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Abstract. We consider the k most vital edges (nodes) and min edge
(node) blocker versions of the 1-median and 1-center location problems.
Given a weighted connected graph with distances on edges and weights
on nodes, the k most vital edges (nodes) 1-median (respectively 1-center)
problem consists of finding a subset of k edges (nodes) whose removal
from the graph leads to an optimal solution for the 1-median (respectively
1-center) problem with the largest total weighted distance (respectively
maximum weighted distance). The complementary problem, min edge
(node) blocker 1-median (respectively 1-center), consists of removing a
subset of edges (nodes) of minimum cardinality such that an optimal
solution for the 1-median (respectively 1-center) problem has a total
weighted distance (respectively a maximum weighted distance) at least
as large as a specified threshold. We show that k most vital edges 1-
median and k most vital edges 1-center are NP -hard to approximate
within a factor 7

5
− ǫ and 4

3
− ǫ respectively, for any ǫ > 0, while k

most vital nodes 1-median and k most vital nodes 1-center are NP -hard
to approximate within a factor 3

2
− ǫ, for any ǫ > 0. We also show

that the complementary versions of these four problems are NP -hard to
approximate within a factor 1.36.

Keywords: most vital edges and nodes, 1-median, 1-center, complexity, approx-
imation.

1 Introduction

For problems of security or reliability, it is important to assess the ability of a
system to resist to a destruction or a failure of a number of its entities. This
amounts to identifying critical entities which can be determined with respect to
a measure of performance or a cost associated to the system. In this paper we
focus on simple location problems. Consider for instance the following problem.
We aim at locating one hospital or one supermarket in order to serve n areas.
Each area is characterized by a population which represents a potential demand.
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The areas are connected by roads with a given distance. The objective for lo-
cating this hospital or supermarket is not the same. Indeed, for the hospital,
we aim at finding the location that minimizes the maximum distance weighted
by population from the hospital to all areas while for the supermarket we aim
at finding the location that minimizes the total weighted distance from the su-
permarket to all areas. However, there may occur incidents such as works on
road or floods that make some roads inaccessible. In this case several problems
may arise. We can aim at detecting the critical roads whose failure causes the
largest increase in the weighted distance. Alternatively, wa can aim at determin-
ing the maximum number of damaged roads which still ensures a certain quality
of service level. Modeling the considered network by a weighted connected graph
with distances on edges and weights on nodes, where roads are edges and areas
are nodes, these problems consist either of finding among all subset of edges or
nodes, a subset whose removal from the graph generates the largest increase in
the total or maximum weighted distance or of determining a subset of edges or
nodes of minimal cardinality such that, when we remove this subset from the
graph, the total or maximum weighted distance is at least as large as a specified
threshold. In the literature these problems are referred respectively to as the k

most vital edges/nodes and the min edge/node blocker problems.

The k most vital edges/nodes and min edge/node blocker versions have been
studied for several problems, including shortest path, minimum spanning tree,
maximum flow, maximum matching and independent set. The k most vital edges
problem with respect to shortest path was proved NP -hard [2]. Later, k most vi-
tal edges/nodes shortest path (and min edge/node blocker shortest path, respec-
tively) were proved not 2-approximable (not 1.36-approximable, respectively) if
P 6= NP [8]. For minimum spanning tree, k most vital edges is NP-hard [6] and
O(log k)-approximable [6]. In [11] it is proved that k most vital edges maximum
flow is NP -hard. For maximum matching, min edge blocker is NP -hard even
for bipartite graphs [12], but polynomial for grids and trees [10]. In [3], the k

most vital nodes and min node blocker versions with respect to independent
set for bipartite graphs remain polynomial on the unweighted graphs and be-
come NP -hard for weighted graphs. For bounded treewidth graphs and cographs
these versions remain polynomial [3]. Concerning the approximation on bipartite
weighted graphs, k most vital nodes with respect to independent set has no ptas
[3].

In this paper the k most vital edges (nodes) and min edge (node) blocker
versions for the 1-median and 1-center problems are studied.

After introducing some preliminaries in Section 2, we prove in Section 3
that k Most Vital Edges (Nodes) 1-median (1-center) and Min Edge
(Node) blocker 1-median (1-center) are not constant approximable for
some constants, unless P=NP. Final remarks are provided in Section 4.
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2 Basic concepts and definitions

Consider G = (V, E) a connected weighted graph with |V | = n and |E| = m. Let
dvivj

be the distance between vi and vj for (vi, vj) ∈ E and wvi
be the weight

associated to node vi for i = 1, . . . , n (wvi
represents the demand occurring at

node vi). Denote by d(vi, vj) the minimum distance between two nodes vi and
vj of G. The 1-median (respectively 1-center) problem consists of locating the
median (respectively the center) of a graph G, that is the node v which minimizes
the total weighted distance (respectively the maximum weighted distance) to all
nodes of the graph given by

∑

vi∈V

wvi
d(v, vi) (respectively max

vi∈V
wvi

d(v, vi)).

