on the time
spent beyond a critical threshold. In reliability, X may describe the size of a crack in a certain material
[1]. Exceeding a dangerosity threshold may lead to rupture and thus to a dramatic event. Unfortunately,
the trajectory X is often observed on a discrete temporal grid which time step size is imposed by the
measuring devices. In this context, some crossings may be missed in such a way that the crude Monte
Carlo-type estimator that only counts the number of observed crossings generally underestimates the the-
oretical quantity of interest. However, modern datasets often contain more information than the location
at the measure time: they may provide the instantaneous velocity. This is typically the case when one
studies spatial trajectories captured by a GPS device like the terrestrial and marine movements of lesser
black-backed gulls investigated in [13]. This additional information is crucial because it may give a clue
on the likelihood of an unobserved crossing between two successive measure times. The main objective
of this article is to show that one can take into account the velocity measurement to better estimate the
average number of crossings.

In the present article, we deal with piecewise smooth processes (PSP’s) as defined in [4]. They form a
very general class of non-diffusion stochastic processes composed of deterministic trajectories following
some differential equation punctuated by random jumps at random times. PDMP’s are a particular
case of PSP’s because of the particular link between the inter-jumping times and the deterministic path
that ensures the Markov property to hold. It should be noted that we do not impose any kind of
Markov assumption in this paper. Kac-Rice formulae give a concise relation between the average number
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CS(H) of crossings of X with a hypersurface S within the time window [0, H] and some features of the
underlying stochastic model. They have already been stated for non-stationary one-dimensional PSP’s
[6] and for stationary multidimensional PSP’s [4]. These papers [4, 6] and our approach are different
and complementary. In the applications (typically spatial trajectories captured by GPS), the stochastic
process of interest X is often both multidimensional and non-stationary. In Theorem 2.10, we establish
under mild conditions the following Kac-Rice formula for multidimensional non-stationary PSP’s,

CS(H) =

∫
S

|(r(x), ν(x))|
∫ H

0

pX(s)(x)ds σd−1(dx), (1)

where r is the velocity of the deterministic motion, ν is a field of unit normals of S, pX(t) denotes the
density of X(t) and σd−1 stands for the Hausdorff measure (see Remark 2.2). The strategy developed
to state (1) also gives a fresh look at Kac-Rice formula for one-dimensional processes. Consequently, we
also provide a new proof of this formula for one-dimensional PSP’s in Corollary 2.7. In addition, we
investigate in Corollaries 2.8 and 2.12 the Euclidean-mode setting often used in applications of hybrid
Markov models (for instance in [1]), which has never been studied from that perspective in the literature
to the best of our knowledge.

The distribution pX(t) appearing in the Kac-Rice formula (1) is generally unknown but can be estimated
(for example by kernel methods) from a dataset of trajectories observed within the time window [0, H].
In a wide range of applications, the deterministic motion is assumed to be known because it has been
postulated by scientific laws, in particular in physical or biological models. This allows us to propose
a new strategy for estimating the average number of crossings CS(H). If p̂X(t) denotes an estimate of
pX(t), the number of crossings CS(H) can be approximated by the plug-in estimator

ĈS(H) =

∫
S

|(r(x), ν(x))|
∫ H

0

p̂X(s)(x)ds σd−1(dx).

In the simulation study presented in Section 4, we show that ĈS(H) better estimates CS(H) than the
Monte Carlo estimator that only returns the empirical mean of observed crossings within the interval
[0, H], in particular when the time step size is large. In the real data application given in Section 5, we
investigate the spatial trajectories of lesser black-backed gulls studied in [13]. We do not assume any
model for the velocity r but we directly estimate the scalar product |(r(x), ν(x))| appearing in (1) from
instantaneous velocity measurements provided in the dataset [12]. Estimated Kac-Rice formulae allow us
to approximate the average depth of marine and terrestrial trips of the birds within a one-day window,
which helps to describe their daily habits.

The paper is organized as follows. Section 2 is devoted to Kac-Rice formulae for non-stationary PSP’s.
The theoretical framework is presented in Subsection 2.1, while results for one-dimensional (multidimen-
sional, respectively) processes are given in Subsection 2.2 (Subsection 2.3, respectively). The proofs of the
results stated in Section 2 have been deferred until Appendix A. Section 3 is dedicated to the statistical
inference procedures. The proofs of the estimation results established in this section have been deferred
until Appendix B. A simulation study on PDMP’s is provided in Section 4 through three examples: sta-
tionary one-dimensional telegraph process in Subsection 4.1, piecewise deterministic simulated annealing
in Subsection 4.2 and non-stationary two-dimensional telegraph process in Subsection 4.3. Finally, real
data experiments are investigated in Section 5.

2 Kac-Rice formulae for piecewise smooth processes

2.1 Definitions and background material

2.1.1 A class of piecewise smooth processes

A piecewise smooth process (PSP) X on an open domain X of Rd, endowed with the Euclidean norm ‖ ·‖
and associated scalar product (·, ·), involves continuous-time deterministic motions punctuated by random
jumps at random times. Its dynamic is governed by a marked point process (Tn,Mn)n≥0 on R+×X and
a vector field r : X → Rd, the Tn’s being the jump times of the continuous-time trajectory. The sequence
of the jump times is assumed to be almost-surely increasing, i.e., P(T0 = 0 < T1 ≤ T2 ≤ . . .) = 1, and
almost-surely going to infinity, i.e., P(limn→∞ Tn = ∞) = 1. It should be noticed that the distribution
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of the Ti’s can depend on the marks. The following assumption on the jump times is quite classical in
the context of hybrid models (see [7, Standard conditions (24.8) and Remark (24.9)]).

Assumption 2.1 The expected number of jump times over any bounded interval is finite.

Between two successive jump times Tn and Tn+1, the process X evolves according to the vector field
r : X → Rd, which is assumed to be continuously differentiable on X , and such that for any ζ ∈ X , the
initial value problem

dx

dt
(t) = r(x(t)), x(0) = ζ,

has a unique continuously differentiable solution φ(ζ, ·) on R. This solution satisfies the flow property,

∀ (ζ, t, s) ∈ X × R2, φ(ζ, t+ s) = φ(φ(ζ, t), s).

More precisely, the dynamic of the PSP X can be described in an algorithmic fashion as follows. At time
T0 = 0, the process starts at point X(0) = M0 ∈ X and,

∀ 0 ≤ t < T1, X(t) = φ(M0, t− T0).

At time T1, we set X(T1) = M1, and so on. We call X a PSP. The process X has the elementary
properties to possess a càdlàg and piecewise continuously differentiable version and to have a number of
jumps almost-surely finite and integrable over a finite time window. For technical purposes, the following
regularity assumption is made on the density of the process.

Assumption 2.2 For any t ≥ 0, X(t) admits a density pX(t) with respect to the Lebesgue measure on
Rd.

For a large class of applications, the considered PSP possesses a “Euclidean-mode” description. In such a
case, we consider the process (X,Y ) where X is the Euclidean variable, evolving in X , and Y is the mode
variable, evolving in some discrete state space Y. For any y ∈ Y, we consider a vector field ry : X → Rd

which is continuously differentiable on X . Then, for any ζ ∈ X , the initial value problem

dx

dt
(t) = ry(x(t)), x(0) = ζ,

has a unique continuously differentiable solution φy(ζ, ·) on R satisfying the flow property

φy(ζ, t+ s) = φy(φy(ζ, t), s).

