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The Topology ToolKit

Julien Tierny, Guillaume Favelier, Joshua A. Levine, Member, IEEE, Charles Gueunet, and Michael Michaux

Fig. 1. TTK is a software platform for the topological analysis of scalar data in scientific visualization. It is both easily accessible to end
users (with ParaView plugins (a), VTK-based generic GUIs (b) or command-line programs (c)) and flexible for developers (Python (d),
VTK/C++ (e) or dependency-free C++ (f) bindings). TTK provides an efficient and unified approach to topological data representation
and simplification, which enables in this example a discrete Morse-Smale complex (a) to comply to the level of simplification dictated by
a piecewise linear persistence diagram (bottom-right linked view, a). Code snippets are provided (d-f) to reproduce this pipeline.

Abstract— This system paper presents the Topology ToolKit (TTK), a software platform designed for the topological analysis of scalar
data in scientific visualization. While topological data analysis has gained in popularity over the last two decades, it has not yet been
widely adopted as a standard data analysis tool for end users or developers. TTK aims at addressing this problem by providing a
unified, generic, efficient, and robust implementation of key algorithms for the topological analysis of scalar data, including: critical
points, integral lines, persistence diagrams, persistence curves, merge trees, contour trees, Morse-Smale complexes, fiber surfaces,
continuous scatterplots, Jacobi sets, Reeb spaces, and more. TTK is easily accessible to end users due to a tight integration with
ParaView. It is also easily accessible to developers through a variety of bindings (Python, VTK/C++) for fast prototyping or through direct,
dependency-free, C++, to ease integration into pre-existing complex systems. While developing TTK, we faced several algorithmic and
software engineering challenges, which we document in this paper. In particular, we present an algorithm for the construction of a
discrete gradient that complies to the critical points extracted in the piecewise-linear setting. This algorithm guarantees a combinatorial
consistency across the topological abstractions supported by TTK, and importantly, a unified implementation of topological data
simplification for multi-scale exploration and analysis. We also present a cached triangulation data structure, that supports time efficient
and generic traversals, which self-adjusts its memory usage on demand for input simplicial meshes and which implicitly emulates a
triangulation for regular grids with no memory overhead. Finally, we describe an original software architecture, which guarantees
memory efficient and direct accesses to TTK features, while still allowing for researchers powerful and easy bindings and extensions.
TTK is open source (BSD license) and its code, online documentation and video tutorials are available on TTK’s website [108].

Index Terms—Topological data analysis, scalar data, data segmentation, feature extraction, bivariate data, uncertain data.

1 INTRODUCTION

As scientific datasets become more intricate and larger in size, advanced
data analysis algorithms are needed for their efficient visualization and
exploration. For scalar field visualization, topological analysis tech-
niques [69] have shown to be practical solutions in various contexts by
enabling the concise and complete capture of the structure of the input
data into high-level topological abstractions such as contour trees [29],
Reeb graphs [18, 85, 109], or Morse-Smale complexes [36, 64]. Such
topological abstractions are fundamental data structures that enable
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the development of advanced data analysis, exploration and visual-
ization techniques, including for instance: small seed set extraction
for fast isosurface traversal [30, 111], feature tracking [101], transfer
function design for volume rendering [113], similarity estimation [105],
or application-driven segmentation and analysis tasks [63, 67, 68, 75].
Successful applications in a variety of fields of science, including com-
bustion [24, 63, 75], material sciences [67, 68], chemistry [57], or astro-
physics [97, 102] to name a few, have even been documented, which
further stresses the importance of this class of techniques. Despite this
popularity and success in applications, topological data analysis (TDA)
has not yet been widely adopted as a standard data analysis tool for
end users and developers. While some open source implementations
for specific algorithms are available [31,39,42,43,56,96,102,106], we
still identify three main issues preventing a wider adoption of TDA.

First, these implementations lack, in general, support for standard
data file formats, genericity regarding the dimensionality of the input
data, integration into graphical user front ends, or access through high-
level scripting languages. These limitations challenge their adoption by
end users and domain experts with little or no programming knowledge.

Second, regarding software developers, each implementation comes
with its own internal data structures or its own list of third-party soft-
ware dependencies, which challenges their integration into pre-existing,
complex systems for visualization or data analysis.



Third, regarding researchers, despite the isolated open source im-
plementations mentioned above, many TDA algorithms do not have
publicly available implementations, which challenges reproducibility.
While other research communities have excelled at providing software
platforms that ease the implementation, benchmarking, and distribution
of research code (such as the Image Processing On Line platform [4]),
to the best of our knowledge, there has not been such a federating
initiative for TDA codes in scientific visualization.

This system paper presents the Topology ToolKit (TTK) [108], a
software platform for the topological analysis of scalar data in scientific
visualization, which addresses the three core problems described above:
(i) accessibility to end users, (ii) flexibility for developers and (iii) ease
of extension and distribution of new algorithms for researchers. TTK
provides a unified, generic, efficient, and robust implementation of
key algorithms for the topological analysis of scalar data. It is easily
accessible to end users thanks to a tight integration with ParaView
(Fig. 1, left) and flexible for developers (Fig. 1, right) through a variety
of bindings (Python, VTK/C++) or direct, third-party dependency-
free, C++ access (to ease integration in pre-existing complex systems).
Finally, it facilitates the implementation, integration, and distribution
of TDA codes, by simply requiring the implementation of a handful
of functions, while providing efficient data structures and, thanks to
ParaView, advanced IO, rendering and interaction support for end users.

While developing TTK, we faced several algorithmic and software
engineering challenges, which we document in this paper.
(i) Algorithmic consistency: For advanced analysis tasks, it can be
desirable to combine several topological abstractions [57,75]. However,
each abstraction comes with its own simplification mechanism, which
challenges the development of a unified framework. More important,
several competing formalisms exist to represent the input data, namely
the piecewise-linear setting [13, 45] and the Discrete Morse Theory set-
ting [54]. The lack of compatibility between these two representations
challenges even more the design of a unified framework.
(ii) Core data structures: Combinatorial algorithms for TDA mostly
involve mesh traversal routines. Thus, generic and time efficient trian-
gulation data structures must be derived.
(iii) Software engineering: Designing a software library which has
no third-party dependency and which also seamlessly integrates into a
complex visualization system such as ParaView is challenging. Related
challenges include avoiding data copy within the visualization pipeline.
Also, designing such a flexible library in a way that still enables easy
extensions is an additional difficulty.

Contributions

This paper makes the following new contributions:
1. An algorithm (Sec. 4) to construct a discrete gradient which com-

plies to the critical points extracted in the piecewise linear (PL)
setting. Each critical simplex resulting from this algorithm is lo-
cated in the star of a PL critical point. This relationship between
the discrete and PL settings enables a combinatorial consistency
across the different topological abstractions supported by TTK.
As a byproduct, it allows for a unified and independent topological
simplification procedure for multiscale exploration and analysis.

2. A data structure (Sec. 5) for time efficient traversals on 2D or 3D
piecewise linear triangulations. In the case of input meshes, it self-
adjusts its memory footprint depending on the traversal operations
it is queried for. In the case of regular grids, it implicitly emulates
a triangulation with no memory overhead.

3. A software architecture (Sec. 6) that eases the development and
distribution of TDA code to end users. The creation of a new mod-
ule only requires the implementation of a handful of functions,
while TTK automatically generates a command-line program, a
VTK-based GUI and a ParaView plugin connected to the module.

4. A software collection (Sec. 7) that implements in a unified and
generic way a variety of TDA algorithms. It is accessible to
end users as command line programs, VTK-based GUIs, or Par-
aView plugins. It is accessible to developers through a variety of
bindings: Python, VTK/C++, or dependency-free C++.

2 RELATED WORK

In this section, we discuss three main categories of prior work related
to this paper: existing visualization front ends, TDA software packages,
and triangulation data structures for TDA.

2.1 Visualization front ends
In this subsection, we briefly mention existing efforts to enhance the
accessibility of visualization to end users. Many of the successes in
this area are either specific libraries and toolkits, such as the Visual-
ization ToolKit (VTK) [91] and the Insight ToolKit (ITK) [6]. TTK
is similar to these libraries albeit with a specific focus on topological
data analysis. Related, largely turnkey tools often deliver features of
such toolkits with richer interfaces. Examples include ParaView [8],
VisIt [32], VisTrails [17], SCIRun [92], MeVisLab [3], and Amira [2].
Many of the above systems employ a dataflow network as a key compo-
nent to their visualization pipeline [81]. Extensions of this model have
been proposed for specific use-cases or application areas, for instance
for higher order finite elements [90]. TTK also differs sharply from al-
ternate forms of specializations, such as domain-specific languages for
visualization that have been recently developed, including Diderot [73],
Scout [78], Vivaldi [33], and ViSlang [87].