Denote by G − R the graph obtained from G by removing the subset R of
edges or nodes.

We consider in this paper the k most vital edges (nodes) and min edge
(node) blocker versions of the 1-median and 1-center problems. These problems
are defined as follows:

k Most Vital Edges 1-median (1-center)
Input: A connected graph G = (V, E) weighted by two functions d : E → N

and w : V → N and a positive integer k.
Output: A subset S∗ ⊆ E, with |S∗| = k, whose removal generates an optimal
solution for the 1-median (1-center) problem in the graph G − S∗ of maximal
value.

k Most Vital Nodes 1-median (1-center)
Input: A connected graph G = (V, E) weighted by two functions d : E → N

and w : V → N and a positive integer k.
Output: A subset N∗ ⊆ V , with |N∗| = k, whose removal generates an optimal
solution for the 1-median (1-center) problem in the graph G − N∗ of maximal
value.

Min Edge blocker 1-median (1-center)
Input: A connected graph G = (V, E) weighted by two functions d : E → N

and w : V → N and a positive integer U .
Output: An edge blocker S∗ ⊆ E of minimal cardinality where an edge blocker
is a subset of edges such that the value of an optimal solution for the 1-median
(1-center) problem in the graph G − S∗ is greater than or equal to U .

Min Node blocker 1-median (1-center)
Input: A connected graph G = (V, E) weighted by two functions d : E → N

and w : V → N and a positive integer U .
Output: A node blocker N∗ ⊆ V of minimal cardinality where a node blocker
is a subset of nodes such that the value of an optimal solution for the 1-median
(1-center) problem in the graph G − N∗ is greater than or equal to U .

Given an NPO optimization problem and an instance I of this problem, we
use |I| to denote the size of I, opt(I) to denote the optimum value of I, and
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val(I, S) to denote the value of a feasible solution S of instance I. The perfor-

mance ratio of S (or approximation factor) is r(I, S) = max
{

val(I,S)
opt(I) ,

opt(I)
val(I,S)

}

.

The error of S, ε(I, S), is defined by ε(I, S) = r(I, S) − 1.

For a function f , an algorithm is an f(n)-approximation, if for every instance
I of the problem, it returns a solution S such that r(I, S) ≤ f(|I|).

The notion of a gap-reduction was introduced in [1] by Arora and Lund. A
minimization problem Π is called gap-reducible to a maximization problem Π ′

with parameters (c, ρ) and (c′, ρ′), if there exists a polynomial time computable
function f such that f maps an instance I of Π to an instance I ′ of Π ′, while
satisfying the following properties.

– If opt(I) ≤ c then opt(I ′) ≥ c′

– If opt(I) > cρ then opt(I ′) < c′

ρ′

Parameters c and ρ are function of |I| and parameters c′ and ρ′ are function
of |I ′|. Also, ρ, ρ′ ≥ 1.

The interest of a gap-reduction is that if Π is not approximable within a
factor ρ then Π ′ is not approximable within a factor ρ′.

The notion of an E-reduction (error-preserving reduction) was introduced in
[9] by Khanna et al. A problem Π is called E-reducible to a problem Π ′, if there
exist polynomial time computable functions f , g and a constant β such that

– f maps an instance I of Π to an instance I ′ of Π ′ such that opt(I) and
opt(I ′) are related by a polynomial factor, i.e. there exists a polynomial p

such that opt(I ′) ≤ p(|I|)opt(I),
– g maps any solution S′ of I ′ to one solution S of I such that ε(I, S) ≤

βε(I ′, S′).

An important property of an E-reduction is that it can be applied uniformly
to all levels of approximability; that is, if Π is E-reducible to Π ′ and Π ′ belongs
to C then Π belongs to C as well, where C is a class of optimization problems
with any kind of approximation guarantee (see also [9]).

3 NP-hardness of approximation

We first prove that k Most Vital Edges (Nodes) 1-median and k Most
Vital Edges (Nodes) 1-center are not constant approximable for some con-
stants, unless P=NP. For this, we construct, in theorems 1 and 2, gap-reductions
from Min Vertex Cover restricted to tripartite graphs. This problem is shown
NP -hard in [7] where Garey et al. prove that it is NP -hard to find a minimum
vertex cover in graphs of maximum degree 3, considering also that these graphs,
with the exception of the clique K4, are 3-colorable [4].
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Theorem 1. k Most Vital Edges 1-median and k Most Vital Edges 1-
center are NP-hard to approximate within a factor 7

5 −ǫ and 4
3 −ǫ respectively,

for any ǫ > 0.

