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One intriguing property that is exploited by ocean acoustic tomography (OAT) is that acoustic signals travel in a multipath. As the first step of OAT, each ray path should be identified with a particular travel time. However, the set of multipath rays generated by an emitted signal is correlated or coherent, as they are produced by reflection and or by refraction in propagation. In this paper, a highresolution method called smoothing-Multiple Signal Classification Active Large Band (MUSICAL) is presented in the context of shallow-water OAT for separating coherent or fully correlated raypaths in the direction of arrival (DOA)-temporal domain. The method is a combination of the MUSICAL and spatial-frequency smoothing processing. Furthermore, the performance of smoothing-MUSICAL is illustrated by experiments based on both synthetic data and real data. This algorithm largely improves separation performances and presents fewer artifacts compared to conventional beamforming. In particular, experimental results show that smoothing-MUSICAL is more robust than beamforming facing a noisy environment with moderate signal-to-noise ratio (SNR).

I. INTRODUCTION

Ocean acoustic tomography (OAT) is a measurement technique to acquire information on temperatures and currents of oceans. It was first introduced to provide large-scale images of ocean sound-speed fluctuations using low-frequency acoustic waves [START_REF] Munk | Ocean Acoustic Tomography[END_REF], whereas shallow-water acoustic tomography (SWAT) at small scale has received more attention in recent years due to easier measurement of the environment parameters and simpler array deployments [START_REF] Iturbe | Shallow-water acoustic tomography performed from a doublebeamforming algorithm: simulation results[END_REF]- [START_REF] Roux | Travel-time tomography in shallow water: Experimental demonstration at an ultrasonic scale[END_REF].

SWAT also takes advantage of the multi-path property of the wave field. This property allows the improvement of the quality of tomography, but it also produces interfering fields in both the time and frequency domains. Therefore, ray identification and arrival time estimation cannot be realized without using a specialized signal processing technology. There are two general kinds of technologies: (1) beamforming-like methods and (2) multiple signal classification-like algorithms [START_REF] Trees | Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory[END_REF].

As a classical method, beamforming is frequently used to separate raypaths, typically applied on a vertical receiver array at the reception, which records the signal emitted by a single emitter. Compared to the configuration of a single hydrophone receiver, a vertical receiver array will provide two significant benefits at the cost of somewhat increased receiver complexity [START_REF] Munk | Ocean Acoustic Tomography[END_REF]: vertical receiving arrays can improve the signal-to-noise ratio (SNR) as well as enable the separation of some raypaths that are not resolved in the time domain using the arrival angles. Although the advantages of using beamforming on a receiver array have been presented above, its major drawback is limited resolving ability. It is necessary to provide more separated raypaths to improve the possibilities to get satisfying tomography results. Recently, a tomography method has been developed using double beamforming to separate the different paths and extract more observations. Based on the principle of reciprocity, beamforming is applied twice to a configuration of array to array, which is composed of a vertical source array and a vertical array of receivers, once in the vertical array of emission and the other in reception. Because of exploiting the emission array, the emitted angle of each raypath is taken as an additional parameter to separate raypaths. Thus, double beamforming has improved the conventional beamforming performances [START_REF] Iturbe | Shallow-water acoustic tomography performed from a doublebeamforming algorithm: simulation results[END_REF]. However, it is still confronted with the main beamforming drawback : the low-resolution performance.

The stronger ability to distinguish closely spaced signals is referred to as "high resolution".

The high-resolution method, referred to as the subspaced-based method [START_REF] Krim | Two decades of array signal processing research: the parametric approach[END_REF], is another type of well-known methods for source separation. Generally, it is based on a multi-path propagation model and takes advantage of the statistical properties of the received signal. Then, certain parameters such as the angle of reception and arrival time are estimated by maximizing or minimizing a function [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF]- [START_REF] Gounon | High resolution spatio-temporal analysis by an active array[END_REF]. In particular, as the emitted signal is known, a Multiple Signal Classification Active Large Band (MUSICAL) algorithm [START_REF] Gounon | High resolution spatio-temporal analysis by an active array[END_REF] is introduced to separate close raypaths using the spectrum and module information of the emitted signal. MUSICAL performs better than beamforming under the assumption of decorrelated raypaths. However, multiple raypaths produced by the reflection of the emitted signal are fully correlated, and even coherent.