The process is then described as in the previous section except that the marks are now in the product
space X × Y, Mn = (MX,n,MY,n), n ≥ 0. At time T0 = 0, the process starts at point (X(0), Y (0)) =
M0 ∈ X × Y, and,

∀ 0 ≤ t < T1, (X(t), Y (t)) =
(
φMY,0(MX,0, t− T0),MY,0

)
.

At time T1, we set (X(T1), Y (T1)) = M1, and so on. In this setting, Y has a piecewise constant evolution
and can be seen as some random parametrization of the evolution of X.

2.1.2 A C1-hypersurface

Let S be a C1 and compact hypersurface being the boundary of a bounded domain D of X in dimension
d ≥ 2. Following [15, Chapter 1 1.2 The concept of defining function], we denote by ρ : Rd → R a
C1-defining function for D,

• ρ is negative on D, i.e., D = {x ∈ X : ρ(x) < 0},
• ρ is positive on the complementary of the closure of D, i.e., D̄c = {x ∈ X : ρ(x) > 0},
• and the gradient of ρ is positive on ∂D, i.e., ∇ρ(x) 6= 0 for all x ∈ ∂D = S.

Then, for x ∈ S, ν(x) = ∇ρ(x)/‖∇ρ(x)‖ is the outward unit normal of S at point x, well-defined and
continuous in a neighborhood of S. Notice that on S, n is independent of ρ. In dimension d = 1, S is
reduced to a level, S = {x} and ν ≡ 1 by convention.
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2.1.3 The interplay between the piecewise smooth process and the C1-hypersurface.

Let S be a surface as defined in the previous section. In this paper, we are interested in continuous
crossings of S as defined below.

Definition 2.1 Let Z be an X -valued process. We say that Z has a continuous crossing of S at time
s > 0, if Z(s−) = Z(s) ∈ S and there is δ > 0 such that Z(t) /∈ S for t ∈ (s− δ, s+ δ) \ {s}. S is then a
crossing surface for Z.

S is referred to as a crossing surface in the sequel. We denote by cZS (H) the (possibly random) number
of continuous crossings within the interval [0, H]. In addition, CZS (H) denotes its expectation, CZS (H) =
E[cZS (H)]. When there is no ambiguity, we will simply write cS(H) and CS(H), the dependency on Z
being implicit.

Let X be a PSP with flow r as defined in the previous section. The assumption stating the relation
between the deterministic behavior of X and the crossing surface is the following.

Assumption 2.3 We assume that the trajectories of the flow are not tangent to S,

∀x ∈ S, (r(x), ν(x)) 6= 0. (2)

For any x ∈ X , let c
φ(x,·)
S (H) be the number of crossings of S by the continuous deterministic process

φ(x, ·) within the interval [0, H]. We assume that

sup
x∈X

c
φ(x,·)
S (H) <∞. (3)

Under condition (2), for any starting point x ∈ X , the number c
φ(x,·)
S (H) is always finite. To not

overcomplicate proofs, we assume in condition (3) that this finiteness is uniform in x. These hypotheses
are not difficult to verify in applications. In dimension 1, these conditions take the following simple form,
r(x) 6= 0, where S = {x}.
For a real-valued smooth deterministic process, the following formula gives the number of crossings of a
given level.

Theorem 2.4 (Kac’s counting formula [14]) Let x ∈ R, H > 0, and f : [0, H] → R a continuously
differentiable function such that

• either f(0) 6= x or f(H) 6= x,

• whenever f(t) = x we have f ′(t) 6= 0.

Then,

cfx(H) = lim
δ→0

1

2δ

∫ H

0

|f ′(t)|1|f(t)−x|≤δdt. (4)

Our main probabilistic assumption about the relation between the surface and the piecewise deterministic
smooth process is the following.

Assumption 2.5 The stochastic behavior of the PSP X regarding the surface S is as follows.

• Almost-surely, the PSP X does not jump from or to S. In particular, the number of continuous
crossings of S by X is almost-surely equal to the number of continuous crossings of 0 by the process
(ρ(X(t))t∈[0,H].

• The family of density of the process is such that the map (x, t) 7→ pX(t)(x) is continuous on VS×[0, H]
with VS a neighborhood of S, for any time horizon H.

In the Euclidean-mode setting Z = (X,Y ) ∈ X ×Y, the crossing surface S is associated to the Euclidean
domain X . The conditions that we impose in this framework are the same as in the previous part but
on the Euclidean component of the process for each value of the mode. We would like to point out that
PSP’s with such a decomposition are mentioned in [4, Remark 3.4].

Remark 2.1 The formalism presented here is close to the setting of [4, 2. Model description] except that
we do not impose any kind of stationarity assumption.
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Remark 2.2 In the present paper, integration over the hypersurface S is performed with respect to the
surface measure σd−1 of Rd. For regular hypersurfaces as considered in the present paper, when d = 1, σ0

is simply the counting measure and when d = 2 (d = 3, respectively), integration with respect to σ1 (σ2,
respectively) reduces to line integrals (surface integrals, respectively). We refer the reader to [15, Chapter
3] for more informations about surface measures (identical to Hausdorff measures in our context).

2.2 Average number of continuous level crossings

This section aims at giving a new insight on the Kac-Rice formula counting the average number of
crossings of one-dimensional PSP’s. We begin this section with the presentation of a formula linking the
number of continuous crossings with the local time.

Theorem 2.6 (Local time-crossing relation) For any level x and any time horizon H, we have almost-
surely

cx(H) = |r(x)|lx(H), (5)

where lx(H) is the local time spent at level x by the process X between times 0 and H,

lx(H) = lim
δ→0

1

2δ

∫ H

0

1|X(t)−x|≤δdt.

Proof. The proof lies in Appendix A.1.

The Dalmao-Mordecki formula for the expectation of the number of crossings of one-dimensional PSP’s,
presented below but first established in [6, 5. Generalization of Borovkov-Last’s formula], can be stated
as a corollary of Theorem 2.6.

Corollary 2.7 (Dalmao-Mordecki formula) For any level x and any time horizon H, we have

Cx(H) = |r(x)|E(lx(H)) = |r(x)|
∫ H

0

pX(s)(x)ds. (6)

The average number of upward (downward, respectively) continuous crossings is obtained by replacing the
absolute value of r by its positive part (negative part, respectively) in the stated formulae.

Proof. The proof lies in Appendix A.2.

Let us notice that the value of the average number of continuous crossings Cx(H) can be actually greatly
affected by the initial distribution of the process. For instance, the linear process defined for t ∈ [0, H]
by

X(t) = (1 + t)1X(0)>1 + (1− t)1X(0)≤1,

that is increasing starting from x > 1 but decreasing starting from x ≤ 1, have crossings of the threshold
2 that clearly depends on the initial distribution of the process. In formula (6), this dependence is given
implicitly by the actual expression of the density pX(s) of X at time s whose actual expression can
possibly be highly dependent on X(0) as in the considered example.

We now state the formula for the average number of continuous crossings in the Euclidean-mode setting.
Since the state space of the mode is finite, the proof is, up to obvious changes, identical to the proofs of
Theorem 2.6 and Corollary 2.7.

