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Introduction

It is becoming accepted that leveraging query logs would help the user analyzing large databases or data warehouses [START_REF] Khoussainova | A case for a collaborative query management system[END_REF]. As a clear evidence of this, it has recently been shown that browsing and querying logs actually speeds up the query formulation, by supporting better query reuse [START_REF] Khoussainova | Session-based browsing for more effective query reuse[END_REF]. This is particularly relevant in a collaborative context for instance to issue recommendations [START_REF] Chatzopoulou | Query recommendations for interactive database exploration[END_REF][START_REF] Giacometti | Recommending multidimensional queries[END_REF][START_REF] Giacometti | Query Recommendations for OLAP Discovery-Driven Analysis[END_REF][START_REF] Stefanidis | You May Also Like" Results in Relational Databases[END_REF]. But to the best of our knowledge, even the simple problem of providing the end user with a concise representation of what is inside a large log has rarely been addressed, apart from helping a DBA to tune the RDBMS [START_REF] Khoussainova | A case for a collaborative query management system[END_REF].

Using such a summary, that avoids overwhelming the user, would have many advantages, including:

• allowing a decision maker to have a rough idea of the queries launched by other decision makers, • helping the user to access the precise part of the log containing particular queries he/she is looking for, • helping an administrator to manage and tune the OLAP server, e.g., if the summary indicates the frequently accessed members, • aassisting the decision maker to perform new analysis sessions by considering the previous queries.

In this article we present and develop the work initiated in [START_REF] Aligon | A framework for summarizing a log of OLAP queries[END_REF][START_REF] Aligon | Résumé et interrogation de logs de requêtes OLAP[END_REF]. In these papers, we proposed a framework for summarizing an OLAP query log, and we studied basic properties of the framework for helping the user to query the log. The present article provides a detailed presentation of the framework and introduces its implementation as a system for summarizing and querying log files. To this end, we extend the search facilities introduced in [START_REF] Aligon | Résumé et interrogation de logs de requêtes OLAP[END_REF] to obtain a declarative language with which complex queries over a log file can be expressed.

Our approach is based on the idea that a log, which is a sequence of queries, is summarized by another sequence of queries, i.e., by another (much shorter) log. It entails that a query summarizes other queries. Our framework includes:

• A language tailored for OLAP queries, named QSL, for declaratively expressing summaries. This language is composed of binary and unary operators that allow to summarize queries. • A greedy algorithm using QSL for automatically constructing summaries of query logs. • A quality measure adapted from the classical precision and recall, that allows to measure how faithful the constructed summaries are. • Two sub-languages of QSL whose properties w.r.t. the quality measure are used to ensure that summaries can help query the log efficiently. • Compositional search operators with which the user can query the log for particular OLAP queries.

This paper is organized as follows. Next section motivates the approach with a toy example. The QSL query language which is at the core of our framework is presented in Section 3. Section 4 describes the quality measure based on precision and recall, that is used to assess the summaries expressed in QSL. In Section 5, we present the algorithm that automatically constructs summaries based on QSL and the quality measure. We also introduce the properties of the summaries constructed with sub-languages of QSL. Section 6 presents the language for querying logs, and describes how properties of the framework can be used to ensure efficient searches. Section 7 describes the implementation of the framework and the experiments conducted to evaluate its effectiveness. Section 8 discusses related work. We conclude and draw perspectives in Section 9. Assume we want to summarize these queries by another query. Various solutions are possible. First, we can summarize the queries by retaining for each dimension the most frequent members. This could be of interest for a DBA who would like to know what indices to store. In that case, the resulting query would ask for sales of Coke in regions North or South during July 2008 (i.e., query q 2 ). A second alternative would be to summarize the queries with another query having for each dimension the members that cover all members present in the initial queries. For example, note that Pepsi, Coke and Orangina are sodas, cities Paris and Marseille and regions North and South are in France and all three queries concern year 2008. The query summarizing the log L would then ask for the sales of Soda in France in 2008. The user interested in more details on the query could then query the log to find the queries that were indeed launched. Finally, note that we can have a compromise by summarizing q 1 and q 2 first, say with the second alternative, and then summarizing the resulting summary with q 3 , say with the first alternative. In that case, we would obtain the query asking for the sales of Soda and Orangina in France, region North and region South, for year 2008 and the second semester of 2008.