In this case, the performance of MUSICAL with respect to source separation or the noise level drops sharply. Thus, it is crucial to present a high-resolution processing to separate the coherent or highly correlated raypaths in view of practical importance.

Although there is no application in the context of OAT, algorithms for separating coherent signals have been studied a lot in theory. Effective spatial smoothing has been developed for separating narrowband correlated sources: it was first studied by Evans et al. [START_REF] Evans | High resolution angular spectrum estimation techniques for terrain scattering analysis and angle of arrival estimation[END_REF], [START_REF] Evans | Application of advanced signal processing techniques to angle of arrival estimation in atc navigation and surveillance systems[END_REF]. A more complete analysis in conjunction with the eigenstructure technique is demonstrated by Shan et al. [START_REF] Shan | On spatial smoothing for direction-of-arrival estimation of coherent signals[END_REF]. Then, it is extended to forward-backward spatial-smoothing approach by Rao and Hari [START_REF] Rao | Weighted subspace methods and spatial smoothing: Analysis and comparison[END_REF].

Simulation results show that combining spatial smoothing with the forward-backward approach is more effective than using forward spatial smoothing alone. Because the conventional spatial smoothing leads to a reduction of the array aperture and a poorer direction of arrival (DOA) estimation, enhanced spatial smoothing methods are presented by Shan et al. [START_REF] Shan | On spatial smoothing for direction-of-arrival estimation of coherent signals[END_REF] and Choi [START_REF] Choi | Subspace-based coherent source localisation with forward/backward covariance matrices[END_REF], which improve significantly the resolution of the conventional ones. Al-Ardi et al. [START_REF] Al-Ardi | Computationally efficient high-resolution doa estimation in multipath environment[END_REF] proposed an iterative spatial smoothing algorithm to reduce the computational cost of spatial smoothing, owing to the eigendecomposition of the array covariance matrix. By resolving uncorrelated and correlated signals separately, it is performed in two stages. In the first stage, it needs to form the uncorrelated signals covariance matrix, which is difficult in realization. Due to using only the forward spatial smoothing instead of the forward-backward spatial smoothing in the construction of the smoothed data matrix, the effective aperture of the array is largely reduced. Besides, a group of spatial smoothing methods is proposed for DOA estimation in the presence of correlated noise fields, such as a matrix decomposition method introduced by Rajagopal and Rao [START_REF] Rajagopal | Generalised algorithm for doa estimation in a passive sonar[END_REF], a weighted spatial smoothing algorithm proposed by Tan and Oh [START_REF] Tan | Estimating directions-of-arrival of coherent signals in unknown correlated noise via spatial smoothing[END_REF], and a spatial difference smoothing method presented by Qi et al. [START_REF] Qi | Spatial difference smoothing for doa estimation of coherent signals[END_REF].

Detecting multiple sources and estimating DOA are also emphasized in the case of wideband correlated sources. For instance, coherent signal subspace processing for wideband signals is shown in the frequency domain by Wang and Kaveh [START_REF] Wang | Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources[END_REF]. Specifically, coherently constructed signal space results in an appropriately frequency-averaged estimate of the spatial covariance matrix. This estimate is statistically more accurate and, to a large extent, immune to the degree of correlation between the sources. Wang and Kaveh [START_REF] Wang | On the performance of signal-subspace processing-part ii: Coherent wide-band systems[END_REF] analytically studied the performance of signal subspace processing for detecting multiple wideband sources.

Recently, Paulus and Mars [START_REF] Paulus | New multicomponent filters for geophysical data processing[END_REF] presented a method, called multicomponent wideband spectral matrix filtering, which is applied on geophysical data to separate interfering wave fields. The technique is based on the decomposition of a special multicomponent spectral matrix and could extract a given wave field from a multicomponent data set. Novel smoothing methods considered in spatial, frequency, and spatial-frequency domains are introduced to correctly estimate a multicomponent wideband spectral matrix. Inspired by these algorithms [START_REF] Paulus | New multicomponent filters for geophysical data processing[END_REF], in this paper, we propose a novel high-resolution processing [START_REF] Jiang | Raypath separation with high resolution processing[END_REF] to identify coherent raypaths in a shallowwater waveguide. This novel processing called by smoothing-MUSICAL combines MUSICAL algorithm [START_REF] Gounon | High resolution spatio-temporal analysis by an active array[END_REF] and spatial-frequency smoothing and is performed in a point-array configuration.