2.2 TDA software packages
Existing TDA software packages can be categorized into two groups.
While their inputs and outputs greatly differ, they share the common
goal of extracting features which capture topological invariants.
TDA on low-dimensional manifolds: The first category focuses on
topological abstractions of scalar data on low-dimensional manifolds
(typically in 2D or 3D) for the purpose of data analysis and visualization
as discussed in Sec. 1. TTK primarily targets these applications. Such
topological abstractions include for instance critical points [13], persis-
tence diagrams [35, 48], Reeb graphs [18, 40, 41, 84, 85, 88, 109] (and
their loop-free variant, contour trees [23, 29, 103]), and Morse-Smale
complexes [36, 46, 64, 89, 95]. Dillard implements libtourte, a library
computing the contour tree [39], while Doraiswamy et al.’s libRG li-
brary [43] and Recon [42] as well as Tierny’s vtkReebGraph [106]
compute the Reeb graph. Shivashankar and Natarajan have focused on
a scriptable implementation of the Morse-Smale complex [96] based
on their parallel algorithms in 2D [94] and 3D [95]. Sousbie developed
DisPerSE, an implementation of the Morse-Smale complex focused on
cosmology data analysis [102]. Finally, Chen et al. provide an imple-
mentation of the Morse Decomposition for 2/2.5D vector fields [31].

Although powerful, the above tools often lack the level of integration
required for end users’ adoption. Most of them come with custom file
formats [31, 39, 42, 43, 102]. This forces users to write data converters
for each tool, which greatly impairs adoption by end users, who can be
domain experts with no programming background. Also, these tools
often come only as libraries or command-line programs, which can also
discourage end users. In contrast, some tools [56, 106] directly rely on
established toolkits such as the Visualization ToolKit (VTK) [91] or
the R statistical environment [1] and thus benefit from a rich support
for most standard data file formats. However, the dependency on
these complex environments has not been designed in these tools to
be optional. This constitutes a serious limiting factor for developers
of pre-existing complex systems, who often want to minimize the
number of third-party dependencies their system rely on. In contrast,
TTK’s software architecture (Sec. 6) has been specifically designed
such that TTK can be called by dependency-free C++ codes, by using
primitive types only. This allows integrating TTK seamlessly in any
system written in C++, without having to pull any extra third-party
dependency. Optionally, TTK can wrap around both VTK and ParaView
to leverage their rich IO support as well as their powerful user interface
capabilities. Finally, existing tools often lack genericity in terms of
input data representation or dimensionality. For instance, the two
Morse-Smale complex implementations by Shivashankar and Natarajan
[96] are either designed for triangulations in 2D or regular grids in 3D.
In contrast, TTK supports in a unified way both representations in both
dimensions. Also, TTK is based on a tighter integration with ParaView,
which allows end users without any programming skill to easily interact
with it, without even having to use scripting languages such as Python.



Fig. 2. Height function f (blue to green) on a noisy terrain. (a) Initially, f admits many critical points (spheres, blue: minima, white: saddles, green:
maxima), resulting in a persistence diagram D( f ) with many small bars near the diagonal (b). The persistence curve C ( f ) exhibits a clear plateau (c)
separating noise from features (green vertical line). Our approach to topological simplification pre-simplifies f to the corresponding persistence
threshold in a unified way, which is consistently interpreted by all the supported topological abstractions: persistence diagrams (d), critical points (e),
contour trees (f) and even discrete Morse-Smale complexes (g). Note that any application-driven metric could be used in place of persistence.

TDA on high-dimensional point clouds: A second set of TDA
software packages rather focus on estimating persistent homology
[45, 48, 118] on point clouds, usually for topology inference appli-
cations in high dimensions. One of the earliest implementations is
Mapper [99], which is used by the commercial product Ayasdi [11].
Both Dionysus [82] and JavaPlex [7] provide implementations of the
standard algorithm by Zomorodian and Carlsson [118]. Dionysus also
implements persistent cohomology [37] and zigzag persistent coho-
mology [27]. Perseus [83] implements a preprocessing procedure that
reduces the number of filtered cells in the standard algorithm [80].

More recent implementations focus on variations, either in the do-
main or outputs. Gerber et al. implement MSR [56] for approximat-
ing Morse-Smale complexes on k-nearest neighbor graphs of high-
dimensional data [55]. Gudhi [77] implements persistent homology on
simplicial complexes relying on the Simplex tree [20] data structure.
Phat [15] relies on matrix reduction operators for efficient computations.
Fasy et al.’s TDA package provides an interface to Gudhi, Dionysus,
and Phat in the popular analysis language R [1, 51]. SimPers computes
persistent homology on simplicial maps [38]. Bubenik’s persistence
landscapes toolbox [26] computes a more descriptive statistical sum-
mary of homology than the typical persistence diagram. In contrast to
these packages, TTK specifically targets low dimensional (2D or 3D)
domains for applications in scientific data analysis and visualization.

2.3 Triangulation data structures for TDA
Combinatorial TDA algorithms mostly involve mesh traversal routines.
Therefore, corresponding implementations must rely on data struc-
tures providing time efficient traversal queries. Data structures for
triangulations is a well researched topic [53, 72] and a variety of ap-
proaches exist for storing them with various sorts of trade-offs between
memory footprint and time efficiency. Some data structures, such as
OpenMesh [22], surface mesh [98] or SimplexMesh [14], employ vari-
ants of the half-edge structure [114]. In contrast, several other mesh
libraries employ a cell-based representation, where only points and
cells of highest dimension are stored. For instance, VTK [91] imple-
ments this strategy with its mesh data structures, whose design clearly
trades efficiency for generality as these structures support arbitrary
polyhedra and polygons. CGAL’s [104] 2D and 3D triangulation data
structures [71, 86], Mesquite [25], and VCGLib [5], the underlying
library behind MeshLab [34], all employ cell-based data structures.

A major drawback of these cell-based implementations is that the
connectivity of cells of intermediate dimensions (edges and triangles
in tet-meshes) must be re-computed upon each query. However, such
queries are common practice in TDA (Sec. 5.1). This drawback is atten-
uated by data structures which aim at balancing time and memory effi-
ciency [20, 21, 115–117] but it is accentuated by data structures which
further compress the adjacency information [19, 61, 62, 76]. In contrast,
TTK implements a cached triangulation data structure (Sec. 5), which
provides lookup-based time-efficient queries, while self-adjusting its
memory footprint on demand, and implicitly emulating triangulations
in the case of regular grids.

3 PRELIMINARIES

This section briefly describes our formal setting. We refer the reader to
reference books for introductions to Morse theory [79], computational
topology [45] and Discrete Morse Theory [54].

3.1 Input data
Without loss of generality, we assume that the input data is a piecewise
linear (PL) scalar field f : M → R defined on a PL d-manifold M
with d equals 2 or 3. It has value at the set of vertices M 0 of M and is
linearly interpolated on the simplices of higher dimension. Adjacency
relations on M can be described in a dimension independent way. The
star St(σ) of a simplex σ is the set of simplices of M which contain
σ as a face. The link Lk(σ) is the set of faces of the simplices of St(σ)
which do not intersect σ . In the following, the topology of M will
be mostly described in terms of its Betti numbers βi (the ranks of its
homology groups [45]), which correspond in 3D to the numbers of
connected components (β0), non collapsible cycles (β1) and voids (β2).

3.2 Geometric features
For visualization and data analysis purposes, several low-level geo-
metric features can be defined given the input data. Given an isovalue
i ∈R, the level set, noted f−1(i), is the pre-image of i onto M through
f : f−1(i) = {p ∈M | f (p) = i}. The sub-level set, noted f−1

−∞(i), is
defined as the pre-image of the open interval (−∞, i) onto M through
f : f−1

−∞(i) = {p ∈M | f (p) < i}. Symmetrically, the sur-level set
f−1
+∞(i) is defined by f−1

+∞(i) = {p ∈M | f (p)> i}. An integral line is
a path on M which is everywhere tangential to ∇ f . Topological data
analysis can be seen as the study of the topological transitions (in terms
of Betti numbers) of these objects as one sweeps the range R [79].