Proof : We first consider k Most Vital Edges 1-median.
Let I be an instance of Min Vertex Cover formed by a graph G = (V, E)

with a tripartition V = V1 ∪ V2 ∪ V3 and |V | = n. We construct an instance I ′

of k Most Vital Edges 1-median consisting of a graph G′ = (V ′, E′) with
k < n as follows (see Figure 1). We associate for each node vi

ℓ ∈ Vi, two nodes
vi

ℓ,1 and vi
ℓ,2 in V ′ and connect them in E′, for i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. We

add for each edge (vi
ℓ, v

j
r) ∈ E, with i < j, the edge (vi

ℓ,2, v
j
r,1) to E′. We also

add four nodes x1, x2, x
′

2, x3 connected by the path (x1, x
′

2), (x
′

2, x2), (x2, x3). We
connect x1 to v1

ℓ,1 for ℓ = 1, . . . , |V1|, x′

2 to v2
ℓ,1 and x2 to v2

ℓ,2 for ℓ = 1, . . . , |V2|

and x3 to v3
ℓ,2 for ℓ = 1, . . . , |V3|. We assign a distance 1 to edges (x1, x

′

2),

(x1, v
1
ℓ,1), (x′

2, v
2
j,1), (x2, v

2
j,2) and (x′

2, x3) for ℓ = 1, . . . , |V1| and j = 1, . . . , |V2|,
a distance 2 for the edge (x′

2, x2) and a distance 0 for all the other edges in E′.
We set wx1

= 8, wx2
= wx3

= 1 and assign a weight 0 to all other nodes in
V ′. We replace all edges of E′, except the edges (vi

ℓ,1, v
i
ℓ,2), for i = 1, 2, 3 and

ℓ = 1, . . . , |Vi|, by the gadget given in Figure 2. For each edge to be replaced,
one chooses indifferently the vertex playing the role of i in Figure 2, except for
all edges incident to x1 for which we take x1 as i. We show in the following that:

1. opt(I) ≤ k ⇒ opt(I ′) ≥ 7
2. opt(I) > k ⇒ opt(I ′) ≤ 5

which proves that k Most Vital Edges 1-median is NP -hard to approxi-
mate within a factor 7

5 − ǫ, for any ǫ > 0.

First observe that there exists at least one optimal solution of k Most Vital
Edges 1-median containing only edges among the edges (vi

ℓ,1, v
i
ℓ,2), for i =

1, 2, 3 and ℓ = 1, . . . , |Vi|. Indeed, if a solution contains edges from a gadget
corresponding to an initial edge (i, j), it must contain at least n edges from this
gadget in order to have a chance to increase the solution value by suppressing
communication between i and j. Therefore, since k < n, it is at least as good to
select k edges among those which do not belong to the gadgets.

Observe also that G′ is designed so as to ensure that x1 will always be the
optimal 1-median node. Indeed, since the weight of vertex x1 is 8 and all edges
incident to x1 have distance 1, any other node would have a total weighted
distance of at least 8. In the following, x1 has always a total distance of at
most 7.

1. If there exists a vertex cover V ′ ⊆ V of cardinality less than k in G then
consider any set of vertices V ′′ ⊃ V ′ of cardinality k, and remove S′′ =
{(vi

ℓ,1, v
i
ℓ,2) : vi

ℓ ∈ V ′′} from G′. The optimal 1-median node in G′ − S′′ is
x1 with a total weighted distance d(x1, x2) + d(x1, x3) = 3 + 4 = 7. Hence,
opt(I ′) ≥ 7.
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2. Let S∗ be any solution of k Most Vital Edges 1-median which contains
only edges (vi

ℓ,1, v
i
ℓ,2), for i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. The optimal 1-

median node in G′ −S∗ is x1 with opt(I ′) = d(x1, x2)+ d(x1, x3). Each edge
(vi

ℓ,1, v
i
ℓ,2) of S∗ corresponds to a node vi

ℓ ∈ Vi in the graph G, for i = 1, 2, 3
and ℓ = 1, . . . , |Vi|. Let N∗ be the subset of nodes in G that correspond to
edges of S∗. Since |N∗| = k and opt(I) > k, N∗ is not a vertex cover in
G. Thus, there exists at least one edge (vi

ℓ, v
j
r) ∈ E which is not covered.

This implies in G′ the existence of a path from xi (or x′

i) to xj , with i < j,

passing through the gadget corresponding to the edge (vi
ℓ,2, v

j
r,1), enabling a

decrease of some shortest path distances. Hence,

• if i = 1 and j = 2 then opt(I ′) ≤ 6
• if i = 1 and j = 3 then opt(I ′) ≤ 3
• if i = 2 and j = 3 then opt(I ′) ≤ 6

Therefore, opt(I ′) ≤ 6.

We consider now k Most Vital Edges 1-center. We use the same con-
struction as above. We show that:

1. opt(I) ≤ k ⇒ opt(I ′) ≥ 4
2. opt(I) > k ⇒ opt(I ′) ≤ 3

which proves that k Most Vital Edges 1-center is NP -hard to approx-
imate within a factor 4

3 − ǫ, for any ǫ > 0.