These examples show the need for flexibility in how the summary is computed. This is why in our approach we propose that summaries can be specified declaratively with a query manipulation language called QSL. QSL expressions are used to combine several queries into a query that summarises them. Note that so far, we have illustrated the problem of summarizing queries by another query. But a set of queries could be summarized by another set of queries. Moreover, summaries for a log should respect the fact that logs are sequences of queries. For instance, consider again L, this log could be summarized by the sequence q 1 , q 3 where q 1 is a summary of q 1 and q 2 asking for the sales of Soda in France in the second semester of 2008. To automatically construct a summary from a log, we propose an algorithm that constructs QSL expressions for summarising subsequences of the log.

In addition, as various summaries can be computed from one log, the quality of these summaries should be evaluated. For instance, for our first alternative, the quality measure should take into account the fact that 'Orangina' is present in the log but not in the summary. In our second alternative, this measure should take into account that indeed 'North' and 'South' covers 'Paris' and 'Marseille' but also 'Blois', that is not present in the log. We propose such a quality measure that extends the classical notions of precision and recall.

Finally, note that summaries computed from a log may not give precise information on the queries in the log. For instance the user may wish to know if a query on member 'Blois' appears in the log, what are all the queries of the log that deal with 'drink' or one of its descendant, or what are the queries in the log following queries dealing with 'Coke'. We thus propose two operators that allow to express such searches on a log (or even on a summary).

QSL: a Query Summarizing Language

In this section, we formally define the manipulation language, called QSL, used to summarize OLAP queries.

Preliminary definitions

As the query summarizing language is tailored for OLAP queries, we first begin with the definition of an OLAP query. Note that in this paper, we do not consider query result, and thus the definition of a query result is not given.

An n-dimensional cube C = D 1 , ..., D n , F is defined as the classical n + 1 relation instances of a star schema, with one relation instance for each of the n dimensions D i and one relation instance for the fact table F. For a dimension D i having schema

S i = {L i 1 , . . . , L i d i }, a member m is any constant in L i j ∈S i π L i j (D i ).
For a dimension D i , we consider that members are arranged into a hierarchy < i and we note m < i m (or m < m or m covers m) the fact that the member m is the ancestor of m in this hierarchy.

Given such a cube, a cell reference (or reference for short) is an n-tuple m 1 , ..., m n where m i is a member of dimension D i , ∀i ∈ [1, n]. We define multidimensional queries as sets of references that can be expressed as Cartesian products of multisets. The reason for having multisets is to be able to define operators that count members' occurrences. In this work, we distinguish between a query and its expression called query expression. A query expression is a tuple of multisets, one multiset of members in each dimension. The cross-product of these multisets is a multiset of references, which is the query. Definition 1. (Query expression and Query) Given an n-dimensional cube C = D 1 , ..., D n , F , let R i be a multiset of members of dimension D i , ∀i ∈ [1, n]. A query expression q = R 1 , ..., R n is a tuple of multisets of members, one for each dimension D i of C. Given such an expression, the query specified by q is the multiset of references R 1 × ... × R n .

The distinction between query expression and query is needed since a query can be specified by different query expressions. For instance, the two following expressions {a}, {b, b} and {a, a}, {b} both specify query { a, b , a, b }. When the context is clear, a query expression and the query it specifies will be confounded.