In addition, its resolution performances are compared to those of conventional beamforming processing based on simulations and experiments. This paper is structured as follows: In Section 2, the signal model and the principle of smoothing-MUSICAL are introduced; In Section 3, (1) the performance of smoothing-MUSICAL is illustrated by synthetic data and (2) the results with low SNR simulation are shown to test the robustness of smoothing-MUSICAL. In Section 4, smoothing-MUSICAL is applied to real data obtained from a small-scale experiment.

II. SMOOTHING-MUSICAL

High-resolution methods generally require an accurate modeling of the received signals exploiting information such as plane waves or uncorrelated sources. These signals are assumed to be random and stationary. High-resolution methods were first designed for passive antennas, with the assumption that there is no information on the temporal shape of the received signal. One of the easiest cases is to analyze that of narrowband signals. By taking into account the spectral range of the signal, the narrowband methods have been extended for application to wideband signals.

However, by either a frequency analysis [START_REF] Wang | Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources[END_REF] or a temporal analysis [START_REF] Buckley | Broad-band signal-subspace spatial-spectrum (bass-ale) estimation[END_REF] of the signal, these methods still only consider wideband signals as random ones and therefore do not provide information on frequency characteristics (amplitude and phase spectrum) or time (waveform) signal. By taking advantage of the frequency characteristics, Gounon and Bozinoski [START_REF] Gounon | High resolution spatio-temporal analysis by an active array[END_REF] proposed an active wideband multiple signal classification algorithm using multiple realizations, and it lies in the assumptions of decorrelated sources. However, these assumptions are difficult to achieve in a practical shallow-water environment. Thus, we propose the smoothing-MUSICAL algorithm, which is based on a single realization and enables to separate the fully correlated or coherent raypaths. The algorithm is described in the following sections.

A. Signal model

The signal model is built on an acoustic field composed of P raypaths. These raypaths arrive on a vertical antenna of M sensors. The temporal signal received on the m th sensor is modeled as

x m (t) = P p=1 a p e(t -τ m,p ) + n m (t) (1) 
where x m (t) is the received signal on the m th sensor, e(t) is the signal emitted by the source, a p is the amplitude of the p th raypath on the m th sensor, and n m (t) is the additive noise received at the m th sensor. In frequency domain, ( 1) is written as

x m (ν) = P p=1 a p e(ν) exp(-j2πντ m,p ) + n m (ν) (2) 
The arrival time τ m,p can be expressed as follows

τ m,p = T p + t m (θ p ) (3) 
Eq. ( 2) can be rewritten with Eq. (3) as follows

x m (ν) = P p=1 a p e(ν) exp(-jν(Ψ p + (m -1)Φ p )) + n m (ν) (4) 
with :

Ψ p = 2πT p Φ p = 2πt m (θ p )
where T p is the arrival time of the p th raypath on the reference sensor, and t m (θ p ) is the delay between the reference sensor and the m th sensor. t m (θ p ) is a function of θ p , which is the arrival direction of raypath on the antenna. t m (θ p ) is a function of θ p , which is the arrival direction of the pth raypath on the antenna. In addition, t m (θ p ) = dsinθp c , where d is the distance between two adjacent sensors. c is the propagation velocity of the acoustic signal.

In Eq. ( 2), the term e(ν) is the deterministic amplitude of the emitted signal at the frequency ν. The amplitude of each raypath a p is considered random and uncorrelated. Eq. ( 2) can be written as a matrix form using F frequency bins of the signal:

x g = H.A + n g (5) 
where

x g = [x + (ν 1 ), x + (ν 2 ), • • • , x + (ν F )] + with x(ν i ) = [x 1 (ν i ), x 2 (ν i ), • • • , x M (ν i )] + is a
vector of dimension M × F obtained by the concatenation of the observation vectors at each frequency, F is the number of frequency bins of the signal,

n g = [n + (ν 1 ), n + (ν 2 ), • • • , n + (ν F )] + with n(ν i ) = [n 1 (ν i ), n 2 (ν i ), • • • , n M (ν i )] + is a vector of dimension M × F obtained by the con- catenation of the observation of noise vectors at each frequency, A = [a 1 , a 2 , • • • , a P ] + is a vector of dimension P , H = [h 1 , h 2 , • • • , h P ] + with h p = [e(ν i )e -2iπν 1 τ 1p , • • • , e(ν F )e -2iπν F τ M p ] + ,

and

H is a matrix of dimension (M × F, P ). H puts together the terms e -2iπν 1 τmp , which describes the transfer functions between the sources and the sensors, e(ν i ) characterizes the emitted signal, and + means transposed.