Similarly as above, there exists at least one optimal solution of k Most
Vital Edges 1-center containing only edges among the edges (vi

ℓ,1, v
i
ℓ,2), for

i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. Moreover, as before, x1 will always be the optimal
1-center node.

1. If there exists a vertex cover V ′ ⊆ V of cardinality less than k in G then
consider any set of vertices V ′′ ⊃ V ′ of cardinality k, and remove S′′ =
{(vi

ℓ,1, v
i
ℓ,2) : vi

ℓ ∈ V ′′} from G′. The optimal 1-center node in G′ − S′′ is x1

with a maximum weighted distance max{d(x1, x2), d(x1, x3)} = 4. Hence,
opt(I ′) ≥ 4.

2. Let S∗ be any solution of k Most Vital Edges 1-center which contains
only edges (vi

ℓ,1, v
i
ℓ,2), for i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. The optimal 1-center

node in G′ − S∗ is x1 with opt(I ′) = max{d(x1, x2), d(x1, x3)}. Each edge
(vi

ℓ,1, v
i
ℓ,2) of S∗ corresponds to a node vi

ℓ ∈ Vi in the graph G, for i = 1, 2, 3
and ℓ = 1, . . . , |Vi|. Let N∗ be the subset of nodes of G corresponding to
edges in S∗. Since |N∗| = k and opt(I) > k, N∗ is not a vertex cover in
G. Thus, there exists at least one edge (vi

ℓ, v
j
r) ∈ E which is not covered.

This implies in G′ the existence of a path from xi (or x′

i) to xj , with i < j,

passing through the gadget corresponding to the edge (vi
ℓ,2, v

j
r,1). Hence,

• if i = 1 and j = 2 then opt(I ′) ≤ 3
• if i = 1 and j = 3 then opt(I ′) ≤ 3
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• if i = 2 and j = 3 then opt(I ′) ≤ 3

Therefore, opt(I ′) ≤ 3.

2

Theorem 2. k Most Vital Nodes 1-median and k Most Vital Nodes
1-center are NP-hard to approximate within a factor 3

2 − ǫ, for any ǫ > 0.

Proof : We first consider k Most Vital Nodes 1-median.
Let I be an instance of Min Vertex Cover formed by a graph G = (V, E)

with a tripartition V = V1 ∪ V2 ∪ V3 and |V | = n. We construct an instance I ′

of k Most Vital Nodes 1-median consisting of a graph G′ = (V ′, E′) with
k < n as follows (see Figure 3). G′ is a copy of G to which we add complete
graphs Ki

n with n nodes x1
i , . . . , x

n
i for i = 1, 2, 3. We connect each node vi

ℓ ∈ Vi

with each node xr
i , for i = 1, 2, 3, ℓ = 1, . . . , |Vi| and r = 1, . . . , n. We connect

also each node xr
i to each node xr

i+1 for i = 1, 2 and r = 1, . . . , n. We assign a
distance 2 to edges (xr

i , x
r
i+1) for i = 1, 2 and r = 1, . . . , n, a distance 1 to edges

(xr
1, v

1
ℓ ) for ℓ = 1, . . . , |V1| and r = 1, . . . , n and a distance 0 to all other edges

in E′. We set wxr
1

= 7 and wxr
2

= wxr
3

= 1 for r = 1, . . . , n, and wvi
ℓ

= 0 for

i = 1, 2, 3, ℓ = 1, . . . , |Vi|. We show in the following that:

1. opt(I) ≤ k ⇒ opt(I ′) ≥ 6n

2. opt(I) > k ⇒ opt(I ′) ≤ 4n

which proves that k Most Vital Nodes 1-median is NP -hard to approx-
imate within a factor 3

2 − ǫ, for any ǫ > 0.

First observe that there exists at least one optimal solution of k Most Vital
Nodes 1-median containing only nodes of V . Indeed, if a solution contains
nodes from Ki

n for some i, it must contain all nodes of Ki
n in order to have

a chance to increase the solution value by disconnecting these nodes from the
graph. Therefore, since k < n, it is at least as good to select k nodes in V only.

Observe also that G′ is designed so as to ensure that any node xr
1 for r =

1, . . . , n will always be an optimal 1-median node. Indeed, since the weight of
a vertex xr

1 is 7 and all edges incident to xr
1, except the edges (xr

1, x
j
1) for j =

1, . . . , n and j 6= r have distance at least 1, any other node would have a total
weighted distance of at least 7, while any node xr

1 has always a total weighted
distance of at most 6. We consider arbitrarily in the following that x1

1 is the
selected optimal 1-median node.

1. If there exists a vertex cover V ′ ⊆ V of cardinality less than k in G then
consider any set of vertices V ′′ ⊃ V ′ of cardinality k, and remove V ′′ from
G′. Taking x1

1 as the optimal 1-median node in G′ − V ′′, we get a total
weighted distance

∑n

j=1(d(x1
1, x

j
2) + d(x1

1, x
j
3)) =

∑n

j=1(2 + 4) = 6n. Hence,
opt(I ′) ≥ 6n.