A log L is a finite sequence of query expressions. A log will be noted L = q 1 , . . . , q m . The set of positions of a log L is noted pos(L). The set of query expressions appearing in a log L is noted queries(L). We note q ∈ L for a log L if q ∈ queries(L). In what follows, we assume an ndimensional cube C = D 1 , ..., D n , F . In the subsequent definitions, i ranges from 1 to n. For a query expression q = R 1 , ..., R n , m i (q) = R i denotes its multiset of members in dimension D i . The multiset m i (q) will be noted S i , f i , where S i is a set and f i is a function giving the occurrences of each element of S i .

Example 1. Consider the three queries q 1 , q 2 and q 3 of the toy example described in the previous section. Note that q 1 can be expressed in the MDX query language: SELECT { We have m 1 (q 1 ) = {Pepsi,Coke}, m 2 (q 1 ) = {July08}, m 3 (q 1 ) = {Paris, Marseille}. The query expression is: q 1 = {Pepsi,Coke} , {July08} , {Paris, Marseille} . The query expressions q 2 and q 3 are:

• q 2 = {Coke} , {July08} , {North, South} • q 3 = {Orangina}, {S2-08}, {North, South}
The language we propose is composed of unary operators and binary operators that manipulate query expressions and output a query expression, that is called a summary query (or simply summary for short). The main idea behind the definition of these operators is that they operate dimension-wise: They define a new query expression from the one(s) in parameter by treating each dimension independently. We now present formally these operators, starting with the binary operators.

The binary operators of QSL

The first operators are the classical bag operators [START_REF] Garcia-Molina | Database Systems: The Complete Book[END_REF] extended to multiple dimensions. Definition 3. (Bag operators) Given two query expressions q 1 and q 2 and op ∈ {∪ B , ∩ B , \ B }, q 1 op q 2 is the query expression q with ∀i ∈ [1, ..., n], m i (q) = m i (q 1 ) op m i (q 2 ).

Example 2. Consider the first two query expressions of Example 1, we have:

• q 4 = q 1 ∪ B q 2 = {Pepsi,Coke,Coke} , {July08, July08} , {Paris, Marseille, North, South} • q 5 = q 1 ∩ B q 2 = {Coke} , {July08} , / 0 • q 6 = q 1 \ B q 2 = {Pepsi} , / 0, {Paris, Marseille}
Note that q 5 and q 6 are two different expressions of the same query which is the empty set.

The next operator gives priority to one query expression over the other.

Definition 4. (Priority operator) Given two query expressions q 1 and q 2 . q 1 q 2 gives priority to q 1 over q 2 . Hence, the priority operator is simply defined by q 1 q 2 = q 1 .

The unary operators of QSL

Our first operator outputs, for a query expression q in parameter, a query expression for which only the most frequent members of q in each dimension are retained. Definition 5. (Mostfreq operator) Let q be a query expression with m i (q) = S i , f i for all i. most freq(q) is the query expression q with ∀i ∈

[1, n], m i (q ) = S i = {m ∈ S i | m ∈ S i , f i (m ) > f i (m)}, f i | S i
( f i |X denotes the restriction of a function f i to the set X).

Example 3. most freq(q 4 ) = {Coke,Coke} , {July08, July08} , {Paris, Marseille, North, South} .

Our second operator outputs, for a query expression q in parameter, a query expression for which only the most general members of q in each dimension are retained, w.r.t. the hierarchy of the dimension. Definition 6. (Max operator) Let q be a query expression. max(q) is the query expression q with ∀i ∈

[1, n], m i (q ) = S i = {m ∈ m i (q)| m ∈ m i (q), m < i m }, f i | S i .
Example 4. max(q 4 ) = {Pepsi,Coke,Coke} , {July08, July08} , {North, South} .

Our last operator outputs, for a query expression q in parameter, a query expression for which only the lowest common ancestors of the members of q in each dimension are retained, w.r.t. the hierarchy of the dimension. Definition 7. (lca operator) Let q be a query expression. Let lca be the function that outputs, for a given set of members M in dimension D i , their common ancestor w.r.t. < i , i.e., {m

∈ D i |∀m ∈ M, (m < i m) ∧ m , (m < i m ∧ m < i m)}, or, if lca(m) = / 0 (i.e.
, if m is the All member) then lca(m) = {m}. Then, lca(q) is the query expression q with ∀i ∈ [1, ..., n], m i (q ) = lca(m i (q)) .