Corollary 2.8 (Local time-crossing relation and Kac-Rice formula in the Euclidean-mode setting) In
the Euclidean-mode setting, for any level x and any time horizon H, we have almost-surely

cx(H) =
∑
y∈Y

|ry(x)|l(x,y)(H),

where l(x,y)(H) is the local time spent at level x by X when the mode is y,

l(x,y)(H) = lim
δ→0

1

2δ

∫ H

0

1|X(t)−x|≤δ, Y (t)=ydt.

The average number of crossings is then

Cx(H) =
∑
y∈Y

|ry(x)|
∫ H

0

p(X(s),Y (s))(x, y)ds.
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In the stationary case, Theorem 2.7 and Corollary 2.8 take the following simple form.

Corollary 2.9 (Stationary case) Under the hypotheses of Corollary 2.7, if the density pX(0) is stationary
for the process X, we have

Cx(H) = H|r(x)|pX(0)(x).

In the same line, under the hypotheses of Corollary 2.8, if the measure p(X(0),Y (0)) is stationary for the
process (X,Y ), we have

Cx(H) = H
∑
y∈Y

|ry(x)|p(X(0),Y (0))(x, y).

Assumptions 2.3 and 2.5 are done in order that no tangency occur. However, in the Euclidean-mode
setting, we can still handle situations where tangencies occur in a parallel fashion, that is ry(x) = 0 for
some level x with some mode y. But in this case, our formula does not count crossings of the form:

level

For some processes, such situations may occur but with zero probability, making the stated formula still
useful in practice.

Remark 2.3 The law of the PSP is involved in the expression of Cx(H) through the integral∫ H

0

pX(s)(x)ds. (7)

From a pratical point of view, the actual computation of such a term may be desirable. However, even for
very simple cases, analytical expressions of such a quantity can be either unreachable or untractable. In
the Markov case, numerical approximations of (7) can be built through the Fokker-Planck equation which
reads,

∀x ∈ X , ∂tpX(t)(x) = L∗pX(t)(x),

with initial condition pX(0)(x), where L∗ is the adjoint of the generator of X.

2.3 Average number of hypersurface continuous crossings

This section is devoted to the generalization of the formulae of Subsection 2.2 to the multi-dimensional
case. Let (X(t), t ∈ [0, H]) be a PSP in dimension d ≥ 2 and S a hypersurface as described in Subsection
2.1.1. The following theorem is complementary to the main theorem of [4].

Theorem 2.10 (Kac-Rice formula in the multidimensional case) For any crossing surface S and time
horizon H, we have

CS(H) =

∫
S

|(r(x), ν(x))|
∫ H

0

pX(s)(x)ds σd−1(dx). (8)

Proof. The proof lies in Appendix A.3.

When d = 1, the hypersurface S reduces to the point {x}. The measure σ0 being the counting measure,
the multidimensional formula (8) and the one-dimensional formula (6) agree if we set the normal to a

point in R to be equal to the scalar 1. We also notice that the term
∫H
0
pX(s)(x)ds, corresponding to the

expectation of the local time at point x, also appears as in dimension 1. However, we are not able to
give a concise relation between crossing and local time in the multidimensional case. We simply notice
that we have the following relation

cS(H) ≤ sup
x∈S
|(r(x), ν(x))|lS(H),

where lS(H) is the local-time spent in S by X within the interval [0, H],

lS(H) = lim
δ→0

1

2δ

∫ H

0

1T (S,δ)(X(s))ds,

with T (S, δ) the δ-tube of elements of X being at distance less than δ from S.

In the stationary case, Theorem 2.10 takes the following simple form.
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Corollary 2.11 When pX(0) is a stationary density for the process X, we have

CS(H) = H

∫
S

|(r(x), ν(x))|pX(0)(x)σd−1(dx). (9)

In the Euclidean-mode setting, the following result holds.

Corollary 2.12 (Kac-Rice formula in the Euclidean-mode setting in the multidimensional case) We
consider the Euclidean-mode setting with Y a finite state space for the mode. For any crossing surface S
and time horizon H, we have

CS(H) =
∑
y∈Y

∫
S

|(ry(x), ν(x))|
∫ H

0

p(X(s),Y (s))(x, y)ds σd−1(dx).

Kac-Rice formulae take into account the instantaneous velocity to provide a tractable form for the
quantity of interest CS(H), which contains two characteristics of the model calculated at any point x of
the surface S: the vector field r(x) and the distribution pX(t)(x). These quantities are unknown and thus
remain to be estimated. In many applications, the deterministic motion is supposed to be known and
thus only the distribution has to be estimated from data. This is the framework investigated in Section
3 and in the simulation study presented in Section 4. In the real data application presented in Section
5, we also show how to directly estimate the scalar product |(r(x), ν(x))| depending on the unknown
underlying vector field.

3 Statistical framework and estimation procedures

We observe a dataset T = {Ti : 1 ≤ i ≤ n} made of n discrete trajectories within the time window
[0, H]. Each trajectory Ti is itself composed of nH points in Rd, Ti = {zji : 1 ≤ j ≤ nH} given on the
regular temporal grid {

H(j − 1)

nH − 1
: 1 ≤ j ≤ nH

}
,

which is common to all the trajectories. We assume that the n trajectories come from the same underlying
piecewise deterministic Markov process X and are independent. Our goal is to estimate the average
number of continuous crossings CS(H) of the hypersurface S by the process X from the dataset T .

As noticed in Subsection 2.2, CS(H) implicitly depends on the initial value of the process X0, in particular
through the family (pX(t))0≤t≤H in (8) that also depends on the initial condition. We want to emphasize
that we propose to estimate the average number CS(H) of crossings from X0 = x from a dataset T of
trajectories that all start from x. This allows us to estimate the densities pX(t) without considering the
question of the initial value of the process.

In the sequel, we introduce three estimation procedures of the average number of crossings CS(H), namely
the Monte Carlo method, the non-stationary Kac-Rice estimator and the stationary Kac-Rice estimator.
The Monte Carlo method only returns the empirical mean of the number of observed crossings. This
technique does not exploit the characteristics of the underlying model. The non-stationary Kac-Rice
estimator consists in plugging an estimator of the distribution of X in the Kac-Rice formula (8), taking
into account the knowledge of the velocity r. The stationary Kac-Rice method assumes further that the
trajectory is stationary by plugging an estimator of the invariant measure in the stationary Kac-Rice
formula (9).

Monte Carlo method The most naive estimator of the average number of crossings is the Monte
Carlo method. For each trajectory Ti, 1 ≤ i ≤ n, we count the number of crossings of the given level or
hypersurface. We then average over the n trajectories and denote the result by ČS(H). Denoting [AB]
the line segment from point A to point B, we have

ČS(H) =
1

n

n∑
i=1

nH−1∑
j=1

#[zji z
j
i+1] ∩ S.
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In dimension 1, for a level x, the latter quantity reads

Čx(H) =
1

n

n∑
i=1

nH−1∑
j=1

1(−∞,0)((z
j
i − x)(zji+1 − x)).

As mentioned in the introduction, this estimator has a natural inclination to be biased. Indeed, ČS(H)
might miss one or several continuous crossings between two consecutive temporal steps given the discrete
nature of the temporal grid, especially when the time step size is large.