2. Let N∗ ⊆ V be any solution of k Most Vital Nodes 1-median which
contains only nodes of V . Taking x1

1 as the optimal 1-median node in G′−N∗,
we get opt(I ′) =

∑n
ℓ=1(d(x1

1, x
ℓ
2)+d(x1

1, x
ℓ
3)). Since |N∗| = k and opt(I) > k,
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Fig. 3. Construction of G′ from G

N∗ is not a vertex cover in G. Thus, there exists at least one edge (vi, vj) ∈ E

which is not covered. This implies in G′ the existence of a path from each
xr

i to each xr
j for r = 1, . . . , n, passing through the edge (vi, vj). Hence,

• if i = 1 and j = 2 then opt(I ′) ≤
∑n

ℓ=1(1 + 3) = 4n

• if i = 1 and j = 3 then opt(I ′) ≤
∑n

ℓ=1(2 + 1) = 3n

• if i = 2 and j = 3 then opt(I ′) ≤
∑n

ℓ=1(2 + 2) = 4n

Consequently, opt(I ′) ≤ 4n.

We consider now k Most Vital Nodes 1-center. We use the same con-
struction as above, but we modify the distance associated to the edges (xr

2, x
r
3)

for r = 1, . . . , n for which we assign a distance 1. We show that:

1. opt(I) ≤ k ⇒ opt(I ′) ≥ 3
2. opt(I) > k ⇒ opt(I ′) ≤ 2

which proves that k Most Vital Nodes 1-center is NP -hard to approx-
imate within a factor 4

3 − ǫ, for any ǫ > 0.

As previously, we can show that only the nodes of V can be removed. We
observe as above that any node xr

1 for r = 1, . . . , n will always be an optimal
1-center node. We consider arbitrarily in the following that x1

1 is the selected
optimal 1-center node.
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1. If there exists a vertex cover V ′ ⊆ V of cardinality less than k in G then
consider any set of vertices V ′′ ⊃ V ′ of cardinality k, and remove V ′′

from G′. Taking x1
1 as the optimal 1-center node in G′ − V ′′, we get a

maximum weighted distance max { max
j=1,...,n

d(x1
1, x

j
2), max

j=1,...,n
d(x1

1, x
j
3)} = 3.

Hence, opt(I ′) ≥ 3.
2. Let N∗ ⊆ V be any solution of k Most Vital Nodes 1-center which

contains only nodes of V . Taking x1
1 as the optimal 1-center node in G′−N∗,

we get opt(I ′) = max { max
ℓ=1,...,n

d(x1
1, x

ℓ
2), max

ℓ=1,...,n
d(x1

1, x
ℓ
3)}. Since |N∗| = k

and opt(I)> k, N∗ is not a vertex cover in G. Thus, there exists at least one
edge (vi, vj) ∈ E which is not covered. This implies in G′ the existence of
a path from each xr

i to each xr
j for r = 1, . . . , n, passing through the edge

(vi, vj). Hence,

• if i = 1 and j = 2 then opt(I ′) = max{d(x1
1, x

1
2), d(x1

1, x
1
3)} ≤ 2

• if i = 1 and j = 3 then opt(I ′) = d(x1
1, x

1
2) ≤ 2

• if i = 2 and j = 3 then opt(I′) = max{d(x1
1, x

1
2), d(x1

1, x
1
3)} ≤ 2.

Therefore, opt(I ′) ≤ 2.

2

We prove now that the four problems Min Edge (Node) blocker 1-
median and Min Edge (Node) blocker 1-center are not 1.36 approx-
imable, unless P=NP. These results, stated in theorems 3 and 4, are obtained
by constructing E-reductions from Min Vertex Cover shown NP -hard to
approximate within a factor 1.36 [5].

Theorem 3. Min Edge blocker 1-median and Min Edge blocker 1-
center are NP-hard to approximate within a factor 1.36.

Proof : We first consider Min Edge blocker 1-median.
Let I be an instance of Min Vertex Cover consisting of a graph G = (V, E)

with V = {v1, . . . , vn}. We construct an instance I ′ of Min Edge blocker 1-
median formed by a graph G′ = (V ′, E′) and a positive integer U as follows
(see Figure 4). We associate for each node vi ∈ V two nodes vi and v′i in V ′ and
connect them in E′ for i = 1, . . . , n. We add for each edge (vi, vj) ∈ E, with i < j,
an edge (v′i, vj) to E′. We also add 2n nodes x1, x

′

1, x2, x
′

2, . . . , xn, x′

n connected
by the path (x1, x

′

1), (x′

1, x2), (x2, x
′

2), (x′

2, x3), . . . , (x′

n−1, xn), (xn, x′

n). Finally,
we connect xi to vi and x′

i to v′i for i = 1, . . . , n. We assign the following distances
to the edges of E′: dviv

′

i
= 0, dxivi

= dx′

i
v′

i
= 1 and dxix

′

i
= 2 for i = 1, . . . , n,

dx′

i
xi+1

= 0 for i = 1, . . . , n−1 and dv′

i
vj

= 2(j− i)−1 for (vi, vj) ∈ E and i < j.