Example 5. lca(q 4 ) = {Soda}, {S2-08}, {France} .

Expression of various summaries

We now briefly illustrate how QSL can be used. For instance, consider a log L composed of 3 query expressions: L = q 1 , q 2 , q 3 . This log can be summarized by the query expression q 1 s that retains only the members that appear in all queries for each dimension, i.e., q 1 s = q 1 ∩ B q 2 ∩ B q 3 . Alternatively, L can be summarized by taking into account the frequency of the members used in the log: q 2 s = most freq(q 1 ∪ B q 2 ∪ B q 3 ). Finally, L can be summarized by a query roughly indicating the parts of the cube that were explored: q 3 s = lca(q 1 ∪ B q 2 ∪ B q 3 ). We illustrate these possibilities on our running example. Example 6. Summarizing by retaining the common members of all queries for each dimension gives: q 1 s = (q 1 ∩ B q 2 ∩ B q 3 ) = / 0, / 0, / 0 . Summarizing basing on the frequencies of the members gives: q 2 s = most freq(q 1 ∪ B q 2 ∪ B q 3 ) = {Coke} , {July08} , {North, South} . Summarizing with lca gives: q 3 s = lca(q 1 ∪ B q 2 ∪ B q 3 ) = {Soda} , {2008} , {France} .

Properties of QSL

We first note that the QSL language cannot be presented as an algebra. In particular, it is neither minimal, nor complete with respect to query expressions. For instance, the intersection operator can be simulated using the difference operator, hence the non minimality. In addition, not all query expressions can be computed using QSL due to the fact that no operation enables to move down along hierarchies. Achieving minimality and completeness, though theoretically compelling, may be of little practical use. For instance, it is well known that dropping minimality enables dedicated optimisations, as it is the case for outer-join in the relational algebra. Nevertheless, in the case of QSL, minimality can be achieved by dropping intersection. As to completeness, instead of defining other operators, QSL completeness can be characterized with respect to the kind of query expressions it can compute, which are more general expressions (in the sense of Definition 10, introduced in Section 6.2). While a precise characterization is part of our future work, we list below the properties of the QSL operators. Some of these properties, like for instance the distributivity of max or the commutativity of max and lca are used in our implementation of the framework.

Let q, q 1 , q 2 be query expressions. We have the following:

• ∪ B , ∩ B , \ B keep their classical properties [START_REF] Garcia-Molina | Database Systems: The Complete Book[END_REF].

• max and most f req are idempotents: max(max(q)) = max(q) and most f req(most f req(q)) = most f req(q). • max is distributive over ∪ B and \ B : max(q 1 ∪ B q 2 ) = max(max(q 1 ) ∪ B max(q 2 ))

and max(q

1 \ B q 2 ) = max(q 1 \ B max(q 2 )). •
is associative: q (q 1 q 2 ) = (q q 1 ) q 2 = q. • max and lca commute: max(lca(q)) = lca(max(q)) = lca(q). • most f req(lca(q)) = lca(q).

Assessing the quality of a summary

In this section, we present the measure used to evaluate the quality of summaries. We begin with an intuitive presentation, then give the formal definition and we finally give the properties of the QSL operators w.r.t. this measure.

Intuition

The measure should assess to which extends a query (respectively, a log), which is a set of references (respectively, of queries), is a faithful summary of another query (respectively, another log). The operators of QSL define summaries by adding or removing references to their operands. For instance the lca operator summarizes by adding references containing ancestors. The measure should thus assess the proportion of what is added or removed to define the summary. This is achieved by adapting the classical notion of precision and recall. In our context, these measures should be extended to take into account the cover relation used by the operators.