3.3 Critical points
The points of M where the Betti numbers of f−1

−∞(i) change are the
critical points of f (Fig. 2(e)). Let Lk−(v) be the lower link of the
vertex v: Lk−(v) = {σ ∈ Lk(v) | ∀u∈ σ : f (u)< f (v)}. The upper link
Lk+(v) is given by Lk+(v) = {σ ∈ Lk(v) | ∀u ∈ σ : f (u)> f (v)}. To
classify Lk(v) without ambiguity into either lower or upper links, the
restriction of f to the vertices of M is assumed to be injective. This is
easily enforced in practice by a variant of simulation of simplicity [50].
This is achieved by considering an associated injective integer offset
O(v), which initially typically corresponds to the vertex position offset
in memory. Then, when comparing two vertices, if these share the same
value f , their order is disambiguated by their offset O . A vertex v is
regular, if and only if both Lk−(v) and Lk+(v) are simply connected.
Otherwise, v is a critical point of f [13]. Let d be the dimension of
M . Critical points can be classified with their index I , which equals
0 for minima (Lk−(v) = /0), 1 for 1-saddles (β0(Lk−(v)) = 2), (d−1)
for (d−1)-saddles (β0(Lk+(v)) = 2) and d for maxima (Lk+(v) = /0).
Vertices for which β0(Lk−(v)) or β0(Lk+(v)) are greater than 2 are
called degenerate saddles. For bivariate functions f : M → R2, the
notion of Jacobi set [44] extends that of critical points [107]. Bivariate
analogs of level-sets (fibers) also change their topology in their vicinity.

3.4 Topological persistence
The distribution of critical points of f can be represented by a first topo-
logical abstraction, called the persistence diagram [35, 48] (Fig. 2(d)),
which also provides a measure of topological noise on critical point
pairs. By applying the Elder’s rule [45], critical points can be arranged
in a set of pairs, such that each critical point appears in only one pair
(ci,c j) with f (ci) < f (c j) and I (ci) = I (c j)− 1. The persistence
diagram D( f ) embeds each pair (ci,c j) in the plane such that its hori-
zontal coordinate equals f (ci), and the vertical coordinate of ci and c j



Fig. 3. Discrete Morse Theory on a 2D toy example. Left: input PL scalar
field f . Center: discrete gradient (the origin of each pair is displayed
with a sphere, vertex-edge and edge-triangle pairs are shown in blue
and green). Right: discrete Morse-Smale complex MS ( f ) obtained by
extracting the V -paths emanating from critical simplices.

are f (ci) and f (c j). The height of the pair p = f (c j)− f (ci) is called
the persistence and denotes the life-span of the topological feature
created in ci and destroyed in c j. In low dimensions, the persistence
of the pairs linking critical points of index (0,1), ((d−1),d) and (1,2)
(in 3D) denotes the life-span of connected components, voids and non-
collapsible cycles of f−1

−∞(i). The persistence curve C ( f ) plots the
number of critical pairs as a function of their persistence (Fig. 2(c)).

3.5 Reeb graphs
The Reeb graph [88] segments M into regions where the connec-
tivity of f−1(i) does not change. Let f−1( f (p))p be the connected
component of f−1( f (p)) containing p. The Reeb graph R( f ) is a
one-dimensional simplicial complex defined as the quotient space
R( f ) = M / ∼ by the equivalence relation p1 ∼ p2, which holds if
p2 ∈ f−1( f (p1))p1 . For bivariate data f : M → R2, Reeb graphs
extend to Reeb spaces [47, 107], being this time 2D cell complexes.

Variants of the Reeb graph can be defined relative to the connected
components of f−1

−∞(i) and f−1
+∞(i), yielding the notion of merge tree

(specifically join and split trees for f−1
−∞(i) and f−1

+∞(i)). In 2D, the
persistence pairs of D( f ) can be efficiently computed from the join
(split) tree, by pairing each saddle, in increasing (decreasing) order of
f values, with the highest (lowest) non-paired minimum (maximum)
its contains in its sub-tree [45]. The contour tree (the loop-free variant
of R( f ) for simply connected domains) can be efficiently computed
by combining the join and split trees [29, 103] (Fig. 2(f)).

3.6 Morse-Smale complexes and Discrete Morse Theory
The Morse-Smale complex [36] segments M into regions where inte-
gral lines share both their origin and destination (Fig. 2(g)). Given a
critical point p, its ascending (resp. descending) manifold is defined as
the set of points belonging to integral lines whose origin (resp. destina-
tion) is p. The Morse complex is the complex formed by all descending
manifolds. f is said to be a Morse-Smale function if it admits no de-
generate saddle and if its ascending and descending manifolds only
intersect transversally (if the codimension of their intersection equals
the sum of their codimensions [60]). Then, the Morse-Smale complex
MS ( f ) is the complex formed by the intersection of the Morse com-
plex of f and that of − f . Concretely, all the points of a given cell (of
arbitrary dimension) of MS ( f ) belong to integral lines having the
same origin and destination. In 3D, the persistence pairs corresponding
to non-collapsible cycles can be efficiently extracted by visiting the
2-saddles not already present in D( f ) (Sec. 3.5) in ascending order and
pairing each one with the highest, non-paired, 1-saddle it is connected
to through a 1-dimensional cell of MS ( f ) (called saddle-connector)
and reverting the gradient along that cell. The robust computation
of Morse-Smale complexes for PL scalar fields has been a long time
challenge for the community, as existing algorithms [46] were highly
complex and required many special cases to account for the transver-
sal intersection condition in 3D. Fortunately, an alternate formalism,
namely Discrete Morse Theory [54] (DMT), enabled the definition of
elegant and robust algorithms [64, 89, 95], improving the applicability
of Morse-Smale complexes. We briefly describe here DMT in the case
of PL manifolds, but it remains valid for arbitrary CW complexes.

A discrete Morse function is a function that assigns a scalar value to
every simplex in M , such that each i-simplex σi ∈M has at most one

co-face σi+1 (resp. face σi−1) with lower (resp. higher) function value:
|{σi+1 > σi | f (σi+1) ≤ f (σi)}| ≤ 1 and |{σi−1 < σi | f (σi−1) ≥
f (σi)}| ≤ 1. Simplices for which these two numbers are zero are
called critical simplices and their dimension matches their index I . A
discrete vector is a pair of simplices {σi < σi+1}. A discrete vector
field V is a collection of such pairs such that each simplex appears in
at most one pair. Then, a V -path is a sequence of pairs of V {σ0

i <

σ0
i+1},{σ

1
i < σ1

i+1}, . . . ,{σ r
i < σ r

i+1} such that σ
j

i 6= σ
j+1

i < σ
j

i+1 for
each j = 0, . . . ,r. A discrete gradient is a discrete vector field for which
all V -paths are monotonic and loop free. For these, V -paths are discrete
analogs of integral lines, and simplices which are left unpaired in V
are critical. Then, the 1-dimensional cells of MS ( f ) connected to
maxima (resp. minima), called 1-separatrices, can be constructed by
extracting ascending (resp. descending) V -path(s) from (d−1)-saddles
(resp. 1-saddles). In 3D, its 2-dimensional cells, called 2-separatrices
can be constructed with a descending (resp. ascending) breadth-first
search traversal from 2-saddles (resp. 1-saddles) on the primal (resp.
dual) of M . Last, the 1-dimensional cells of MS ( f ) linking a 1-
saddle s1 to a 2-saddle s2, called saddle-connectors, can be extracted
by computing the V -path(s), restricted to a given 2-separatrix, linking
s1 to s2. Fig. 3 illustrates these notions. Note that all saddles are non-
degenerate and the transversal intersection is respected by construction.

4 UNIFIED TOPOLOGICAL ANALYSIS AND SIMPLIFICATION
Although it allows a robust and consistent computation of MS ( f ), the
DMT formalism is not directly compatible with the PL setting. DMT
critical points are typically much more numerous than PL critical points
in practice. Moreover, in contrast to PL critical points which are located
on vertices only, they are located on simplices of all dimensions. This
incompatibility challenges the design of a unified framework such as
TTK, for which the support of advanced analysis, robustly combining
several topological abstractions, can be highly valuable in practice.
Moreover, each topological abstraction traditionally comes with its own
simplification mechanism. This further challenges the development of
a unified framework, as multiple instances of simplification algorithms
(not necessarily consistent with each other) need to be implemented
and maintained. In this section, we describe an approach that addresses
these two issues (unified representations and simplifications).