Non-stationary Kac-Rice method This technique consists in replacing the distribution of X
appearing in (8) by some non-parametric estimator. More precisely, we estimate the density pX(hj) at
time hj = H(j−1)/(nH −1) by kernel smoothing methods using the whole dataset, i.e., all the observed
values zji of X(hj),

∀x ∈ S, p̂X(hj)(x) =
1

n
√

det(Bn)

n∑
i=1

K
(
B−1/2
n (x− zji )

)
, (10)

with K some kernel function and Bn the bandwith, i.e., a d× d symmetric positive-definite matrix. We
then compute the plug-in estimator (see Theorem 2.10)

ĈS(H) =

∫
S

|(r(x), ν(x))| H

nH − 1

nH∑
j=1

p̂X(hj)(x)σd−1(dx), (11)

where H(nH − 1)−1∑nH
j=1 p̂X(hj)(x) estimates (by the rectangle method) the integral

∫ H
0
pX(s)(x)ds. In

dimension 1, this quantity is reduced to

Ĉx(H) = |r(x)| H

nH − 1

nH∑
j=1

p̂X(hj)(x).

The theoretical consistency of the non-stationary Kac-Rice estimator is established from the asymptotic
properties of the kernel estimator (10). In the theorem and subsequent proof below, we write Ĉ

(n,nH )
S (H)

for ĈS(H) and p̂
(n)

X(hj)
(x) for p̂X(hj)(x) to stress out the dependence of the estimator in the number n of

trajectories and number nH of time steps.

Theorem 3.1 The non-stationary Kac-Rice estimator Ĉ
(n,nH )
S (H) is strongly consistent in the sense

that, with probability one,
lim

nH→∞
lim
n→∞

Ĉ
(n,nH )
S (H) = CS(H),

as long as the bandwith Bn and the kernel K appearing in (10) are selected as in [8, Theorem 1]. For
instance, it is sufficient to assume that there exists some δ > 0 such that,

lim
‖x‖d→∞

‖x‖d+δd K(x) = 0, lim
n→∞

hn = 0, and lim
n→∞

nh2d
n

log(n)
= 0,

where hn =
√

det(Bn) and ‖ · ‖d is any norm on Rd.

Proof. The proof lies in Appendix B.1.

We refer the reader to [5] for recent developments on multivariate kernel density estimation with plug-in
bandwidth selection. In the simulation study, we exploit the implementation of the latter algorithm in
the R package ks [9].
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Stationary Kac-Rice method We now assume that the underlying process X is stationary. For
each trajectory Ti, 1 ≤ i ≤ n, we estimate the invariant distribution µ on the hypersurface S by kernel
smoothing methods,

∀x ∈ S, µ̂i(x) =
1

nH
√

det(BnH )

nH∑
j=1

K
(
B−1/2
nH

(x− zji )
)
.

We then compute the plug-in estimator given by the Kac-Rice formula in the stationary case (see Remark
2.11)

C̃S,i(H) = H

∫
S

|(r(x), ν(x))|µ̂i(x)σd−1(dx). (12)

In dimension 1, this quantity is simply

C̃x,i(H) = H|r(x)|µ̂i(x).

We would like to emphasize that we then obtain a good estimator of CS(H) from each trajectory Ti. For
the sake of comparison (with Monte Carlo and non-stationary Kac-Rice methods), the estimation from
the whole set of trajectories is then given by the empirical mean

C̃S(H) =
1

n

n∑
i=1

C̃S,i(H).

The convergence of the stationary Kac-Rice estimator (12) is deduced from the asymptotic properties of
the kernel estimator of ν as in the non-stationary case (see for instance [17] for results on the estimation
of the stationary distribution of a continuous-time Markov process). In the theorem and proof below, we

write C̃
(n,nH )
S (H) for C̃S(H) in order to stress out the dependence of the estimator in the number n of

available trajectories and the number nH of time steps.

Theorem 3.2 In the stationary case, let us assume that the process X, the kernel K and the stationary
measure µ satisfy the hypotheses of [2, Theorem 6]. Then, the stationary Kac-Rice estimator is consistent
in the sense that, in Pµ-probability, for any n ≥ 1,

lim
nH→∞

C̃
(n,nH )
S (H) = CS(H).

Proof. The proof lies in Appendix B.2.

Only the non-stationary Kac-Rice estimator requires to observe all the trajectories on the same temporal
grid. Indeed, this condition ensures that the distribution of X(t) may be easily estimated from the
observed dataset. In addition, the stationary Kac-Rice method is the only one that allows to estimate the
average number of crossings from only one trajectory under the stationarity assumption. Furthermore, it
also allows us to estimate the average number of crossings on a time window larger than the observation
one.

4 Simulation study on piecewise deterministic Markov processes

The following simulation study has been performed on some particular PSP’s in the Euclidean-mode
setting and having the property to be Markov, namely PDMP’s as introduced in [7]. A PSP with mode
(X,Y ) is a PDMP if and only if the following conditions are satisfied. For any integer n, conditionally on
Tn and Mn, with Mn = (MX,n,MY,n), the next jump time Tn+1 of the process (X,Y ) has the following
survival function,

t 7→ 1 ∧ exp

(
−
∫ t

Tn

λ
(
φMY,n(MX,n, s− Tn)

)
ds

)
,

where λ : X → R+ denotes the jump rate, assumed to be path-integrable. In the same line, conditionally
on Tn, Tn+1 and Mn, the distribution of the next mark Mn+1 depends (only) on φMY,n(MX,n, Tn+1−Tn).
In this Markov setting, if X(0) and the conditional distribution of the marks have densities with respect
to some measure µ, then, for any time t, X(t) has a density with respect to this same measure µ. We
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refer the reader to [18] on these questions. As a consequence, if µ is the Lebesgue measure, Assumption
2.5 is satisfied for PDMP’s under these mild conditions.

In Subsection 4.1, we aim at showing through an example the convergence of our estimation procedures
when the number of trajectories increases, as well as the limited impact of applying them to trajectories
observed on a coarse temporal grid, while the Monte Carlo method suffers from this kind of setting. For
the sake of completeness, in Subsection 4.2 (see in particular Figure 5), we present a situation where
the Monte Carlo estimator always gives better results than the Kac-Rice methods. The methodology is
presented in a two-dimensional setting in Subsection 4.3.

4.1 Stationary one-dimensional telegraph process

We consider a variant of the telegraph process [11] that is a quite simple piecewise deterministic Markov
process (X,Y ) in the Euclidean-mode setting, with value in R×{−1,+1} and evolving according to the
generator

Lf(x, y) = y∂xf(x, y) +
(
a1{xy≤0} + b 1{xy>0}

)
(f(x,−y)− f(x, y)) ,

where a and b are two positive parameters. The behavior of the process can be described as follows. The
Euclidean variable X represents the evolution of a particle on the real line with velocity jumping between
Y = −1 and Y = +1 at rate a (b, respectively) if the particle approaches (goes away from, respectively)
the origin. When b > a, the process exhibits a stationary behavior [10, Theorem 1.1] with convergence
in law towards the invariant measure µ on R× {−1,+1}, defined by

µ(dx× dy) =
b− a

2
exp (−(b− a)|x|) dx⊗ 1

2
(δ−1 + δ+1)(dy).