For instance, in Example 5, the expression lca(q 1 ∪ B q 2 ) summarizes q 1 and q 2 by {Soda}, {S2-08}, {France} , which specifies the query q = {Soda} × {S2-08} × {France}. Looking at the references of q 1 , q 2 and q, it can be seen that q is obtained by removing references {Coke, Pepsi}×{July08}× {Paris, Marseille, North, South} and adding the reference {Soda} × {S2-08} × {France}. If we apply the classical precision and recall measures to evaluate its quality, both are null. However, we can consider this summary as a good summary with a good quality since the added reference covers the removed references. Its recall would then be 1 and its precision would depend on the number of references covered by the added reference and not in the removed references.

We propose to extend recall and precision by taking into account a cover relation between the elements of the two sets, the summary and the summarized. In this article we use the cover relation defined over references since both queries and logs can be seen as sets of references, and thus the quality measure can be used on queries or on logs, or on any sets of references. Note that the definition of the measure is even more general in the sense that it does not rely on a particular cover relation. We now formalize these notions.

Definitions and properties

We first introduce the notion of coverage of references. We have cover(D) ⊂ cover(A). Intuitively, we expect a maximum recall and a bad precision because all covered references are recalled but a lot of other references are introduced.

Definition 8. (Coverage) A reference r = m 1 , ..., m n covers another reference r = m 1 , ..., m n if ∀ i ∈ [1, n], m i > i m i or m i = m i . For a set R of references, cover(R)={ f ∈ Π L 1 1 (D 1 ) × Π L 2 1 (D 2 ) × ... × Π L n 1 (D n ) | ∃r ∈ R, r covers f }.
To formalize this intuition, our measure of recall is the proportion of covered references existing in cover(D) and found in cover(A) compared with the set of references in cover(D). Moreover, recall favours maximality of K. Our measure of precision is the proportion of covered references existing in cover(D) and found in cover(A) compared with the set of references in cover(A). As for recall, precision encourages maximality of K. Of course if the summary is empty then the measure should be zero. Definition 9. (h f -measure) Let L and R be two sets and

K = L ∩ R, D = L \ K and A = R \ K. Let {D 1 , ..., D n } be the set of dimensions defining the coverage. h-recall is r = |K ∪ (cover(D) ∩ cover(A))| |K ∪ cover(D)| and h-precision is p = |K ∪ (cover(D) ∩ cover(A))| |K ∪ cover(A)|
. These measures are aggregated with the classical F-

measure: h f -measure (L, R, {D 1 , ..., D n }) = 2 × p × r p + r .
We conclude this section by noting that all operators of QSL maximize either h-recall or h-precision. Indeed, ∪ B and lca lead to a h-recall of 1 and precision in 0 and 1, and all other operators lead to a h-precision of 1 and a recall in 0 and 1. Table 1 gives the range of values for h-recall, h-precision, recall and precision of each operator of QSL. The following property can easily be shown.

Property 1. Let L and R be two sets and {D 1 , ..., D n } be a set of dimensions defining a coverage. h f -measure (L, R, {D 1 , ..., D n }) = 1 if and only if R and L cover exactly the same set of references. 

operators h-precision h-recall precision recall ∪ B [0..1] 1 [0..1] 1 ∩ B 1 [0..1] 1 [0..1] \ B 1 [0..1] 1 [0..1] 1 [0..1] 1 [0..1] lca [0..1] 1 [0..1] [0..1] max 1 [0..1] 1 [0..1] most f req 1 [0..1] 1 [0..1] Table 1

Automatic summarization of a query log

In this section, we present an algorithm for summarizing a log, based on QSL and our quality measure h f -measure. The main idea is that a summary of a log is also a log. We also present the properties of the summaries constructed with the algorithm.