B. Principle of the algorithm

Based on the signal model described above, we will present the principle of the algorithm and the first step is to estimate interspectral matrix.

1) Estimation of the interspectral matrix:

The interspectral matrix of the received data is computed by exploiting Eq. ( 5):

Γ = E(x g x * g ) = H Γ C H * + Γ N = Γ Y + Γ N (6) 
where * means transpose conjugated. Γ C is the source correlation matrix in P × P dimension, Γ Y is the nonnoisy wideband interspectral matrix, and Γ N is the noise wideband interspectral matrix.

The rank of Γ must be at least equal to P under the assumption of uncorrelated raypaths.

MUSICAL could get effective separation in this case. However, in a practical experiment, a single realization and correlated raypaths inevitably lead to rank deficiency. Particularly, when the raypaths are fully correlated or coherent, the interspectral matrix will be a singular matrix and it is impossible to directly separate these raypaths with MUSICAL.

• Wideband spatial smoothing Smoothing techniques are frequently used to increase the rank of the interspectral matrix.

Although spatial and frequency smoothing techniques have been applied to narrowband signals, these methods cannot be directly extended to the active wideband case, as the nature and structure of interspectral matrices are indeed different.

Inspired by these narrowband algorithms, the proposed wideband spatial smoothing first divides the principal antenna, which is composed of M sensors, into 2K s +1 partially overlapping subantenna with M -2K s successive sensors. The subantenna indexed by k s includes the sensors

in the range of [k s , k s +1, • • • , k s +M -2K s ].
All of the signals received by 2K s +1 subantennas are exploited to compute the expectation of broadband spectral matrix Γ ks (Γ ks = E[x l,ks x * l,ks ]). The smoothing spectral matrix is then defined as the arithmetic mean of these spectral matrices, as shown in Eq. 7.

Γ = (2K s + 1) -1 2Ks+1 ks=1 x g,ks x * g,ks (7) 
These subarrays are supposed to be linear and uniform. Based on this assumption, the ray does not vary rapidly, especially, without amplitude fluctuations over the number of sensors in each subarray. It has been proven that if the number of subarrays is greater than or equal to the number of sources, then the spectral matrix is nonsingular. As an example, in Fig. 1, a uniform linear array with M = 7 identical sensors (1, . . . ,7) is divided into overlapping subarrays of size M -2K s = 5. The first subarray is composed of sensors indexed from 1 to 5; similarly, the second one is composed of sensors from 2 to 6, etc.

We still need to consider two essential problems given the particular structure of broadband spectral matrix. The first one is whether the undergone structural changes during smoothing are compatible with the broadband modeling methods. The second one concerns the rank that is affected by the source correlation matrices.

Actually, the transition from sensor m to sensor m + 1 results in an additional phase shift for each source p. Because the linear array is composed of equidistant sensors, the transition from the first subarray to the k s subarray can be modeled by introducing a matrix named B ks .

It includes the phase shifts of sources observed at F frequencies. The matrix is in dimension M.F × P , and Eq. ( 8) describes its generic term: With these notations, the broadband observation vector of the subarray indexed by k s is written as

B ks f = exp[-jν(k s -1)Φ p ] (8) 
x ks g = HB ks A + N ks (9) 
From this expression, the algebraic characterization of the transformations caused by broadband spectral matrices in the spatial smoothing can show that (1) the changes of spectral matrices due greater than or equal to P when the condition 2K s + 1 ≥ P Q is satisfied. (4) Finally, the ranks of the smoothing spectral matrix is increased by the value of F × P .

These four items are sufficient to ensure that smoothing spectral matrices are similar to those that have been obtained with partially uncorrelated sources. In fact, they only express the decorrelation produced by smoothing processing. However, it should give special attention to the last two points and emphasize that it is not desirable to make a processed rank too large compared to P . In some situations, it may indeed lead to dysfunctions that are similar to those matrices encountered with nonsmoothing results during the excessive overestimation of the number of sources.