Thus, at equilibrium, the mode is equidistributed between −1 and +1 whereas the Euclidean variable is
symetrically distributed on both sides of the origin. In our simulation study, we assume that the process
is stationary and thus starts from its invariant measure. For this purpose, given a random variable U
with uniform distribution on the interval [0, 1], let us remark that a random variable with density

x 7→ b− a
2

exp (−(b− a)|x|)

is equal in law to

log(2U)

b− a 1(−∞,0)(log(2U))− log(2(1− U))

b− a 1(−∞,0)(log(2(1− U))),

which can be easily simulated. A stationary trajectory of the Euclidean variable X (with b = 2 and a = 1)
until time H = 100 is displayed in Figure 1 together with the empirical distribution of a trajectory until
time H = 500 on a discrete grid compared to the theoretical invariant measure.

We have estimated the average number of crossings C2(50) from different numbers n of trajectories
(n = 50, n = 100, n = 200, n = 500 and n = 1 000) and with different time step sizes h (h = 0.01,
i.e., nH = 10 001, h = 0.1, i.e., nH = 1001, h = 1, i.e., nH = 101 and h = 2, i.e., nH = 51) by the
three procedures mentioned above. The numerical results are presented in Figure 2. They show that
the Kac-Rice estimators tend to be concentrated around the true value of C2(50) when the number of
trajectories increases, which shows the consistency of our inference procedures. Furthermore, the thiner
the step, the better the kernel estimator of the stationary measure behaves (a large number of data is
available) and the smaller the bias of the Kac-Rice estimators is. Even from a coarse temporal grid,
the Kac-Rice estimators perform pretty well and present a small bias, while the Monte Carlo estimator
misses a large number of crossings. This proves the great interest of our approach. Finally, it should
be noticed that the stationary and the non-stationary Kac-Rice estimators provide similar performances
even in this stationary setting increasing the attractiveness of the latter.

In Figure 3 are displayed boxplots corresponding to both estimators of the average number of crossings
of the level x = 0, C0(100) = 50 with an increasing time step size h ∈ {0.1, 1, 2}. Due to the shape of
the density, the stationary Kac-Rice estimator underestimates the average number of crossings. Indeed
the stationary density is underestimated at 0 as illustrated in Figure 3. We remark that in such a case,
for small step size, the empirical estimator is the closest to the real value on average whereas for greater
step size, the Kac-Rice-based estimator outperforms the Monte Carlo estimator, although still quite far
from the true value.
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Figure 1: A trajectory of the stationary one-dimensional telegraph process until time H = 100 with param-
eters b = 2 and a = 1 (left) and histogram of a trajectory until time H = 500 with the theoretical invariant
measure (right).

4.2 Piecewise deterministic simulated annealing algorithm

We consider a piecewise deterministic version of the simulated annealing algorithm. This process, stated
and studied in [16], is a PDMP (X,Y ) valued in R× {−1,+1} and evolving according to the generator,

Lf(x, y) = y∂xf(x, y) + β
[
yU ′(x)

]
+

(f(x,−y)− f(x, y)) ,

where β is a positive parameter called the inverse of the temperature, and U an energy potential. The
Euclidean part X evolves linearly with velocity switching between −1 and +1 according to the mode Y .
These switchings occur at an X-dependent rate: there is no jump when the potential gradient and the
mode have the same sign and there is a jump with intensity the absolute value of this same gradient
times the inverse of the temperature β otherwise, in the spirit of gradient descent algorithms. The process
relaxes to equilibrium [16, Theorem 1.4] with convergence in law towards the measure µ on R×{−1,+1}
defined by

µ(dx× dy) = Z−1
β exp (−βU(x)) dx⊗ 1

2
(δ−1 + δ1)(dy),

where Zβ is a renormalization constant. Thus, at equilibrium, the mode is equidistributed between −1
and +1 whereas the Euclidean variable samples the Gibb’s measure associated to the energy potential U .
In Figure 4 is displayed a trajectory of X until time 100 when U is the double-well potential defined on
R by U(x) = 0.05

(
x4 + x3 − 4x2

)
. The figure also illustrates the concentration of the Euclidean variable

around the minima of U .

The behavior of the process when the Euclidean variable is in a neighborhood of 0 is quite peculiar:
there is no jump. Indeed, the gradient of U at 0 is null and therefore X does not change its direction
around 0. As a consequence, the Monte Carlo estimator should perform quite well at this level, even with
reasonably large discretization step sizes, since no crossings should be missed. This is what is indeed
observed in Figure 5 where are displayed boxplots over 100 replicates of Monte Carlo and non-stationary
Kac-Rice estimators of the average number of crossings of the level 0, C0(100), with an increasing time
step size h ∈ {0.1, 1, 2}. In this case, the counting technique performs better than the Kac-Rice-based
methods.

In Figure 6 are displayed boxplots of Monte Carlo and non-stationary Kac-Rice estimators of the average
number of crossings of the level 1 C1(100) with an increasing time step size h ∈ {0.1, 1, 2} and an
increasing number of trajectories n ∈ {50, 100}. For a small time step size and a small number of
trajectories, the Monte Carlo estimator better estimates the average number of crossings of 1 than the
Kac-Rice-based method. This observation is reversed when the step size and the number of observation
grow: when h = 2 and n = 200, the empirical estimator is dramatically far from the true average number
of crossings whereas the non-stationary Kac-Rice estimator is still accurate.
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Figure 2: Boxplots over 100 replicates of Monte Carlo (left), stationary (middle) and non-stationary (right)
Kac-Rice estimators of C2(50) for the telegraph process from data extracted from a temporal grid with an
increasing step size: h = 0.01, h = 0.1, h = 1 and h = 2 from top to bottom.
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Figure 3: Boxplots over 100 replicates of Monte Carlo and stationary Kac-Rice estimators of C0(100) for the
telegraph process from data extracted from a temporal grid with an increasing step size: h = 0.1 (top left),
h = 1 (top right) and h = 2 (bottom left), and comparison between the theoretical invariant distribution
(dotted line) and its estimation (bottom right).
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Figure 4: A trajectory of the piecewise deterministic simulated annealing with inverse of temperature β = 7
(left) and double-well potential U : x 7→ 0.05 (x4 + x3 − 4x2) (right).

4.3 Two-dimensional telegraph process

We consider a two-dimensional variant of the telegraph process. Still in the Euclidean-mode setting, the
considered process is valued in X × Y = R2 × {N,S,E,W}. The four letters {N,S,E,W} stand for the
cardinal directions, that is, in the same order, for the vectors

{(0, 1), (0,−1), (1, 0), (−1, 0)}
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Figure 5: Boxplots over 100 replicates of Monte Carlo and non-stationary Kac-Rice estimators of C0(100)
for the piecewise deterministic simulated annealing process from data extracted from a temporal grid with
an increasing step size: h = 0.1 (top left), h = 1 (top right) and h = 2 (bottom left).

of R2. For the sake of readability, we also denote by NE, SE, SW and NW the four quadrants
NE = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0},
SE = {(x, y) ∈ R2 : x ≥ 0, y < 0},
SW = {(x, y) ∈ R2 : x < 0, y ≤ 0},
NW = {(x, y) ∈ R2 : x < 0, y > 0}.