SummarizeLog Algorithm

SummarizeLog algorithm is a greedy algorithm successively summarizing the queries of a log using QSL operators until a given length α for the summary is reached. The QSL expression used is that maximizing h f -measure while changing the log. Two strategies are defined for the choice of the expression. The first one checks for each query or each pair of consecutive queries what is the QSL operation maximizing h f -measure. The chosen expression is this particular operation (strategy 1). The second strategy checks for each pair of consecutive queries what is the QSL binary operation maximizing h f -measure and applies this operation. Then the strategy looks for on this result, the unary operation maximizing h f -measure (strategy 2). In this case, the QSL expression used is of the form u(q b q ) where u is a unary operator and b is a binary operator. In what follows, if q is a query resulting of a QSL expression, we call queries(q) the set of queries involved in the QSL expression defining q.

Let us illustrate briefly how strategy 1 operates on the toy example. Suppose it is called with the following parameters: L = q 1 , q 2 , q 3 , U and B are respectively the sets of unary and binary operators of QSL, D is the set of dimensions of the toy example and α = 2. All unary operators are applied on each query q 1 , q 2 , q 3 of the log and only the output that effectively summarizes the query is considered, i.e., a summary different from the query it summarizes and that achieves the best h f -measure (line 2-10). In our example, this is lca(q 3 ). Then all binary operators are applied on each pair of consecutive queries q 1 , q 2 and q 2 , q 3 . Again, only the summary achieving the best h f -measure is considered (line 11-12), in our example this is q 1 ∪ B q 2 . Finally, among the two summaries considered, the one achieving the best h f -measure is used to produce the summary of the log at this step. In our example, the resulting summary at this step is q 1 ∪ B q 2 , q 3 . The algorithm then stops since the desired length of the summary, 2, is reached.

Properties of the summaries

We first note that by construction, the summary S of a log L defines a partition of the log. Indeed, each query of S is defined by a QSL expression that involves a distinct subsequence of queries in L.

Algorithm 1 SummarizeLog (strategy 1)

INPUT:

L: A log U : A set of unary operators B: A set of binary operators D: A set of dimensions α: A positive integer OUTPUT: A summary of L VARIABLES:

q u , q b : Queries max u , max b : Real 1: while |L| > α do 2:

max u ← 0 3:
for each op ∈ U do

4:

for each q ∈ L do

5:

if op(q) = q and h f -measure(q, op(q), D) > max then

6:

max u ← h f -measure(q, op(q), D)

7:

q u ← op(q)
8:

end if

9:

end for 10:

end for 11:

q b ← argmax 2 ({h f -measure(q ∪ q , op(q, q ), D)|op ∈ B, L -1 (q) = L -1 (q ) -1})
12:

max b ← max({h f -measure(q ∪ q , op(q, q ), D)|op ∈ B, L -1 (q) = L -1 (q ) -1})
13:

if max u > max b then 14:

replace in L queries(q u ) by q u 15: q b ← argmax 2 ({h f -measure(q ∪ q , q , D)|q = op(q , q ), op ∈ B, q , q ∈ L})

3:

q u ← argmax 2 ({h f -measure(q b , q , D)|q = op(q b ), op ∈ U }

4:

replace in L queries(q) by q u 5: end while 6: return L Property 2. (Partitioning) A summary S = s 1 , . . . , s m of a log L defines a partition of L where each s i summarizes with a QSL expression a non empty subsequence of L, the summarized sequences being pairwise disjoint and covering exactly L.

Using the properties of the QSL operators, we identify two sublanguages called respectively QSL r and QSL p . QSL r is the language composed of operators maximizing the h-recall i.e., QSL r ={∪ B , lca} and QSL p is the language composed of operators maximizing h-precision, i.e., QSL p ={∩ B , \ B , , most f req, max}. These two languages lead to the following simple properties. In what follows, we call for a query q, member(q) the set of members appearing in q, i.e., member(q) = i m i (q) and for a set X of queries, member(X) = q∈X member(q). Property 3. (Query defined with QSL r ) Let q r be a query defined with a QSL r expression and let m be a member. If there is no member m ∈ member(q r ) such that m ≥ m then m ∈ member(queries(q r )) and m ∈ member(queries(q r )) such that m > m . If ∃m ∈ member(q r ) such that m > m then ∃m ∈ member(queries(q r )) such that m > m . This property states that if a summary is constructed only with operators maximizing h-recall, then every member not covered by a member appearing in the summary cannot appear in the queries involved in the expression. A dual property holds for h-precision. Property 4. (Query defined with QSL p ) Let q p a query defined with a QSL p expression and m a member. If m ∈ member(q p ) then m ∈ member(queries(q p )).