We set wx1
= 2n2 + 1, wxi

= 1 for i = 2, . . . , n, wx′

i
= 1 and wvi

= wv′

i
= 0 for

i = 1, . . . , n and we consider that U = 2n2. We replace each edge of E′, except
the edges (vi, v

′

i) for i = 1, . . . , n, by the gadget given in Figure 2 where each
edge is replaced by n+1 instead of n disjoint paths of length 2 (for edges (x1, v1)
and (x1, x

′

1), x1 plays the role of i in Figure 2).
Observe that G′ is designed so as to ensure that x1 will always be the op-

timal 1-median node. Indeed, since the weight of vertex x1 is 2n2 + 1 and all
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x′

4
x4x′

3
x3x′

2
x2x′

1
x1

v′

4
v4

v′

3
v3

v′

2
v2

v′

1
v1v4

v3

v2

v1

1 1

1 1

1 1

1 1

2020202

1
5

31

0

0

0

0

2n2 1 1 1 1 1 1 1

with wvℓ
= wv′

ℓ
= 0 for ℓ = 1, . . . , 4

Fig. 4. Construction of G′ from G with n = 4 nodes

edges incident to x1 have distance at least 1, any other node would have a total
weighted distance of at least 2n2 + 1. In the following, x1 has always a total
distance of at most 2n2.

We prove first that opt(I ′) ≤ opt(I). Let V ∗ ⊆ V be a minimum vertex
cover of G. Let us consider S∗ = {(vi, v

′

i) : vi ∈ V ∗}. By removing the edges
in S∗ from G′, the optimal 1-median node is x1 with a total weighted distance
∑n

i=1 wxi
d(x1, xi)+

∑n
i=1 wx′

i
d(x1, x

′

i) = 2(
∑n−1

i=1 i+
∑n

i=1 i) = 2n2 = U . Hence,
opt(I ′) ≤ |S∗| = opt(I).

When we remove all edges (vi, v
′

i), for i = 1, . . . , n from G′, the optimal 1-median
node in the resulting graph is x1 with value U . Hence, opt(I ′) ≤ n. Let S ⊆ E′

be an edge blocker for G′. If S contains an edge (i, eℓ
ij) or (eℓ

ij , j) from a gadget
corresponding to an initial edge (i, j), it must contain at least n + 1 edges from
this gadget in order to suppress the communication between i and j, otherwise
the value of an optimal solution for the 1-median problem in G′ −S is the same
as in G′ − (S\{(i, eℓ

ij)}) or G′ − (S\{(eℓ
ij , j)}). Therefore, since opt(I ′) ≤ n, we

can consider in the following that S contains only edges among the edges (vi, v
′

i),
i ∈ {1, . . . , n}.

Let us consider N = {vi : (vi, v
′

i) ∈ S} where S is an edge blocker. We prove,
by contradiction, that N is a vertex cover in G. Suppose that there exists an
edge (vi, vj) ∈ E such that vi 6∈ N , vj 6∈ N and i < j. We show in the fol-
lowing that by removing S from G′, the value of an optimal solution for the
1-median problem in the remaining graph is strictly less than 2n2. Indeed, x1 is
the optimal 1-median node in G′ − S. Let D(x1) be the total weighted distance
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associated to x1 in G′ −S. We have D(x1) =
∑n

ℓ=1 d(x1, x
′

ℓ)+
∑n

ℓ=1 d(x1, xℓ) =
∑j−1

ℓ=1 d(x1, x
′

ℓ) + d(x1, x
′

j) +
∑n

ℓ=j+1 d(x1, x
′

ℓ)+
∑n

ℓ=1 d(x1, xℓ). Then, D(x1) ≤

2
∑j−1

ℓ=1 ℓ + d(x1, x
′

j) + 2
∑n

ℓ=j+1 ℓ + 2
∑n−1

ℓ=1 ℓ = 2
∑n

ℓ=1 ℓ − 2j + d(x1, x
′

j) +

2
∑n−1

ℓ=1 ℓ = 2n2 − 2j + d(x1, x
′

j). The edge (vi, vj) being not covered, this im-
plies the existence of a path from x1 to x′

j using a subpath from x1 to xi and
joining xi to x′

j by a subpath passing through the gadget associated to the edge
(vi, vj). We have d(x1, x

′

j) ≤ 2(i − 1) + 1 + 2(j − i) − 1 + 1 = 2j − 1. Thus, we

have D(x1) ≤ 2n2 − 1 < 2n2, contradicting the assumption that S is an edge
blocker. Therefore, N is a vertex cover in G such that val(I, N) = val(I ′, S).