4.1 Initial discrete gradient
Given an input function f valued on the vertices of M , several algo-
rithms [64–66, 89, 95] have been proposed for the construction of a
discrete gradient (Sec. 3.6). Among them, we focus on a variation of
the elegant algorithm by Shivashankar and Natarajan [95] for our initial
gradient computation, as its localized nature will ease the following
discussion and allows for a trivial and efficient parallelization. For
completeness, we briefly sketch its main steps in Alg. 1.

The algorithm takes as an input a scalar field f and an injective offset
field O (Sec. 3.3). It visits the simplices of M dimension-by-dimension.
For each dimension i, i-simplices are processed independently (and
thus in parallel). The candidate set C(σi) (line 12) is constructed as the
set of co-faces of σi for which σi maximizes the i-dimensional faces. σi
is then paired with the minimizer of this candidate set (line 14). Here,
the notions of minimizer and maximizer require the definition of a
comparator (lines 1 to 8), which iteratively compares two i-simplices σi
and σ ′i by comparing their maximum vertices. If these two vertices are
identical (O(v[ j]) == O(v′[ j])), the next couple of maximum vertices
will be considered until all vertices are visited.

We now discuss a key observation regarding the above algorithm
[95], which is useful for the development of a unified TDA framework.
Property 1 (PL Matching) Let f be a PL scalar field defined on a
closed, PL 2 or 3-manifold M . Algorithm 1 will produce a discrete
gradient field V such that each PL critical point p of index I (p) will
admit at least one critical simplex of dimension I (p) in its star St(p).

This property can be justified based on two key observations (see
[93] for an alternate discussion). First, (i) If a (d− 1)-simplex σd−1
maximizes both its d-co-faces, one of the two will be critical as σd−1
can be paired only once. (ii) For any i-simplex σi, its maximizing face
is the one which does not contain its minimizing vertex and no other



Fig. 4. Alg. 1 leaves at least one vertex (0, left), one edge (es, center)
and one triangle (t ′m, right) unpaired in the star of a 2D PL minimum (left),
saddle (center), and maximum (right). Vertex-edge and edge-triangle
pairs are shown with blue and green balls-and-sticks respectively.

Algorithm 1: Initial discrete gradient construction [95]
input : PL scalar field f : M → R (with injective offset field O : M 0 → R);
output: Discrete gradient field V .
Function(σi < σ ′i )1

v = sort f ,O (σ i
0);2

v′ = sort f ,O (σ ′ i0);3
for j← i+1 to 0 do4

if f (v[ j])< f (v′[ j]) then return true;5
if f (v[ j]) == f (v′[ j]) && O(v[ j])< O(v′[ j]) then return true;6
if O(v[ j]) 6= O(v′[ j]) then return false;7

return false;8
begin9

for i← 0 to (d−1) do10
foreach σi ∈M do11

C(σi) = {σi+1 > σi | σi = argmax
σ ′i <σi+1

f (σ ′i )};12
if C(σi) 6= /0 then13

V =V ∪{σi < argminC(σi)
f (σi+1)};14

end15

face of σi can be paired with it. These two observations allow a simple
and non-ambiguous characterization of the pairing resulting from Alg. 1
in the star of each PL critical point.

In 2D, critical simplices of dimension 0 precisely coincide with PL
minima (Fig. 4, left), since a local minimum is the maximizer of none
of its incoming edges (observation (ii)), and will therefore never be
paired. By definition, the lower link Lk−(s) of a PL saddle s is made
of at least two connected components, each of which containing a
local minimizing vertex. Let n∗s be the second lowest vertex of this set
of local minimizers (Fig. 4, center). s will be paired by Alg. 1 with
the edge linking it to the lowest vertex of this set (line 14). Let es
be the edge linking s to n∗s . n∗s cannot be paired with es as n∗s is its
minimizing vertex (observation (ii)). The direct neighbors of n∗s on
Lk(s) are necessarily higher than n∗s by definition. Thus, the co-faces of
es cannot be paired with it, as es contains n∗s , which is the minimizing
vertex of both triangles (observation (ii)). Thus, the edge es will not be
paired by Alg. 1 and will be critical. Let n∗m be the global maximum
of f restricted to the link Lk(m) of a PL maximum m (Fig. 4, right).
Let tm and t ′m be the two triangles of St(m) connected to the edge em
linking m to n∗m. em is by definition the maximizer of both triangles tm
and t ′m but can be paired with only one of them (observation (i)). Thus,
the remaining triangle will be left unpaired by Alg. 1, and thus critical.
A similar, yet slightly more involved, reasoning applies constructively
in 3D, as described in Appendix A (supplemental material).

4.2 PL-compliant discrete gradient
The PL matching property (Sec. 4.1) indicates that we are guaranteed
to find one DMT critical simplex for each PL critical point. This allows
us to introduce an injective map ξ : PL( f )→ DMT ( f ), from the set
of PL critical points PL( f ) to that of DMT critical simplices DMT ( f ),
that maps each PL critical point p of index I (p) to a unique DMT
critical simplex of dimension I (p) in its star. If multiple DMT critical
I (p)-simplices exist in St(p), we select the highest as ξ (p). We relax
ξ in the presence of a degenerate saddle s and allow s to be matched
with m > 1 DMT critical simplices, where m is the multiplicity of s.

However, in practice, the majority of the simplices of DMT ( f ) will
be left unmatched by ξ , requiring an additional cleanup procedure,
which we introduce here. Let DMT ′( f ) be this set: DMT ′( f ) = {σ ∈
DMT ( f ) | ξ−1(σ) = /0}. These simplices are extraneous singularities
which can be considered as artifacts of the discrete gradient construc-
tion. Thus, we introduce a procedure to simplify the gradient field V ,

such that the simplices of DMT ′( f ) are no longer critical.
Saddle-maximum pair removal: Discrete Morse Theory [54] indi-
cates that two critical simplices σi and σi+1 linked by a unique V -path
P can be simplified by reversing the gradient precisely along P. Such
an operation guarantees that V indeed remains loop-free, that σi and
σi+1 are no longer critical and that no other simplex becomes critical.
We make use of this property in the following (see Fig. 5). First, we
construct the graph G0, whose nodes correspond to the critical d and
(d−1)-simplices of DMT ′( f ) and whose arcs correspond to V -paths
linking them. G0 is the subset of the 1-separatrices of MS ( f ) ending
in maxima to be removed. Next, we visit each arc a = (σi,σi+1) ∈ G0
in increasing order of function value difference. If a is the only V -path
connecting σi to σi+1, we remove a from G0, reverse its V -path, and up-
date the connectivity of G0: each arc a′ ∈G0 that was connected to σi+1
gets reconnected to the (i+ 1)-simplices of G0 that were connected
to σi and the function value difference for a′ and the corresponding
V -path are updated. All other connections to σi are removed. This
process continues iteratively to remove all the d-simplices of G0.
Saddle-saddle pair removal: For PL 3-manifolds, an extra step is
required to remove saddles of DMT ′( f ) that are connected in pairs
by V -paths. Similarly to G0, we construct the graph G1 whose nodes
correspond to the remaining 1 and 2-saddles of DMT ′( f ) and whose
arcs correspond to V -paths linking them. G1 is the subset of the saddle-
saddle connectors of MS ( f ) linking 1 and 2-saddles which remain to
remove. Next, G1 is iteratively processed as described above for G0.

For closed PL manifolds, the PL matching property is guaranteed
and our algorithm will remove all critical simplices of DMT ′( f ). Thus,
each remaining critical simplex of V will be located in the star of a
PL critical point, and we say that V is PL-compliant. Note that this
drastically differs from the conforming algorithm [66], which constrains
the separatrices of MS ( f ) to match an input segmentation. This also
differs from the assignGradient2 procedure [95], which only simplifies
critical simplices if they are adjacent to each other, although they can be
arbitrarily far from each other in practice, hence requiring our algorithm
for the complete removal of the simplices of DMT ′( f ). The impact of
the boundary of M on our algorithm is discussed in Sec. 8.