These two properties extend straightforwardly to summaries. Property 5. (Summary defined with QSL r ) Let S r be a summary constructed with QSL r expressions from a log L. If a member m is not covered by a member appearing in S r , then neither m nor none m covered by m can appear in L. If m covers some members of S r , then m covers members of L. Property 6. (Summary defined with QSL p ) Let S p be a summary constructed with QSL p expressions from a log L. A member m appearing in S p appears necessarily in L.

The following section illustrates the interest of these properties.

Querying the log efficiently

In this section, we propose a language for searching a log. We first begin by describing how the properties given in the previous section allow for efficient searches in the log.

Using summaries for an efficient search

If a query log is very large, and does not fit in main memory, searching for a member in this log can be very costly. We now describe how the basic properties of QSL operators can be used for efficient querying. Suppose that for a given log L, two summaries are available, the first one S r constructed with QSL r and the second one S p constructed with QSL p . Consider a first boolean function called lookup(m) that returns true if a member m is present in some queries of the log, or false otherwise. The lookup algorithm (see Algorithm 3), uses properties 2 to 6 to avoid accessing all the log.

Algorithm 3 lookup

INPUT:

L: a log, S r : a summary of L constructed with QSL r , S p : a summary of L constructed with QSL p , m : a member. OUTPUT: A boolean.

1: if m ∈ member(S p ) then 2:

return True 3: end if 4: if ∃q ∈ queries(S r ) with q = q 1 ∪ B . . . ∪ B q x and m ∈ member(q) then 5:

return True 6: end if 7: for each q ∈ queries(S r ) such that ∃m ∈ member(q) with m ≥ m do

8:

for each q ∈ candidateQueries(q, m) do 9: q: a query, m : a member. OUTPUT: A set of queries where m may appear. VARIABLE: A set of queries Q, a set of members M.

if m ∈ q
1: Q ← / 0 2: let lca(e 1 ) ∪ B . . . ∪ B lca(e x ) ∪ B q 1 ∪ B . . . ∪ B q y be the QSL expression defining q 3: M ← {m ∈ member(q)|m ≥ m} 4: if m ∈ M then 5:

Q ← Q ∪ {q 1 , . . . , q y } 6: end if 7: for each m ∈ M do 8:
for each q appearing in lca(e 1 ) ∪ B . . . ∪ B lca(e x ) do

9:

if (q appears in a number of compositions of lca ≤ level(m )level(m)) OR m is DefaultMember then 10:

Q ← Q ∪ {q }

11:

end if

12:

end for 13: end for 14: return Q Example 7. Consider the log of Example 1 and its summaries S r = q 1 , q 2 and S p = q 3 , where q 1 = lca(q 1 ) = {Soda}, {S2-08}, {France} , q 2 = q 2 ∪ B q 3 = {Coke, Orangina}, {July08, S2-08}, {North, South} , and q 3 = q 1 q 2 q 3 = q 1 = {Pepsi,Coke}, {July08}, {Paris, Marseille} . The call to lookup(Pepsi) requires only to access S p to answer true and the call to lookup(2008) requires only to access S p and S r to answer f alse. lookup(Orangina) requires only to access S p and S r to answer true (cf. lignes 4 to 6). To output f alse, lookup(August08) requires to access S p , S r and finally q 1 , but avoids the access to q 2 and q 3 since August08 cannot appear in the operands of an union whose result does not contain it (cf. lines 3 to 6 of candidateQueries). lookup algorithm also serves as the basis for the algorithm lookupCover(m), that particularly uses property 5. lookupCover returns true if there is at least one member covered by m in the log L and false otherwise. return True 6: end if 7: for each q ∈ queries(S r ) such that ∃m ∈ member(q) with m ≥ m do