Consequently, ε(I, N) = val(I,N)
opt(I) − 1 ≤ val(I′,S)

opt(I′) − 1 = ε(I ′, S), which achieves

the proof.

We consider now Min Edge blocker 1-center.
We use the same construction as above with U = 2n. As above, G′ is designed

so as to ensure that x1 will always be the optimal 1-center node.

We show first that opt(I ′) ≤ opt(I). Let V ∗ ⊆ V be a minimum vertex cover
in G. Let us consider S∗ = {(vi, v

′

i) : vi ∈ V ∗}. By removing the edges of S∗

from the graph G′, the optimal 1-center node is x1 with a maximum weighted
distance d(x1, x

′

n) = 2n = U . Hence, opt(I ′) ≤ |S∗| = opt(I).

Let S ⊆ E′ be an edge blocker. We can assume, similarly to the 1-median
problem, that S contains only edges among the edges (vi, v

′

i), i ∈ 1, . . . , n. Let
us consider N = {vi : (vi, v

′

i) ∈ S}. In the following, we show by contradiction
that N is a vertex cover in G. Suppose that there exists an edge (vi, vj) ∈ E

such that vi 6∈ N , vj 6∈ N and i < j. Then x1 is the optimal 1-center node
in G′ − S with a maximum weighted distance Dmax(x1) = d(x1, xn). The edge
(vi, vj) being not covered, this implies the existence of a path from x1 to x′

j using
a subpath from x1 to xi and joining xi to x′

j by a subpath passing through the
gadget associated to the edge (vi, vj). Then Dmax(x1) ≤ 2(i− 1)+1+2(j− i)−
1 + 1 + 2(n− j) = 2n− 1 < 2n, contradicting the assumption that S is an edge
blocker. Therefore N is a vertex cover in G such that val(I, N) = val(I ′, S).

Consequently, ε(I, N) = val(I,N)
opt(I) − 1 ≤ val(I′,S)

opt(I′) − 1 = ε(I ′, S), which achieves

the proof. 2

Theorem 4. Min Node blocker 1-median and Min Node blocker 1-
center are NP-hard to approximate within a factor 1.36.

Proof : We consider first Min Node blocker 1-median.
Let I be an instance of Min Vertex Cover consisting of a graph G = (V, E)

with V = {v1, . . . , vn}. We construct an instance I ′ of Min Node blocker 1-
median formed by a graph G′ = (V ′, E′) and a positive integer U as follows
(see Figure 5). G′ is a copy of G to which we add one node x1 and complete
graphs Ki

n+1 with n + 1 nodes x1
i , . . . , x

n+1
i for i = 2, . . . , n. We connect x1

to v1 and xr
2 for r = 1, . . . , n + 1, and each node xr

i to vi for i = 2, . . . , n

and r = 1, . . . , n + 1. We also connect each node xr
i to each node xr

i+1 for
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r = 1, . . . , n + 1 and i = 2, . . . , n − 1. We assign a distance 1 to the edge
(x1, v1), a distance 2 to the edges (x1, x

r
2) and (xr

i , x
r
i+1) for i = 2, . . . , n− 1 and

r = 1, . . . , n + 1, and a distance 0 to all other edges in E′. Let us set wx1
= n3,

wxr
i

= 1 for i = 2, . . . , n and r = 1, . . . , n + 1 and wvi
= 0 for i = 1, . . . , n.

Finally, we set U = n(n2 − 1).

x1

v4

v3

v2

v1v4

v3

v2

v1

K2
5

K3
5

K4
5

0

0

0

2 2 2

1

0

0

00

n3 1 1 1

0

0

0

0

Fig. 5. Construction of G′ from G with n = 4 nodes

Observe that G′ is designed so as to ensure that x1 will always be the optimal
1-median node. Indeed, since the weight of vertex x1 is n3 and all edges incident
to x1 have distance at least 1, any other node would have a total weighted
distance of at least n3. In the following, x1 has always a total distance of at
most n(n2 − 1).

We show first that opt(I ′) ≤ opt(I). Let V ∗ ⊆ V be a minimum vertex cover
in G. By removing V ∗ from G′, the optimal 1-median node is x1 with a total
weighted distance

∑n

ℓ=2

∑n+1
r=1 d(x1, x

r
ℓ) = 2(n+1)

∑n−1
i=1 i = n(n−1)(n+1) = U .

Hence, opt(I ′) ≤ |V ∗| = opt(I).