With these notations, the considered process is a piecewise deterministic Markov process evolving ac-
cording to the generator

Lf(x, y) = y · ∂xf(x, y) +
∑
y′∈Y

λ(x, y → y′)
(
f(x, y′)− f(x, y)

)
,

where the rate functions are given by
λ(x, y → N) = (1W(y) + b 1S(y)) 1SW(x) + a1S(y)1NE(x),
λ(x, y → S) = (1E(y) + b 1N(y)) 1NE(x) + a1N(y)1SW(x),
λ(x, y → E) = (1N(y) + b 1W(y)) 1NW(x) + a1W(y)1SE(x),
λ(x, y →W) = (1S(y) + b 1E(y)) 1SE(x) + a1E(y)1NW(x),

with parameters b > a > 0. The Euclidean component of the process evolves in parallel to one of the
main axes and in a similar fashion in each quadrant of the plane. For instance, when it enters the NE
quadrant, it can only do it following the E direction. Then, its direction switches to the S direction at
rate λ and then switches between N and S at rate a and b, respectively. A trajectory of the process is
displayed in Figure 7.
We consider the average number of crossings of the square Sc with vertices

{(−c,−c), (−c, c), (c,−c), (c, c)}.
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Figure 6: Boxplots over 100 replicates of Monte Carlo and non-stationary Kac-Rice estimators of C1(100)
for the piecewise deterministic simulated annealing process from data extracted from a temporal grid with
an increasing step size: h = 0.1 (top), h = 1 (middle) and h = 2 (bottom), and an increasing number of
trajectories: n = 50 (left) and n = 100 (right).

We compare the Monte Carlo and non-stationary Kac-Rice estimators when the horizon time is H = 20,
the number of trajectories is either n = 200 or n = 400 and the time step size is h = 1. It should be
noted that integrals over the square

∫
Sc
f(x)σ1(dx) have been computed as four line integrals,∫

Sc

f(x)σ1(dx) =

∫ c

−c
f(−c, x2) dx2 +

∫ c

−c
f(c, x2) dx2 +

∫ c

−c
f(x1, c) dx1 +

∫ c

−c
f(x1,−c) dx1.

In Figure 8 are displayed boxplots over 100 replicates of Monte Carlo and non-stationary Kac-Rice
estimators of the average number of crossings of the square S2 from an increasing number of available
trajectories n ∈ {200, 400}. The Kac-Rice-based method performs for both numbers of trajectories better
than the counting estimator: the Monte Carlo estimator misses some crossings given the discrete nature
of the temporal grid. It should be remarked that the bias does not depend on the number of data. The
same conclusions hold true for the crossings of the square S3 presented in Figure 9.
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Figure 7: A trajectory of the two-dimensional telegraph process until time H = 200.
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Figure 8: Boxplots over 100 replicates of Monte Carlo and non-stationary Kac-Rice estimators of CS2
(20)

for the two-dimensional telegraph process from n = 200 (left) and n = 400 (right) trajectories extracted
from a temporal grid with step size h = 1. The (spatial) integration step size is ∆ = 0.1.
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Figure 9: Boxplots over 100 replicates of Monte Carlo and non-stationary Kac-Rice estimators of CS3
(20)

for the two-dimensional telegraph process from n = 200 (left) and n = 400 (right) trajectories extracted
from a temporal grid with step size h = 1. The (spatial) integration step size is ∆ = 0.1.

5 Terrestrial and marine behaviors of a seabird species

This section is devoted to the application of the methodology developed in this paper to a real dataset
involving marine and terrestrial trajectories of lesser black-backed gulls around the island of Spiekeroog
in Germany.

16



5.1 Description of the dataset

The authors of [13] compare the marine and terrestrial foraging behaviors in lesser black-backed gulls
breedind along the coast of the southern North Sea, more precisely at Spiekeroog. For this purpose, they
attached GPS data loggers to eight incubating birds, recording GPS data from 10 to 19 days, every 3
minutes approximatively, allowing for flight-path reconstruction. The authors have made the data from
this experiment openly available at the Movebank Data Repository [12]. A GPS data is made of multiple
entries. As long as we are concerned, a GPS data is composed of

• a timestamp: the date and time at which a sensor measurement was taken, in Coordinate Universal
Time (UTC);

• a latitude: the geographic latitude, in decimal degrees, of the location of the animal;

• a longitude: the geographic longitude, in decimal degrees, of the location of the animal;

• a ground speed: the estimated ground speed, in meters per second;

• a heading: the direction in which the animal moved, in decimal degrees clockwise from north.

Some other entries are available, but will not be used in the present study, we refer the interested reader
to the README.txt file associated to the dataset [12].

For each of the eight birds, we sliced the recording by days and retained only the days with from 440
to 467 data. There is a hundred of such days. We standardized the data on a common time grid with
time step dt = 24×3600/467 seconds, replacing the possible missing data by interpolation. The hundred
resulting trajectories are displayed in Figure 10.

 Bremen

 Hamburg

Netherlands Germany

North Sea

Figure 10: The hundred lesser black-backed gulls’ daily trajectories starting from the island of Spiekeroog.

5.2 Average depth of terrestrial and marine trips

We propose to analyze the marine and terrestrial trip behaviors of the considered colony of gulls by
means of the averaged number of crossings of some segments distant from the colony nests localized at
Spiekeroog. Even if the simulation experiments of Section 4 clearly show the pertinence of the use of the
Kac-Rice estimator for the estimation of the average number of crossings, for comparison purpose, we
implement both the Kac-Rice and Monte Carlo methods for studying this real data set. We begin with
the presentation of the implementation of the non-stationary Kac-Rice method and then proceed briefly
to the presentation of the implementation of the Monte Carlo method.

Implementation of the non-stationary Kac-Rice estimator Our time unit is the hour. We
model the one day trajectory of a gull by a PSP (X(t))t∈[0,24] as defined in Subsection 2.1.1. The velocity
vector r associated to X is unfortunately unknown and has to be inferred from data. More precisely, in
formula (8), only the scalar product of the velocity vector with the normal to the considered hypersurface
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is needed to compute the average number of crossings. For a segment [AB], we propose to estimate the
scalar product (referred to as the speed projection in what follows) (r(ρ), ν[AB]), where ρ ∈ [AB] and
ν[AB] is the normal to the segment [AB], in the following way. We browse the segment [AB] at points

ρk = A+ k dx(B −A)

with dx a space step size and 0 ≤ k ≤ b1/dxc. Let ε > 0 be an exploration distance. For each point ρk,
we consider the set Cε,k of points of the dataset that are ε-close to ρk. We then define the two sets of
scalar products

V+
ε,k = {(r(ρ), ν[AB])+ : ρ ∈ Cε,k} and V−ε,k = {(r(ρ), ν[AB])− : ρ ∈ Cε,k}

of positive and negative speed projections where, for a point ρ of the dataset,

r(ρ) = vρ

(
cos θρ
sin θρ

)
,

with vρ the recorded ground speed (converted in decimal degrees per hour) and θρ the recorded heading
(converted in radian, clockwise from East). To the point ρk of the segment is then associated the positive
speed projection mean(V+

ε,k) and the negative speed projection mean(V−ε,k) (the mean of the empty set
being zero). The sets of positive and negative speed projections

{(r(ρ), ν[AB])+ : ρ ∈ [AB]} and {(r(ρ), ν[AB])− : ρ ∈ [AB]}

on the whole segment [AB] are then approximated by locally-weighted polynomial regression (performed
with R function lowess in our data experiments) on the sets

{mean(V+
ε,k) : 0 ≤ k ≤ b1/dxc} and {mean(V−ε,k) : 0 ≤ k ≤ b1/dxc},

as illustrated in Figure 11. This method allows us to consider the positive and negative speed projection
functions

s±ε,dx : ρ ∈ [AB] 7→ (r(ρ), ν[AB])±

associated to X for any segment [AB] (and actually for any one-dimensional space endowed with a normal
vector field).
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Figure 11: Positive (left) and negative (right) speed projections over the normal to the segment [AB] with
A = (7.45, 53.54)T and B = (8.05, 53.54)T (solid curve) together with their locally-weighted polynomial
regression over the whole segment (dashed curve).