• Wideband frequency smoothing A similar smoothing process as described in the previous paragraph can be applied in the frequency domain. This is largely due to the particular structure of the broadband observation vectors used by MUSICAL. Then, it is possible to introduce a frequency smoothing if the following two assumptions are met (1) there is a prior whitening of received signals and [START_REF] Iturbe | Shallow-water acoustic tomography performed from a doublebeamforming algorithm: simulation results[END_REF] frequency channels must be equally spaced on the analysis band. Similarly, frequency smoothing is performed by dividing the band composed of F frequency channels into 2K f + 1 partially overlapping subbands of F -2K f channels. Thus, the subband of index k f is composed of

channels [k f , k f + 1, • • • , k f + F -2K f ].
The spectral matrix of the observation is then defined as the average of the 2K f + 1 submatrices, as is shown in Eq. 10.

Γ = (2K f + 1) -1 2K f +1 k f =1 x g,k f x * g,k f (10) B k m = exp[-j∆(k -1)(Ψ p + (m -1)Φ p )] (11) 
Fig. 2 shows an example of frequential subband division for F = 10 and K f = 2.

The M 2 blocks of the broadband smoothed spectral matrix in the frequency domain have quite similar properties and structure to those of F 2 blocks of the spatially smoothed matrix.

The characteristics of frequency smoothing can be deduced from all of those obtained in the study of broadband spatial smoothing. It shows in particular that 2K f + 1 subbands are enough for estimating the ranks of Γ C and Γ Y when they are not larger than (2K f + 1) × Q.

• Spatial-frequency smoothing

The two methods discussed above may well obviously be used together and making a strong smoothing either in distance or in frequency may introduce a significant bias in the estimation of the matrix. To solve this problem, the combination of the two types of smoothing provides more flexibility in processing, particularly for the antennas that are composed of a limited number of sensors and for which the spatial smoothing methods are not applicable [START_REF] Paulus | New multicomponent filters for geophysical data processing[END_REF]. (K s and K f denote the spatial and frequency smoothing factor, respectively). From the single available observation

x, by jointly using the two forms of smoothing, it is possible to generate a set of (2K s + 1)

spatially recurrences x g,ks . These 2K s + 1 recurrences are then shifted frequentially to obtain K = (2K s +1)(2K f +1) recurrences x g,ks,k f . Finally, we can estimate the wideband interspectral matrix by the following formula:

Γ = [(2K s + 1)(2K f + 1)] -1 2Ks+1 ks=1 2K f +1 k f =1 x g,ks,k f x * g,ks,k f (12) 
The rank of the interspectral matrix thus estimated is equal to K. To achieve an effective separation of raypaths and noise, it is necessary to select K greater than P .

2) Estimation of the signal subspace: Using the above spatial-frequency smoothing, the wideband interspectral matrix is estimated as Γ. Due to the assumptions that the sources and the noise are uncorrelated, Γ is decomposed as

Γ = Γs + Γn (13) 
Because the spectral matrix has a Hermitian symmetry:

Γ = Γ * (14) 
It can be decomposed in a single way using eigenvector decomposition (EVD) as

Γ = U ∧U * = M F k=1 λ k u k u k * = P k=1 λ k u k u k * + M F k=P +1 λ k u k u k * (15) 
where ∧ = diag(λ 1 , . . . , λ M ) are the eigenvalues and U is a unitary (M × F ) by (M × F ) matrix whose columns are the orthonormal eigenvectors u 1 , . . . , u M of Γ. The eigenvalues λ i correspond to the energy of the data associated with the eigenvalue u i . They are arranged as follows:

λ 1 ≥ λ 2 ≥ • • • ≥ λ M ≥ 0
Based on the above eigendecomposition, the signal subspace is spanned by the first P eigenvectors of Γ, and its complementary, the noise subspace is spanned by the orthogonal M F -P last eigenvectors. The orthogonal projection onto the noise subspace is estimated as:

Γn = M F k=P +1 u k u k * (16) 
Finally, the high-resolution algorithm consists of maximizing the following function:

F (θ, T ) = 1 a(θ, T ) * Γn a(θ, T ) (17) 
The wideband steering vector a(θ, T ) is the concatenation of the vectors d(ν i , θ), which is the classical steering vector used in narrowband analysis. It is written as follows:

a(θ, T ) =       e(ν 1 )e -2iπν 1 T d + (ν 1 , θ) . . . e(ν F )e -2iπν F T d + (ν F , θ)       with: d(ν i , θ) = [1, e -2iπν i τ 1,2 (θ) , . . . , e -2iπν i τ 1,M -1 (θ) ] + d(ν i , θ
) contains the informations concerning the phase shifts between sensors at a given frequency and for a raypath with arrival angle θ.