Let N ⊆ V ′ be a node blocker. According to the construction of G′, in order
to obtain an optimal solution for the 1-median problem in the graph G′ − N of
a value at least U , N must be included in V . We show, by contradiction, that
N is a vertex cover in G. Suppose that there exists an edge (vi, vj) ∈ E such
that vi 6∈ N , vj 6∈ N and i < j. The optimal 1-median node in G′−N is x1 with
value strictly less than n(n− 1)(n + 1). Indeed, let D(x1) be the total weighted

distance associated to x1 in G′ − N . Hence, D(x1) =
∑n

ℓ=2

∑n+1
r=1 d(x1, x

r
ℓ) =

∑j−1
ℓ=2

∑n+1
r=1 d(x1, x

r
ℓ ) +

∑n+1
r=1 d(x1, x

r
j) +

∑n+1
r=1

∑n
ℓ=j+1 d(x1, x

r
ℓ)). We distin-

guish two cases:
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• If vi = v1 then d(x1, x
r
j) = dx1v1

+ dv1vj
+ dvjxr

j
= 1 for r = 1, . . . , n + 1.

Hence, we obtain D(x1) ≤ 2(n + 1)
∑j−2

ℓ=1 ℓ + (n + 1) + 2(n + 1)
∑n−1

ℓ=j ℓ <

2(n + 1)
∑j−2

ℓ=1 ℓ + 2(j − 1)(n + 1) + 2(n + 1)
∑n−1

ℓ=j ℓ = n(n − 1)(n + 1),
contradiction.

• If vi 6= v1 then d(x1, x
r
j) = d(x1, x

1
i ) + dx1

i
vi

+ dvivj
+ dvjxr

j
= d(x1, x

1
i ) for

r = 1, . . . , n + 1. Hence, we obtain D(x1) ≤ 2(n + 1)
∑j−2

ℓ=1 ℓ + 2(i − 1)(n +

1)+2(n+1)
∑n−1

ℓ=j ℓ < 2(n+1)
∑j−2

ℓ=1 ℓ+2(j−1)(n+1)+2(n+1)
∑n−1

ℓ=j ℓ =
n(n − 1)(n + 1), contradiction.

Therefore N is a vertex cover in G such that val(I, N) = val(I ′, N). Conse-

quently, ε(I, N) = val(I,N)
opt(I) − 1 ≤ val(I′,N)

opt(I′) − 1 = ε(I ′, N), which achieves the

proof.

We consider now Min Node blocker 1-center.

We use the same construction as above with U = 2(n − 1). Here again, we
observe that G′ is designed so as to ensure that x1 will always be the optimal
1-center node.

We show first that opt(I ′) ≤ opt(I). Let V ∗ ⊆ V be a minimum vertex
cover in G. By deleting the nodes of V ∗ from G′, the optimal 1-center node
in the remaining graph is x1 with a maximum weighted distance d(x1, x

r
n) =

2(n − 1) = U for any r = 1, . . . , n + 1. Hence, opt(I ′) ≤ |V ∗| = opt(I).

When we remove all nodes vi, i = 1, . . . , n from G′, the optimal 1-center
node in the resulting graph is x1 with value U . Hence, opt(I ′) ≤ n. Let N ⊆ V ′

be a node blocker. According to the construction of G′, in order to obtain an
optimal 1-center node in G′ − N of value at least U , N cannot contain x1. If
N contains nodes xℓ

i for a given i and ℓ, then N must contains all the n + 1
nodes xr

i for r = 1, . . . , n + 1, otherwise the value of an optimal solution for the
1-center problem in G′ − N is the same as in G′ − (N\{xℓ

i}). Therefore, since
opt(I ′) ≤ n, we can consider in the following that N is included in V . In the
following, we prove by contradiction that N forms a vertex cover in G. Suppose
that there exists an edge (vi, vj) ∈ E such that vi 6∈ N , vj 6∈ N and i < j. By
removing N from G′, the optimal 1-center node is x1 with a maximum weighted
distance Dmax(x1) = d(x1, x

r
n) for any r = 1, . . . , n. We distinguish two cases:

• if vi = v1 then Dmax(x1) = dx1v1
+ dv1vj

+ dvjx1
j
+ d(x1

j , x
r
n) ≤ 1 + 0 + 0 +

2(n − j) ≤ 1 + 2n − 4 < 2(n − 1), contradiction.

• if vi 6= v1 then Dmax(x1) ≤ d(x1, x
1
i ) + dx1

i
vi

+ dvivj
+ dvjx1

j
+ d(x1

j , x
r
n) ≤

2(i− 1)+0+0+0+2(n− j) = 2(n− 1)− 2(j− i) < 2(n− 1), contradiction.

Therefore N is a vertex cover in G such that val(I, N) = val(I ′, N). Conse-

quently, ε(I, N) = val(I,N)
opt(I) − 1 ≤ val(I′,N)

opt(I′) − 1 = ε(I ′, N), which achieves the

proof. 2
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4 Conclusion

We established in this paper negative results concerning the approximation of k

most vital edges (nodes) and min edge (node) blocker versions of the 1-median
and 1-center location problems. An interesting open question would be to estab-
lish positive results concerning the approximability of these problems. Another
interesting perspective is to find efficient exact algorithms to solve them.
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