Remark 5.1 We would like to emphasize that the procedure developed to estimate the scalar products
(r(ρ), ν(ρ))ρ∈S on a crossing surface S is quite general and does not rely on the application context
considered in this section. The ingredients required to compute an estimation of (r(ρ), ν(ρ)) at a specific
point ρ ∈ S are the existence and knowledge of the normal ν(ρ) and the existence of points ε-close to ρ
with observed velocity vectors.
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Since a bird always goes back to the colony location (at least in our dataset), there is theoretically as
many negative speed projections as positive ones and the average number of crossings of the segment
[AB] by the process X is then approximated, using the non-stationary Kac-Rice method, by∫

[AB]

s+ε,dx(ρ) + s−ε,dx(ρ)

2

∫ 24

0

pX(t)(ρ)dt dρ

which is then evaluated by plugging a non-parametric estimator of the distribution, assuming that the
hundred available gull’s trajectories are independent.

Implementation of the Monte Carlo estimator For the Monte Carlo method, we have to
count, for a given segment [AB], the number of times a trajectory actually crosses this segment. For a
fragment of trajectory [X(ti)X(ti+1)] with 1 ≤ i ≤ nH−1, this involves the computation of the following
determinants:

d1,i = det(B−A,X(ti)−A), d2,i = det(B−A,X(ti+1)−A),

d3,i = det(X(ti+1)−X(ti),A−X(ti)), d4,i = det(X(ti+1)−X(ti),B−X(ti)).

If d1,id2,i < 0 and d3,id4,i < 0, then there is indeed one crossing between [AB] and [X(ti)X(ti+1)]. We
then average on the total number of trajectories to obtain the average number of crossings according to
the Monte Carlo method.

The crossing segments For both methods, we compute the average number of crossings for two
sets of segments: one set being more and more distant to Spiekeroog in the sea direction

Ssea =
{

[AiBi] : 0 ≤ i ≤ 60, Ai = A+ i dxRiν[AB], Bi = B +Ri
(
B + idx ν[AB] −A

)}
,

with A = (6.9, 53.7)T , B = (7.5, 53.77)T and R the rotation matrix of angle θ = π/247, and the other
set of segments being also more and more distant to Spiekeroog but in the inland direction

Sinland =
{

[A′iB
′
i] : 0 ≤ i ≤ 60, A′i = A′ + idx ν[A′B′], B

′
i = B′ + idx ν[A′B′]

}
,

with A′ = (7.45, 53.7)T and B′ = (8.05, 53.7)T , as presented in Figure 12.
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Figure 12: Lesser black-backed gulls’ trajectories with the two sets of crossings segments Ssea and Sinland

(left) and average number of crossings of a daily bird’s trajectory in the sea direction (dashed line) and
inland direction (solid line) with respect to the distance to Spiekeroog in decimal degrees (right).
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Numerical results In Figure 13 are displayed the average numbers of crossings of a daily lesser black-
backed gull’s trajectory for the Ssea and Sinland sets of segments, ordered with respect to the distance of
the segment to Spiekeroog for the non-stationary Kac-Rice (left) and the Monte Carlo (right) methods.
First, we notice that the average numbers of crossings towards sea and inland follow two distinct trends.
The average number of crossings towards inland decreases when the distance to Spiekeroog grows whereas
the mean number of crossings towards open sea begins with a decreasing but then shows two episodes
of growing before going down to zero. We also observe that there are crossings towards sea farther and
more often than towards inland: the average number of crossings towards sea is above 0.4 until distance
0.8 (in decimal degrees) whereas this average number of crossings goes below 0.4 from half this distance,
that is 0.4 (in decimal degrees). These phenomena can be explained in light of [13]. Indeed, the two
episodes of crossing growing for marine trips correspond to areas where beam trawlers discard fish [13,
Figure 6]. These discardings are highly attended by the gulls that travel longer distances than towards
inland to reach the discarding areas. Moreover, the gulls certainly stay a while above these locations
to feed upon these discards, increasing their average number of crossings at these places. The simpler
behavior of gulls on land [13, p. 15] explains the monotone decreasing of the average number of crossings
towards inland.
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Figure 13: Average number of crossings of a daily bird’s trajectory in the sea direction (dashed line) and
inland direction (solid line) with respect to the distance to Spiekeroog in decimal degrees, for the non-
stationary Kac-Rice estimator (left) and the Monte Carlo estimator (right).

Figure 14 allows for comparisons between the non-stationary Kac-Rice and the Monte Carlo estimators
towards earth (left) and towards sea (right). Towards sea, the behaviors are similar except near the
net, where the average number of crossings for the non-stationary Kac-Rice estimator is bigger than
for the Monte Carlo estimator. Towards earth, we observe that the Monte Carlo method always gives
lower estimation results than the non-stationary Kac-Rice method does. This phenomenon is expected
in light of the simulation results of Section 4: in most cases, the Monte Carlo estimator underestimates
the average number of crossings. Moreover, we also notice that the Kac-Rice estimation is smoother
than the Monte Carlo one. This roughness in the average number of crossing given by the Monte Carlo
method may let think to the existence of singularities in the law of the position of the birds, a fact that,
far from the net, is highly unlikely. The approximation of the density for the Kac-Rice estimator allows
for estimating the average number of crossings also when few data are available, giving smoother and
better estimations.
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A Proofs of Section 2

A.1 Proof of Theorem 2.6

We start the proof with the same arguments as in the proof of [6, Theorem 12]. Since r(x) 6= 0, we can
apply Kac’s counting formula to almost all trajectories of X. Indeed, the continuity of r implies that
between two successive jumps, the trajectories of X are C1 and such that dX(t)/dt = r(X(t)) for almost
every t ∈ [0, H]. Moreover, under Assumption 2.5, the level x is almost-surely not reached at H nor at
the jump times of the process. Moreover, Assumptions 2.3 and 2.5 imply that the trajectories of X have
no tangencies at the level x. Let us also remark that the number of crossings of the level x is bounded
by the number of jumps of X plus one, and has therefore finite expectation. Thus, we can apply Kac’s
counting formula (4) and have almost-surely

cx(H) = lim
δ→0

1

2δ

∫ H

0

|r(X(t))|1|X(t)−x|≤δdt.