4.3 Unified topological simplification
Now that V is PL-compliant, it is possible to robustly combine multiple
PL topological abstractions with the discrete Morse-Smale complex
in a single pipeline (Figs 1 and 2), the exact correspondence between
DMT ( f ) and PL( f ) being given by ξ . As a byproduct, one can now
mutualize the topological simplification procedure traditionally used
for multi-scale analysis and exploration, by pre-simplifying the data
itself, prior to the computation of the topological abstraction under con-
sideration. Several combinatorial algorithms [10,16,49,110] have been
proposed for this purpose. Here, we focus on the approach by Tierny
and Pascucci [110] as it supports arbitrary simplification heuristics. In
particular, given a list of extrema E to maintain, this algorithm will
minimally modify both f and O such that PL( f ) only admits the criti-
cal points of E as extrema. This is achieved by an iterative flattening
of the sub-level set components corresponding to the critical points
to remove [110]. The set of maintained extrema E can be selected
according to persistence (Sec. 3.4, in which case the output topological
abstractions will be guaranteed to be consistent with post-process sim-
plification schemes [64, 85]) or any application-driven metric. Once
f and O have been pre-simplified, the topological abstractions un-
der consideration can be constructed for this simplified data (Fig. 2).
Our PL-compliant discrete gradient algorithm will guarantee that the
discrete Morse-Smale complex complies to this simplification.

Fig. 5. Removing a critical simplex pair from DMT ′( f ). The arc a ∈ G0
which minimizes its function difference is selected (left). Its corresponding
V -path is reversed (center). The connectivity of G0 is updated (right).



Fig. 6. Critical simplices (spheres) before and after PL-compliance on a 2D (left, 140k triangles) and 3D example (right, 10.5M tetrahedra). Each
critical simplex is colored according to its dimension, from dark blue (minima) to dark green (maxima). In 3D, |DMT ( f )| decreases from 6,109 (left) to
2,997 (center) after the removal of non PL saddle-maximum pairs, and to 93 (right) after the removal of the non PL saddle-saddle pairs.

4.4 Performance
The initial gradient computation (Alg. 1) and the PL critical point extrac-
tion (Sec. 3.3) are both linear-time algorithms, which we implemented
in parallel with OpenMP. The simplification of G0 and G1 is imple-
mented sequentially, in a similar way to previous Morse-Smale complex
simplification approaches [64, 95]. The optional pre-simplification of
the data [110] is implemented sequentially and each separatrix of the
Morse-Smale complex (Sec. 3.6) is extracted in parallel. Tab. 1 reports
performance numbers, obtained on a Xeon CPU (2.6 GHz, 2x6 cores),
for the examples shown in Fig. 6. This table shows that, when fully
constructing MS ( f ) (with all separatrices), the PL-compliance step
results in a small overhead overall. Note that in practice, the extraction
of the geometry of the saddle-saddle connectors (used for the removal
of the corresponding pairs by path reversal) is more demanding than
that of saddle-maximum separatrices (column S-M and S-S in Tab. 1),
as it requires computing the corresponding 2-dimensional separatrices.

5 CACHED TRIANGULATION DATA STRUCTURE
Combinatorial TDA algorithms mostly involve mesh traversal routines.
Thus, they must build on top of time efficient data structures. This
section describes a new triangulation data structure designed to optimize
time efficiency, while adjusting its memory footprint on demand.

5.1 Traversal specifications
Two core types of traversal queries are typically found in TDA algo-
rithms, which consist of either accessing the faces or the co-faces of a
simplex, as illustrated in the following traversal examples.
(i) Boundary: A frequent test in TDA algorithms consists of check-
ing if an i-simplex σi is located on the boundary of M . This can
be achieved by querying the (d− 1)-co-faces of σi (where d is the
dimension of M ) and verifying if some admit only one d-co-face.
(ii) Skeleton: It is often necessary in TDA to access the k-skeleton of
M (all i-simplices of M , such that i≤ k). For instance, the construction
of the merge tree (Sec. 3.5) requires accessing the 1-skeleton of M .
(iii) Link: The star and the link are key notions to characterize the
neighborhood of a simplex (Sec. 3.1). In particular, the extraction of
the critical points of f (Sec. 3.3) requires constructing the link Lk(v) of
each vertex v, and to classify it into its lower Lk−(v) and upper Lk+(v)
links. This construction can be achieved by querying the d-co-faces of
v, then querying their (d−1)-faces (which do not intersect v, to obtain
Lk(v)) and then querying their 0-faces to examine if a vertex of Lk(v)
is lower or higher than v. A similar classification needs to be performed
on the link Lk(e) of each edge e for Jacobi set extraction [107].
(iv) Face / co-face: Another typical traversal example consists of query-
ing for each i-simplex, its list of (i−1)-faces and (i+1)-co-faces. This

Table 1. Running time of the different steps of the PL-compliance al-
gorithm (in seconds, with 12 cores) for the examples of Fig. 6. PL( f ),
S-M, S-S, MS ( f ) and MS ′( f ) respectively stand for the computation
times for the PL critical points, the saddle-maximum pair removal, the
saddle-saddle pair removal, the total Morse-Smale complex construction
(including gradient processing) with and without the PL-compliance.

Dataset |DMT ( f )| |PL( f )| Alg. 1 PL( f ) S-M S-S MS ( f ) MS ′( f )

Dragon 1,118 318 0.016 0.018 0.004 0 0.074 0.072
EthaneDiol 6,109 93 4.943 1.525 0.144 3.864 13.829 11.804

query is typical for the computation of the discrete gradient (Alg. 1),
where maximizing faces are first identified to construct a candidate set
of co-faces (line 12). Since this algorithm performs such queries for
each dimension, the (i−1)-faces and (i+1)-co-faces of each i-simplex
must be efficiently accessed.

As shown in the above examples, TDA algorithms may potentially
need to access the k-faces and l-co-faces of each i-simplex, for arbitrary
k and l such that 0≤ k < i < l ≤ d. Thus, we designed our triangulation
data structure to support all the following types of traversal operations:

1. Given a vertex v, access its 1-, 2-, and 3-co-faces;
2. Given an edge e, access its 0-faces and its 2- and 3-co-faces;
3. Given a triangle t, access its 0- and 1-faces and its 3-co-faces;
4. Given a tetrahedron T , access its 0-, 1-, and 2-faces.

5.2 Explicit triangulation
To optimize time efficiency, we designed our data structure to support
the above traversal queries through constant time lookups. Given an
input cell-based representation (Sec. 2.3) providing a list of 3D points
LP and a list LS of d-simplices (representing each d-simplex by a
list of vertex identifiers), we construct our explicit triangulation data
structure as follows. The exhaustive list of edges can be constructed by
enumerating all the unique vertex identifier pairs present in LS. This
can be done in O(|σd |) steps, where |σd | is the number of d-simplices
in M , by using a vertex-driven lookup table, which progressively stores
the constructed vertex pairs on a per vertex basis, to avoid potential
edge duplicates. Similarly, if d equals 3, the exhaustive list of triangles
can be constructed by enumerating all the unique vertex triplets present
in LS, which can also be done in O(|σd |) steps by using a vertex driven
lookup table to avoid potential triangle duplicates. Given these list of 1-,
2-, and 3-simplices, one can simply iterate over the list of k-simplices
(k ∈ {1,2,3}) to store for each vertex its list of k-co-faces. This is done
in O(|σk|) steps. The construction of such lists enables supporting the
first type of traversal operation (Sec. 5.1) with constant time lookups.
Given the list of k-co-faces for each vertex, one can construct the list of
co-faces for each edge. Given an edge e = (v0,v1), the list of k-co-faces
of e can be obtained as the intersection of the sets of k-co-faces of v0
and v1. This can be done in O(|σ1|) steps. The list of co-faces for each
triangle can be constructed similarly in O(|σ2|) steps. Last, given the
list of l-co-faces of each k-simplex, the list of k-faces of each l-simplex
is built in O(|σl |) steps. The pre-construction of all the lookup tables
mentioned above allows for time efficient queries based on constant
time lookups for all the traversal types described in Sec. 5.1, at the
expense of an excessive memory footprint.