C. Model error analysis

The model errors discussed in this paper include the effects of imprecisely known sensor location, perturbations in the antenna amplitude and phase pattern, and so on. These errors introduce subspace perturbations, which finally cause estimation errors of the arrival times and the directions of the arrivals. We assume the data matrix

X g = [x g (1), x g (2), • • • , x g (L)
] with L as the number of samples used in experiments. We obtain the subspace decomposition equivalently by a singular value decomposition (SVD) on the data matrix X g .

X g = UΛV * = [U s U n ]    Λ s 0 0 0       V s * V n *    (18) 
where U s represents the singular vectors corresponding to the P largest singular values, whereas

U n represents the singular vectors corresponding to the noise singular value. Thus, a perturbation matrix ∆X g induces errors in the estimation of the perturbations of the pth arrival time and the arrival direction of the p th arrivals approximating as [START_REF] Gounon | High resolution spatio-temporal analysis by an active array[END_REF] 

∆θ p = θp -θ p = [β p * ∆X g * α 1p ] γ p (19) 
∆T p = Tp -T p = [β p * ∆X g * α 2p ] γ p (20) 
where

β p = V s Λ s -1 U s * a (21) 
α 1p = a T * U n U n * a T [a * θ U n U n * a T ] U n U n * a θ -U n U n * a T ( 22 
)
α 2p = a θ * U n U n * a θ [a * θ U n U n * a T ] U n U n * a T -U n U n * a θ ( 23 
)
γ p = a T * U n U n * a T a θ * U n U n * a θ [a * θ U n U n * a T ] -[a * θ U n U n * a T ] (24) 
a θ = ∂a ∂θ (θ p , T p ) (25) 
a T = ∂a ∂T (θ p , T p ) (26) 
III. SIMULATIONS

A. Configuration

The performance of the proposed method is illustrated in this section. The simulation data is built using parabolic propagation equations [START_REF] Cornuelle | High spatial resolution in vertical slice ocean acoustic tomography[END_REF], [START_REF] Skarsoulis | Travel-time sensitivity kernels in ocean acoustic tomography[END_REF]. The sampling frequency of the emitted signal is 10,400 Hz and the bandwidth is 600 Hz. Our experiment equipment is composed of one source and a vertical array of 61 receivers. The source is fixed at 64 m under the ocean.

The 61 receivers are regularly spaced in the water column between 49 and 79 m. We choose the 31st sensor as the reference one. The distance between the source and the reference sensor is 2 km. The configuration is shown in Fig. 3. The sampling frequency and the central frequency of the emitted signal are 10,400 and 1000 Hz, respectively. Raypaths propagate between the source and a receiver of the receiving array. Then, 1040 samples are used in the simulation.

B. Results

We take conventional beamforming [START_REF] Veen | Beamforming: a versatile approach to spatial filtering[END_REF], [START_REF] Dzieciuch | Turning point filters: Analysis of sound propagation on a gyre-scale[END_REF] as a comparative method and both methods are tested through the same group of synthetic data.

The separation results of beamforming are presented in Fig. 4( Note that there are some biases in the peak location contained in Figs. 4 (a) and 4 (b). In practice, factors such as quantization, clock jitter, and other sources of noise make it virtually impossible for beamforming to realize the desired phase shifts. In Fig. 4(a), these biases of beamforming are mainly produced due to the quantization errors [START_REF] Eldar | A competitive mean-squared error approach to beamforming[END_REF], [START_REF] Srinivasan | Beamforming under quantization errors in wireless binaural hearing aids[END_REF]. In Fig. 4 (b), they are mainly produced by an uncompleted separation of signal and orthogonal subspaces when only finite samples are available in practice. An analytical expression relating the perturbations in the estimated orthogonal subspace to perturbations in the arrival directions and the arrival times has been derived by Wang and Kaveh [START_REF] Wang | Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources[END_REF]. Stoica and Arye [START_REF] Stoica | Music, maximum likelihood, and cramer-rao bound[END_REF] and Stoica and Nehorai [START_REF] Stoica | Music, maximum likelihood, and cramer-rao bound: further results and comparisons[END_REF] pointed out that high-resolution methods asymptotically reach the lowest mean square errors by the Cramer-Rao bound. However, the separation ability of beamforming is limited by the number of available sensors. Similarly, for large-length samples, the proposed algorithm produces less errors than beamforming, whereas beamforming gives relatively high errors or is even not able to resolve the early arrivals. This theoretical analysis is illustrated in Figs. In Fig. 4(b), the early arrivals appear to be about 6 dB lower than the late arrivals, as the array manifold vectors for the early arrivals are less orthogonal than the estimated noise subspace.