Let us now take another way than in the proof of [6, Theorem 12]. For any δ > 0 we have

1

2δ

∫ H

0

|r(X(t))|1|X(t)−x|≤δdt

=
1

2δ

∫ H

0

(|r(X(t))| − |r(x)|)1|X(t)−x|≤δdt + |r(x)| 1

2δ

∫ H

0

1|X(t)−x|≤δdt.

The left-hand-side converges towards cx(H) by Kac’s counting formula. The first term of the right hand
side is almost-surely, in absolute value, less or equal to

1

2δ

∫ H

0

|r′(ξt,x)||X(t)− x|1|X(t)−x|≤δdt ≤
1

2

∫ H

0

|r′(ξt,x)|1|X(t)−x|≤δdt,

with ξt,x ∈ (X(t), x). The term ∫ H

0

|r′(ξt,x)|1|X(t)−x|≤δdt

converges almost-surely towards zero since X(t) has a density for all time t, r′ is continuous and ξt,x
converges towards x when δ goes to zero. Finally we have almost surely

cx(H) = lim
δ→0
|r(x)| 1

2δ

∫ H

0

1|X(t)−x|≤δdt,

which states the expected result.

A.2 Proof of Corollary 2.7

First, let us remark that the fact that lx(H) has finite expectation is just a consequence of Fatou’s lemma
and Fubini-Tonelli theorem,

E(lx(H)) ≤ lim inf
δ→0

1

2δ
E

(∫ H

0

1|X(t)−x|≤δdt

)
= lim inf

δ→0

1

2δ

∫ x+δ

x−δ

∫ H

0

pX(t)(y)dt dy =

∫ H

0

pX(t)(x)dt.

Taking expectation on both sides of (5), we obtain the first equality. We are left to show that

E(lx(H)) =

∫ H

0

pX(s)(x)ds.

For this purpose we first use the dominated convergence theorem

E(lx(H)) = E

(
lim
δ→0

1

2δ

∫ H

0

1|X(t)−x|≤δdt

)
= lim
δ→0

1

2δ

∫ H

0

P(|X(t)− x| ≤ δ)dt.
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The domination comes from the fact that the term 1
2δ

∫ H
0

1|X(t)−x|≤δ dt is bounded, for some δ0 small
enough, by the number of jumps of the process between times 0 and H, which is integrable, times a
quantity of order (

inf
{x′ : |x′−x|≤δ0}

|r(x′)|
)−1

.

The existence of δ0 such that inf{x′;|x′−x|≤δ0} |r(x
′)| > 0 is ensured by the fact that r(x) 6= 0 and r is

continuous. Then, from Fubini-Tonelli theorem, using the fact that z 7→
∫ H
0
pX(t)(z)dt is continuous on

a neighborhood of x, we have

E(lx(H)) = lim
δ→0

1

2δ

∫ H

0

P(|X(t)− x| ≤ δ)dt = lim
δ→0

1

2δ

∫ H

0

∫ x+δ

x−δ
pX(t)(y)dydt

= lim
δ→0

1

2δ

∫ x+δ

x−δ

∫ H

0

pX(t)(y)dtdy

=

∫ H

0

pX(t)(x)dt,

which ends the proof.

A.3 Proof of Theorem 2.10

According to Assumption 2.5, the number of continuous crossings of S by X is almost-surely equal to
the number of continuous crossings of 0 by the process (ρ(X(t))t∈[0,H]. Under Assumption 2.1 on the
integrability of the number of jump times and Assumption 2.3, the number of continuous crossings cS(H)
has finite expectation. Applying Kac’s counting formula (4) to this process, we almost-surely have

cS(H) = lim
δ→0

1

2δ

∫ H

0

|(r(X(s)), ν(X(s)))|1(−δ,δ)(ρ(X(s)))‖∇ρ(X(s))‖ds,

where we recall that ν is the field of outward normals to S, extended continuously on a neighborhood
of S. Then, by the same arguments as in dimension one (considering the application x 7→ (r(x), ν(x))
instead of x 7→ r(x)), the exchange of expectation and limit is justified and gives

CS(H) = lim
δ→0

1

2δ

∫ H

0

∫
Rd

|(r(x), ν(x))|1(−δ,δ)(ρ(x))pX(s)(x)dx ‖∇ρ(x)‖ds

= lim
δ→0

1

2δ

∫
X
|(r(x), ν(x))|

[∫ H

0

pX(s)(x)ds

]
‖∇ρ(x)‖1(−δ,δ)(ρ(x))dx

=

∫
S

|(r(x), ν(x))|
∫ H

0

pX(s)(x)ds σd−1(dx),

the last equality being obtained as in [15, Example 3.7.2, p. 109], using the fact that the map x 7→
|(r(x), ν(x))|

∫ H
0
pX(s)(x)ds is continuous (see Assumption 2.5) and thus measurable and bounded on a

neighborhood of S.

B Proofs of Section 3

B.1 Proof of Theorem 3.1

We split the difference Ĉ
(n,nH )
x (H)− CS(H) as follows,

Ĉ
(n,nH )
S (H)− CS(H) = T1 + T2,

with

T1 =

∫
S

|(r(x), ν(x))| H

nH − 1

nH∑
j=1

[p̂
(n)

X(hj)
(x)− pX(hj)(x)]σd−1(dx),

T2 =

∫
S

|(r(x), ν(x))|

[
H

nH − 1

nH∑
j=1

pX(hj)(x)−
∫ H

0

pX(s)(x)ds

]
σd−1(dx).
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The second term T2 is deterministic and independent of n. According to Assumption 2.5, the map
(x, t) 7→ pX(t)(x) is continuous on the compact set S × [0, H], thus, the convergence of the rectangle
method implies that for any x ∈ S,

lim
nH→∞

H

nH − 1

nH∑
j=1

pX(hj)(x) =

∫ H

0

pX(s)(x)ds.

Since S is a compact hyper surface, thus bounded with finite hyper-volume, and the map x 7→ |(r(x), n(x))|
is continuous on S, the second term T2 goes to zero when nH goes to infinity. The almost-sure conver-
gence of the first term to zero is a consequence of [8, Theorem 1]. Indeed, since the map (x, t) 7→ pX(t)(x)
is continuous on the compact set S × [0, H], we have, with probability one, for any 1 ≤ j ≤ nH ,

lim
n→∞

sup
x∈S
|p̂(n)X(hj)

(x)− pX(hj)(x)| = 0.

Then, again, since S is a compact hyper surface and the map x 7→ |(r(x), ν(x))| is continuous on S, the
first term T1 goes to zero with probability one.

B.2 Proof of Theorem 3.2

We can write the difference C̃
(n,nH )
S (H)− CS(H) as follows,

C̃
(n,nH )
S (H)− CS(H) =

H

n

n∑
i=1

∫
S

|(r(x), ν(x))| (µ̂i,nH (x)− µ(x))σd−1(dx).

Therefore, for any ε > 0, we have

Pµ
(
|C̃(n,nH )
S (H)− CS(H)| ≥ ε

)
≤

n∑
i=1

Pµ

(
sup
x∈S
|µ̂i,nH (x)− µ(x)| ≥ ε

σd−1(S) supx∈S |(r(x), ν(x))|

)
.

By virtue of [2, Theorem 6], we have, for any 1 ≤ i ≤ n,

lim
nH→∞

|µ̂i,nH (x)− µ(x)| = 0

in Pµ-probability, which states the expected result.
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