To limit this footprint, we introduce a preconditioning mechanism.
This mechanism exploits the fact that many of the lookup tables de-
scribed above can be constructed independently. Our preconditioning
mechanism enforces third-party algorithms to clearly specify in ad-
vance (typically in an initialization step) the type of traversal queries
they are going to perform. For instance, regarding the skeleton traversal
(Sec. 5.1), to access the 1-cofaces of each vertex v, a developer needs
to call at initialization the preprocessVertexEdges() precondition
function of our data structure, which will build, once for all and only
if they have not been constructed yet, the list of 1-simplices of M
and the list of 1-co-faces for each vertex. Thus, each traversal query



Fig. 7. Analytic expressions for the vertex, edge and triangle maps in a
2D regular grid of width w and height h. The identifier of each simplex is
expressed as a function of the (i, j)-coordinates of its bottom left vertex.

supported by our triangulation data structure is associated with its own
precondition function to be called beforehand, which will only trigger
the computation of the necessary lookup tables, if they have not been
constructed yet. This preconditioning mechanism guarantees a memory
footprint limited to the only required lookup tables. This strategy is
particularly useful when a single instance of triangulation is used by
multiple algorithms, as it is typically the case in a dataflow model such
as VTK’s pipeline. There, our data structure will be progressively en-
hanced upon the precondition calls triggered by the algorithms present
in the pipeline (see Appendix B for implementation details).

5.3 Implicit triangulation
In scientific visualization, the input scalar data is often provided as a
regular grid. However, the typical size of these grids, especially in 3D,
make the explicit storage of their triangulation impractical. To address
this issue, we introduce an implicit triangulation data structure which
emulates the above lookup tables in the case of regular grids.

In 2D, quads are considered to be pairs of triangles, whose common
edge always follows the same diagonal. Given this regular structure,
one can introduce analytic expressions to associate each i-simplex to a
unique identifier. For brevity, we only discuss interior simplices here.
Let V : N×N→ N be an injective function mapping a vertex to its
identifier given its (i, j)-coordinates in a grid of width w and height h
(in terms of number of vertices): V (i, j) = j×w+ i. A similar function
can be derived for each quad, given the (i, j)-coordinates of its bottom
left vertex: Q(i, j) = j× (w− 1) + i. One can introduce a similar
convention, to uniquely enumerate edges, given the (i, j)-coordinate
of their bottom left vertex, into horizontal (EH(i, j)), vertical (EV (i, j))
and diagonal (ED(i, j)) edges (Fig. 7). Triangles can be enumerated
similarly into left (TL(i, j)) and right (TR(i, j)) triangles (Fig. 7).

Once such a convention is established, the traversal queries of
Sec. 5.1 can be efficiently implemented by considering the pre-images
of these functions. For instance, to perform traversal queries given an
edge with identifier e, the edge must first be classified as horizontal
(e < (w−1)×h) or vertical (e < (w−1)×h+(h−1)×w) or diagonal.
Then, one can easily retrieve the (i, j)-coordinate of its bottom left ver-
tex from the analytic expressions EH , EV or ED. Then, the 0-faces of e
are given by V (i, j) for its bottom left vertex and V (i+1, j), V (i, j+1)
and V (i+ 1, j + 1) for its second vertex for horizontal, vertical and
diagonal edges respectively. A very similar, yet more involved, strat-
egy is derived in 3D, by considering that each voxel is composed of 6
tetrahedra. This regular structure also allows introducing simplex maps
analytically. Then, given the identifier of an i-simplex σi, its k-faces
and l-co-faces can be easily evaluated for arbitrary k and l, by prop-
erly classifying σi and considering the pre-image of the corresponding
identifier function, as described above in 2D. Since all identifiers are
computed on the fly, this strategy effectively emulates our explicit
data structure with no memory overhead. Note that in practice, we
implemented both our explicit and implicit strategies with a common
programming interface, which allows developers to manipulate our data
structure generically, irrespective of its implicit or explicit nature.

5.4 Performance
Tab. 2 reports performance numbers obtained on a Xeon CPU (2.6
GHz, 2x6 cores) with the explicit (1.25M tetrahedra, 71 MB in binary
VTU file format) and implicit triangulations of a 643 grid. Each test
loops sequentially on the entire set of i-simplices of M (i is reported
in parentheses) and stores the result of the corresponding query. This

table shows that our explicit data structure indeed adapts its memory
footprint depending on the type of traversal it undergoes. In particular,
the most memory-demanding traversals involve the list of edge co-faces
(i = 1) and the overhead required by our data structure ranges from
32% to 218%. Once it is preconditioned, our explicit structure provides
query times which are on par with its implicit counterpart. Tab. 2 also
reports the speedup of our explicit data structure, as the total time of a
first run of each test (including preconditioning), divided by the time
of a second run. Overall, this indicates that, if developers consent to
multiply the memory footprint of their triangulation by a factor of up
to 3.18 in the worst case, typical time performance gains of one order
of magnitude (and up to 3) can be expected for their TDA algorithms.

6 SOFTWARE ARCHITECTURE

In this section, we describe our design decisions as well as the software
engineering challenges that we faced when developing TTK.

6.1 Design motivations
The flexibility for software developers (challenge (ii), Sec. 1) required
to write TTK with an efficient, low-level and portable programming
language, such as C++. Moreover, to ease the integration of TTK into
pre-existing, complex visualization systems, we designed its software
architecture such that its implementation of TDA algorithms relies on
no third party library. We achieved this by designing a first core layer
of dependency-free, templated functor classes (Sec. 6.2).

To make TTK easily accessible to end users (challenge (i)), we
tightly integrated it into an advanced visualization programming envi-
ronment, in particular VTK [91]. Several alternatives to VTK could
have been considered and we briefly motivate our choice here. In prac-
tice we found only a few downsides in using VTK, the most notable
being the modest time performance of their mesh data structures, which
trade speed for generality. However, our cached triangulation data
structure (Sec. 5) has been specifically designed to address this time
efficiency issue. Apart from this downside, an integration into VTK
comes with numerous advantages. First, VTK is easily accessible to the
masses due to its open source and portable nature. Second, it provides
a rich support for various standard file formats. We believe this aspect
is instrumental for end users’ adoption. Third, it provides a rich, object-
oriented rendering pipeline, which eases the development of interactive
applications. Forth, implementations following VTK’s API can easily
be integrated into ParaView. This integration does not only increase
exposure to end users with a powerful visualization front end, but it also
automatically provides, without additional effort, software bindings for
Python, which becomes more and more popular among engineers and
scientists. Such a support is provided by ParaView’s pvpython Python
wrapper. Finally, a key argument in our choice towards VTK was its
implementation of raw data pointers, providing direct accesses to the
primitive-typed (int, float, double, etc.), internal buffers of its data
structures, in reading and writing mode. This capability is necessary to
design a dependency-free functor layer (Sec. 6.2) meant to interact with
VTK, without data copy and without the inclusion of any VTK header.
Our last target, ease of extension for researchers (challenge (iii)), is
partly achieved due to our integration with VTK, as TDA developers
only need to focus on the write-up of their core algorithm, without
caring about IO, rendering, or interaction, but still benefiting from the

Table 2. Running times (in seconds), memory footprint (MB) and over-
head of our cached triangulation data structure for the traversal examples
of Sec. 5.1 on the explicit (e-Time, 1.25M tetrahedra, 71 MB in binary
VTU) and the implicit (i-Time) triangulation of a 643 grid.

Traversal Precondition Memory Memory e-Time Cache i-Time
Example Time Footprint Overhead Speedup

Boundary Vertices (0) 1.082 48 68 % 0.001 997 0.003
Boundary Edges (1) 1.568 101 142 % 0.008 200 0.027
Boundary Triangles (2) 1.099 50 70 % 0.011 100 0.038

1-skeleton (0) 0.200 23 32 % 0.025 9 0.107

Vertex Link (0) 1.391 105 148 % 0.035 41 0.135
Edge Link (1) 0.512 128 180 % 0.129 5 1.857
Triangle Link (2) 1.135 67 94 % 0.551 3 0.810

Edge FaceCoFace (1) 1.800 155 218 % 0.280 7 0.477
Triangle FaceCoFace (2) 1.310 119 168 % 0.447 4 0.451



Fig. 8. TTK’s software architecture is divided into 3 parts: the main library
(green), ParaView plugins (blue) and automatically generated standalone
programs (grey). Developers can access TTK through each of its layer,
either from dependency-free C++, VTK/C++ or Python codes.

above advanced features offered by VTK and ParaView. We further
improve the extension possibilities of TTK as described in Sec. 6.3.