This orthogonality derogation is also produced by the uncompleted separation of signal and noise subspaces. The better performance of the proposed high-resolution method is also based on the larger number of samples used in the estimation. 

C. Robustness against noise

The identification ability of smoothing-MUSICAL under noiseless circumstances has been compared to that of beamforming in the above part. In this subsection, we will evaluate its robustness to noise based on simulations with different SNRs. In these simulations, white Gaussian noise has been only added to the frequency band that the emitted signal occupies.

Thus, the SNR is defined as the ratio of signal power to the noise power in the frequency band of the signal. Then, 312 samples are used in these simulations. The results for different SNRs are presented as follows: SNR = 0 dB: Fig. 5 shows the received signals on the 61 received sensors when the SNR is equal to 0 dB. 

IV. APPLICATION ON REAL DATA

A small-scale experiment is discussed in this part, so that we can further illustrate the performance of the proposed method. The principle on which this experiment is based is as follows: if the frequency of the signals is multiplied by a factor and the spatial distances, including both the one between the source and the receivers and the one between the adjacent receivers, are divided by the same factor, the physical phenomena occurring in the environment remain the same. Namely, the small-scale experiment reproduces the actual physical phenomena occurring in nature in a smaller scale inside the laboratory. It achieves a reduced cost and a totally controlled experiment. The experiment presented here was performed at the Institut des Sciences de la Terre (ISTerre) lab in the ultrasonic tank, which is developed by P. Roux. In this tank, a waveguide of 5 to 10 cm in depth and 1 to 1.5 m in length is constructed. A steel bar acts as the bottom, which is very reflective and perfectly flat. We will offer two experiments in the following section. The first experiment mainly shows the general performance of the proposed algorithm, whereas the second one focuses on illustrating the ability of separating close arrivals. Marks have been put at the location of the correct time and angle for all arrivals on both Figs.

10(a) and 10(b). The array manifold vectors for the early and the late arrivals have almost the same orthogonality to the noise subspace. Thus, the level of the early arrivals is not attenuated so much.

Limited resolution is always defined as the limited ability to determine a plane wave's direction of propagation and to separate two plane waves propagating in slightly different directions [START_REF] Johnson | Array Signal Processing: Concepts and Techniques[END_REF].

We can assess how well an array can localize a given source by the first definition. The second definition indicates how well sources can be distinguished. In this paper, we mainly focus on resolution given by the second definition. It is measured by using the temporal and angular width of the arrival peaks. Actually, we only consider the raypaths that can be well separated III.

Thus, we draw a conclusion that resolution improvements are largely made by the proposed algorithm. frequency 
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  to smoothing are reduced essentially to a change in the source correlation matrix Γ C . (2) The rank augmentation of Γ C depends on the number of sub-antennas 2K s + 1 and the number of coherent sources groups Q. It is equal to (2K s + 1) × Q. (3) The new ranks of Γ C and Γ Y are
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  a), whereas the ones of smoothing-MUSICAL are shown in Fig. 4 (b). Both methods identify the raypaths in a plan of reception angle and propagation time. In addition, each of the visible spots in Figs. 4 (a) and 4 (b) corresponds to the arrival of a raypath with its propagation time and the angle of reception. Black crosses are added in Figs. 4 (a) and 4 (b) to mark the theoretical positions of raypaths.

Fig. 3 .

 3 Fig. 3. Configuration of the simulations. One source is fixed at 64 m under the ocean. The 61 receivers are regularly spaced in the water column between 49 and 79 m. The distance between the source and the reference sensor is 2 km. The depth of the waveguide is 100 m.

  4(a) and 4(b). More precise results are obtained in Fig. 4(b). In particular, in Fig. 4(a) the proposed processing can separate first and the second raypaths, whereas, in Fig. 4(b), they are shown as a mixed point.

Fig. 4 .