6.2 Overview
TTK’s software architecture is presented in Fig. 8. In the following, we
will refer to the running example of TTK’s scalar field smoother, which
iteratively smooths data by averaging neighbor values.
Base code functors living in the ttk C++ namespace implement the
TDA algorithms of TTK. They do not store data, but are given pointers
to input and output buffers. Their processing routines are template
functions, where the template parameters are the primitive data types
used by the input and output buffers. This template structure enables
writing generic code, irrespective of the representation of the scalar
data (float, char, etc.). These functors are also typically passed a
pointer to a cached triangulation data structure (Sec. 5), which they
precondition at initialization time, depending on the type of traversal
they are going to perform. Note that these classes include no VTK
header. For instance, the ttk::ScalarFieldSmoother functor is
given a pointer to the input and output data buffers and a pointer to a tri-
angulation instance. It preconditions it at initialization with the function
preprocessVertexNeighbors() and perform the smoothing based
on the triangulation adjacency in a distinct template function.
VTK wrappers implemented as vtkDataSetAlgorithm filters [91]
connect each base code functor to VTK. In particular, these filters
typically query a pointer to the internal buffers of the input and out-
put objects and call the processing function of the corresponding
functor with the appropriate template argument. For example, the
vtkScalarFieldSmoother selects the input field to smooth, allocates
an output field and passes their pointers to its functor. Note that TTK
functors can be used without VTK. An example is given in Fig. 1.
ParaView plugins are automatically created from the VTK wrappers.
The specification of each plugin is documented in an XML file, which
is interpreted at build time. Such a file describes the options of the VTK
wrappers which will be exposed to ParaView’s GUI and Python binding.
In our smoothing example, a developer would declare in the XML file
the VTK wrapper function which controls the number of smoothing
iterations. Then, the Python class automatically generated from the
resulting ParaView plugin would provide a variable that enables tuning
this number. Fig. 1 illustrates some TTK plugins interacting together
within a ParaView pipeline, as well as the corresponding Python script.
Standalone programs In certain situations, it may be desirable to run
TDA algorithms in batch mode. Thus, we accompany each VTK wrap-
per with a generic command line program which reads all the datasets
given as command line arguments, sends them to its VTK wrapper
and writes all of its outputs to disk after execution. Developers only
need to edit the main source file of this program to declare options (i.e.
the number of smoothing iterations) to TTK’s command line parser,
similarly to the ParaView XML specification. TTK also automatically
accompanies each VTK wrapper with a VTK-based GUI, which be-
haves similarly to the command line program. Once opened, this GUI
lets users interact with the outputs of the VTK wrapper and, similarly
to ParaView, let them toggle the display of each output with keystrokes.

6.3 Implementing a new module for TTK
To ease the development of new TDA algorithms, TTK ships with Bash
scripts which automate the creation and release of new TTK modules.
In particular, the creation script generates a templated base code functor
and its matching VTK wrapper, ParaView plugin, standalone command-
line and GUI programs. At this point, each of these can be built and
run. To implement their TDA algorithms, developers then only need

to focus on the base code functor. The input and output specification
should be enriched if needed from the default one in the VTK wrapper
layer. Finally, options should be declared within the ParaView XML
file and the standalone main source files. Also, another Bash script
packages these components into a tarball for release purposes, with
optional Doxygen online documentation and code anonymization.

7 SOFTWARE COLLECTION

Each TTK module comes with its own base-code functor, VTK wrapper,
ParaView plugin and command-line and VTK-GUI programs.
Scalar data: Critical points (Sec. 3.3) often correspond directly to
features of interest in scalar data. TTK implements a combinatorial
algorithm for their extraction in the PL setting [13]. Merge trees and
contour trees (Fig. 9(i)) are instrumental TDA abstractions for data seg-
mentation tasks [24, 30, 57]. TTK implements their computation based
on a multi-threaded approach [59]. The discrete Morse-smale complex
(Sec. 3.6), which is a key abstraction for data segmentation and for
the extraction of filament structures [52, 57, 68, 97, 102] (Fig. 9(ii)),
is implemented with the PL-compliant approach described in Sec. 4.
Persistence diagram and curves (Sec. 4) help users appreciate the dis-
tribution of critical points and tune simplification thresholds. The
extraction of the extremum-saddle and saddle-saddle pairs has been
implemented as described in Secs. 3.5 and 3.6. Topological simplifica-
tion is implemented in an independent, unified manner (Sec. 4) for all
the above abstractions by pre-simplifying the data with a combinato-
rial approach [110]. TTK also implements a few supporting features,
including integral lines or data smoothing and normalization.
Bivariate scalar data: Jacobi sets (Sec. 3.3) correspond to points
where the volume folds onto itself when projected to the plane by a
bivariate function. TTK implements their combinatorial extraction
[107]. Reeb space (Sec. 3.5) based segmentation capabilities help users
peel scatterplots views of the data (Fig. 9(v)). TTK implements a recent
combinatorial approach [107]. TTK also implements a few supporting
features, including planar projections, continuous scatterplots [12],
fiber and fiber surfaces [28] based on user strokes [74] (Fig. 9 (iv)).
Uncertain scalar data: Uncertain scalar fields are becoming more
and more prominent in applications. TTK implements a combina-
torial approach for extracting mandatory critical points [58], which
predicts appearance regions for critical points, despite the uncertainty
(Fig. 9(vi)). To support this, TTK also provides a module converting an
ensemble dataset into a histogram-based representation of the data.
Miscellaneous: TTK also provides a number of support features, for
data conversion, connected component size evaluation, geodesic dis-
tances, mesh subdivision, geometry smoothing, identifier fields, texture
map computation from scalar data, or simplified sphere glyphs.
User experience: End users typically leverage ParaView’s advanced
interface capabilities to organize the linked views of their visualization
(2D, 3D, line charts, etc.). TTK features are accessed through its plug-
ins, used in conjunction with standard ParaView filters. For instance,
in Fig. 1(a), the user selected critical point pairs in the persistence dia-
gram (bottom right 2D linked view) by thresholding their persistence.
Then, TTK’s topological simplification was called to pre-simplify the
data according to this selection of critical points. Note that any other,
application-driven, user selection can be used instead of persistence.
At this point, any topological abstraction can be computed on this
pre-simplified data, like the Morse-Smale complex. Next, the user can
interactively modify the persistence threshold and all the linked views
are updated accordingly, as shown in our companion video. We refer
the reader to TTK’s website [108] for more video tutorials. Note that
TTK’s usage in ParaView requires no programming or scripting skill.

8 LIMITATIONS AND DISCUSSION

The PL matching property (Sec. 4.1) is only guaranteed for interior
critical points. For non-closed domains, boundary PL critical points
may admit no DMT critical simplex in their star. Thus, for simplicity,
our implementation omits DMT critical simplices located on the bound-
ary. This omission is not problematic in practice (Fig. 6), although it
may prevent the removal of certain pairs of DMT critical simplices,
for which one or both simplices are located on the boundary. More



Fig. 9. Gallery of TTK pipelines executed in ParaView. From top left to bottom right: (i) The contour tree can be used for shape skeletonization.
Skeleton noise is removed by imposing the level of simplification dictated by the persistence diagram in the bottom linked view. (ii) The interior
1-separatrices of the Morse-Smale complex emanating from 2-saddles directly capture the atomic and covalent structure of molecules (electron
density). (iii) The cells of the Morse-complex (colored regions) enable segmenting and tracking features during viscous fingering [52]. (iv) Fiber
surfaces (bottom right) from user strokes in the continuous scatter plot (top) enable an easy classification of the features in molecular systems [74].
(v) The Reeb space (top left) enables peeling continuous scatterplots (bottom left) into layers where the fibers are made of only one connected
component in the volume [107]. This enables localized inspections of the scatterplots (bottom right). (vi) Mandatory critical points (colored regions)
provide predictions on the location and function values of critical points for uncertain scalar fields with non-uniform error [58]. These regions always
admit at least one critical point for any function randomly generated from this error (top and bottom, vortices in computational fluid dynamics).

generally, although our cached triangulation data structure can support
fairly general domains (such as non-manifold simplicial complexes),
more research still needs to be done at the topological analysis level
towards generality with regard to the input domain representation.

The combinatorial procedure [110] that TTK employs to pre-simplify
scalar data only supports the removal of (0,1) and ((d−1),d) critical
point pairs. More research needs to be done to find a practical algorithm
for the removal of (1,2) critical point pairs, as homological simplifica-
tion and reconstruction in R3 has been shown to be NP-hard [9].

Regular grids are treated by TTK as implicit triangulations (which
is key to guarantee the PL matching property) by considering the 6-
tet subdivision of each voxel. Thus, TDA algorithms which already
natively support arbitrary CW-complexes [64, 89, 95] may run more
slowly with this representation as more cells will need to be considered.

We have been using preliminary versions of TTK internally for two
years and published several research papers using it [52, 59, 107, 112].
Five master-level students, with a C++ background but no knowledge
in rendering or user interfaces, have been using it on a daily basis. Typi-
cally, we found that TTK helped them shorten the prototyping phase of
their research and access experimental validation faster, some of these
students starting implementations after just a week of training. The pre-
implemented IO and rendering support of ParaView was instrumental
to provide an important time gain during prototyping. Moreover, the
ease offered by ParaView to combine several plugins within a single
pipeline also helped students easily leverage existing implementations
in their prototypes to empower their own algorithms.

9 CONCLUSION
This system paper presented the Topology ToolKit (TTK) [108], a soft-
ware platform designed for topological data analysis (TDA) in scientific
visualization. TTK has been designed to be easily accessible to end
users (with ParaView plugins and standalone programs) and flexible for
software developers with a variety of bindings. For researchers, TTK
eases the prototyping phase of TDA algorithms, without compromise
on genericity or time efficiency, as developers only need to focus on
the core routines of their algorithm; the IO, the rendering pipeline and
the user interface capabilities being automatically generated. Although

it focuses on TDA, we believe TTK also provides more generally an ap-
pealing infrastructure for any geometry-based visualization technique.

TTK builds on top of two main contributions: (i) a unified topo-
logical data representation and simplification and (ii) a time-efficient
triangulation data structure. Our PL-compliant discrete gradient algo-
rithm allows to robustly and consistently combine multiple topological
abstractions, defined in the Discrete or PL settings, within a single
coherent analysis, as showcased with the ParaView pipelines illustrated
in this paper (Figs. 1, 2, 9). The genericity and time efficiency of TTK
is in great part due to our novel cached triangulation data structure,
which handles in a consistent way 2D or 3D explicit meshes or reg-
ular grids implicitly. In explicit mode, a preconditioning mechanism
enables our data structure to deliver time-efficient traversal queries,
while self-adjusting its memory footprint on demand. For typical TDA
traversals, we showed that if developers consent to reasonably increase
the memory footprint of their triangulation, significant speedups can
be expected in practice for their algorithms. This aspect is particularly
important when a single triangulation instance is accessed by multiple
algorithms, as typically found in complex analysis pipelines.

TTK constitutes an invitation to a community-wide initiative to dis-
seminate and benchmark TDA codes. Although we did our best to im-
plement in TTK a substantial collection of TDA algorithms for scientific
visualization, many more could be integrated in the future, including
for instance Pareto set computation [70] or robustness evaluation [100].
Thus, we hope TTK will rapidly grow a developer community to help
integrate more algorithms, as we specifically designed it to be easily
extensible. We also hope that future extensions of TTK will form the
basis of an established software platform for TDA research code, to
improve the reproducibility and usability of TDA in applications.
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Fig. 10. Discrete gradient pairing obtained with Alg. 1 in 3D in the star of
a PL 1-saddle (left), 2-saddle (center) and maximum (right). Vertex-edge,
edge-triangle and triangle-tetrahedron pairs are shown with blue, white
and green balls-and-sticks. Only a few pairs is shown to avoid occlusion.

APPENDIX A: PL-MATCHING PROPERTY IN 3D
Critical simplices of dimension 0 still precisely coincide with PL minima (same
argument as in 2D). Moreover, PL 1-saddles will admit at least one critical edge
in their star (same argument as in 2D). By definition, the upper link Lk+(s2) of
a PL 2-saddle s2 is made of at least two connected components, each of which
containing a local maximizing vertex. Thus, the restriction of f on Lk(s2) will
admit at least two PL maxima, and therefore at least one PL saddle ns (to satisfy
the Morse inequalities), precisely separating Lk+(s2) from Lk−(s2). Due to the
2D argument, ns will admit a critical edge es in its star on Lk(s2), linking it to a
lower vertex n′s ∈ Lk−(s2). Let ts2 be the triangle containing es and s2. Since
es is not paired with its co-faces ts and t ′s, it means that n′s is the minimizing
vertex of both triangles. Thus, n′s is also the minimizing vertex of the co-faces
of ts2 in St(s2). Thus, ts2 cannot be paired with its co-faces (observation (ii)).
Since n′s ∈ Lk−(s2), the edge es2 linking s2 to ns maximizes ts2 . As discussed
in the 2D case, ns has to be paired with the edge connecting it to its minimum
neighbor on Lk(s2), n′′s . Let t ′s2

be the triangle containing s2, ns and n′′s . es2
maximizes both ts2 and t ′s2

but can be paired only once, with the one containing
the minimizing vertex, t ′s2

. Thus, the triangle ts2 will be left unpaired by Alg. 1,
and thus critical.

Similarly, let n∗m be the highest vertex of the link Lk(m) of a 3D PL maximum
m. Then, n∗m is itself a 2D PL maximum on Lk(m). Given the 2D argument,
there must exist a triangle tm on Lk(m) which contains n∗m and which is paired
with no simplex of Lk(m). Moreover, tm also contains the vertex n′∗m , which is
the maximizer of the link of n∗m on that of m (see the 2D argument). Let n′′∗m
be the remaining vertex of tm. Let t ′m be the triangle of St(m) which contains
both n∗m and n′∗m and let Tm and T ′m be its two adjacent tetrahedra in St(m). We
will consider that Tm is the tetrahedron containing n′′∗m and T ′m that containing a
fourth vertex n′′′∗m . Note that n′′′∗m is lower than n′′∗m (otherwise tm would not be
unpaired on Lk(m)) and we have: f (n′′′∗m )< f (n′′∗m )< f (n′∗m)< f (n∗m)< f (m).
The triangle t ′m is the maximizer of both Tm and T ′m, however, it can be paired
with only one of them (observation (i)), its minimizing co-face T ′m, as it contains
the lowest vertex, n′′′∗m , of the two tetrahedra. Therefore, the tetrahedron Tm will
be left unpaired by Alg. 1, and thus critical.

APPENDIX B: VTK PIPELINE INTEGRATION

A notable software engineering challenge was the seamless integration of
our cached triangulation data structure (ttk::Triangulation) into VTK’s
pipeline. A naive strategy consists in storing one instance within each
VTK wrapper (Sec. 6.2). However, this would duplicate the data struc-
tures in the frequent situation where multiple TTK modules are lined up
within a single VTK pipeline. Instead, we implemented a strategy which
makes each ttk::Triangulation object travel through each pipeline branch
without data copy. In particular, for each VTK class supported by TTK
(vtkUnstructuredGrid, vtkPolyData, vtkImageData, etc.), we derived
by inheritance a TTK specialization (ttkUnstructuredGrid, ttkPolyData,
ttkImageData, etc.) which holds a pointer to a ttk::Triangulation object.
This pointer is copied upon VTK’s ShallowCopy() operation and a new object
is actually allocated upon a VTK DeepCopy() operation. On the latter operation,
primitive-type pointers to the point and simplex lists (LP and LS, Sec. 5.2) are
passed to the triangulation data structure in the case of meshes, and dimensions
are passed for that of regular grids. Within each VTK wrapper, if the input is
a pure VTK object (and not a derived TTK object), it is first converted into its
matching TTK derived class. Then the pointer to the ttk::Triangulation is
extracted and passed to the base code functor (Sec. 6.2). Note that this mecha-
nism is automatically handled by TTK and is completely hidden to developers,
who only see more general vtkDataSet objects passed as arguments of their
VTK wrappers. As a consequence, ttk::Triangulation objects are allocated
only once per pipeline branch, and travel by pointers down this branch, without
data copy, possibly progressively extending their lists of internal lookup tables
upon the precondition calls triggered by the successive TTK modules present in
the pipeline branch.
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