 4 Fig. 4. Comparison of the results when the source is fixed at 64 m and the raypaths arrive on a vertical array composed of 61 sensors, which are regularly spaced in the water column between 49 and 79 m. Black crosses show the theoretical positions of the raypaths. (a) Separation results and the cross-section of the first two arrivals using the beamforming algorithm. (b) Separation results and the cross-section of the first two arrivals using the smoothing-MUSICAL algorithm.

Fig. 6 (Fig. 5 .

 65 Fig. 5. Recorded signal (SNR = 0 dB)

Fig. 6 .

 6 Fig. 6. Comparison of the results using 312 samples, where the SNR is equal to 0 dB. Black crosses indicate the theoretical positions of the raypaths. (a) Separation results and the cross-section of the first two arrivals using the beamforming algorithm. (b) Separation results and the cross-section of the first two arrivals using the smoothing-MUSICAL algorithm.

Fig. 7 .

 7 Fig. 7. Recorded signal (SNR = -5 dB).

Fig. 8 .

 8 Fig. 8. Comparison of the results using 312 samples, where the SNR is equal to -5 dB. Black crosses show the theoretical positions of the raypaths. (a) Separation results and the cross-section of the first two arrivals using the beamforming algorithm. (b) Separation results and the cross-section of the first two arrivals using the smoothing-MUSICAL algorithm.

Fig. 9 .

 9 Fig. 9. Recorded signal for real data obtained at small scale.

Fig. 10 .

 10 Fig. 10. Comparison of the results in the case of using real data obtained at small scale when the source is fixed at 26.3 mm under the water and the 64 sensors are regularly spaced in the water column between 35 and 75 mm. Black crosses indicate the theoretical positions of the raypaths. (a) Separation results using the beamforming algorithm and the cross-section of the first two arrivals. (b) Separation results using the smoothing-MUSICAL algorithm and the cross-section of the first two arrivals.

B. Experiment 2

 2 In the second experiment, we fixed an emitter at 28.625 mm under the water. The interval of two adjacent receivers is 0.75 × 10 -3 m. Twenty-one sensors are regularly spaced in the water column between 21.125 and 36.125 mm. The distance between the emitter and the reference receiver is 1 m and the source signal with a 1 MHz frequency bandwidth has a central frequency of 1.2 MHz. The first 150 points in the time domain of the received signal with sampling

  Figs. 11(a) and 11(b). In addition, cross-sections are shown on the left of the figures.In Figs.11(a) and 11(b), the proposed processing manages to separate the second and the third raypaths, with the value of arrival time and the angle of reception as (T, θ) = (6.817 × 10 -4 , -2.75 • ) and (T, θ) = (6.817 × 10 -4 , 3 • ). However, in that case, beamforming presents us only one mixed spot.

Fig. 11 .

 11 Fig. 11. Comparison of the results in the case of using real data obtained at small scale when the source is fixed at 28.625 mm under the water and the 21 sensors are regularly spaced in the water column between 21.125 and 36.125 mm. Black crosses indicate the theoretical positions of the raypaths. (a) Separation results using the beamforming algorithm and the cross-section of the first three arrivals. (b) Separation results using the smoothing-MUSICAL algorithm and the cross-section of the first three arrivals.

TABLE III RESOLUTION

 III COMPARISON (IN 10 -4 SECONDS)

				Errors of	Errors of
	Raypath	Beamforming	Smoothing-MUSICAL	beamforming	smoothing-MUSICAL
		(angle, time)	(angle, time)		
				(angle, time)	(angle, time)
	3	(2.33, 7.72 ×10 -4 )	(2.4, 7.72 ×10 -4 )	(0.363, 0.002×10 -4 )	(0.296, 0.002×10 -4 )
	4	(-5.25, 7.746 ×10 -4 )	(-5.3, 7.749 ×10 -4 )	(0.102, 0.001×10 -4 )	(0.052, 0.002×10 -4 )
	5	(5.11, 7.747 ×10 -4 )	(5.1, 7.749 ×10 -4 )	(0.366, 0.002×10 -4 )	(0.376, 0)
	6	(-8.06, 7.79 ×10 -4 )	(-8.1, 7.791 ×10 -4 )	(0.049, 0.001×10 -4 )	(0.009, 0)
	7	(7.69, 7.789 ×10 -4 )	(7.7, 7.789 ×10 -4 )	(0.384, 0.002×10 -4 )	(0.374, 0.002×10 -4 )