8:

for each q ∈ candidateCoveredQueries(q, m) do

9:

if ∃m ∈ member(q ) with m ≥ m then q: a query, m : a member. OUTPUT: A set of queries where m may appear. VARIABLE: A set of queries Q, a set of members M.

1:

Q ← / 0 2: let lca(e 1 ) ∪ B . . . ∪ B lca(e x ) ∪ B q 1 ∪ B . . . ∪ B q y be the QSL expression defining q 3: M ← {m ∈ member(q)|m ≥ m} 4: if m ∈ M then 5: Q ← Q ∪ {q 1 , . . . , q y } 6: end if 7:
for each q appearing in lca(e 1 ) ∪ B . . . ∪ B lca(e x ) do 8:

Q ← Q ∪ {q } 9: end for 10: return Q
We introduce now function getQueries, returning the queries of the log where member m is present. It can be easily deduced from lookup by removing the first lines and outputting the relevant queries instead of a boolean. getQueries can also be used to find the queries where m × m appears, since this corresponds to getQueries(m) ∩ getQueries(m ), and thus it can also be used to query the log using references. getQueries is at the core of getCoveredQueries since it only requires to implement fully property 5.

Algorithm 7 getQueries

INPUT:

L: a log, S r : a summary of L constructed with QSL r , m : a member. OUTPUT: A set of queries from L. VARIABLES: A set of queries Q.

1: Q ← / 0 2: for each q ∈ queries(S r ) such that ∃m ∈ member(q) with m ≥ m do

3:

for each q ∈ candidateQueries(q, m) do

4:

if m ∈ member(q ) then 5:

Q ← Q ∪ {q } 6: end if 7:
end for 8: end for 9: return Q AlgorithmGet 8 getCoveredQueries

INPUT:

L: a log, m : a member. OUTPUT: A set of queries from L. VARIABLES: A set of queries Q.

1: Q ← / 0 2: for each q ∈ queries(L) do 3:

for each q ∈ candidateCoveredQueries(q, m) do

4:

if ∃m ∈ member(q ) with m ≥ m then 5:

Q ← Q ∪ {q } 6: end if 7:
end for 8: end for 9: return Q

Querying a log

In the previous subsection, we propose algorithms to search efficiently a member in the log. We now describe a language that enables to declaratively express complex searches for retrieving queries in a log. Consider the following simple queries on a log:

• Are there queries in the log that contain the members of the query q?

• Are there queries in the log that contain members covered by the members of q?

• What are the queries in the log that contain the members of q? That contain members covered by the members of q? • What are the queries of the log that follow a query containing members the members of q?

To define operators for searching the log with a query expression as parameter, we define the two following relations over query expressions. Definition 10. (Specialization relation over query expression) Let q and q be two query expressions. q specialises q , noted q ≺ q , if ∀i ∈ [1, n] and for all members m ∈ m i (q ), there is a member m ∈ m i (q) such that m covers m. Definition 11. (Inclusion of query expressions) Let q and q' be two query expressions. q q if for all i ∈ [1,n], m i (q) ⊆ m i (q ) Example 9. {Soda}, {all}, {all} is more general than {Pepsi, Drink}, {All}, {All} . The opposite is not true. {Pepsi}, / 0, / 0 is included in {Pepsi, Poke}, {2008}, {All} .

The search language is composed of two operators for querying a log. The first one is unary and allows to filter the log with a query. It is noted f ilterLog(L, q, comp) where L is a log, q is a query expression and comp is a comparison symbol, either or ≺. The second operator is binary and allows to find neighbors of queries. It is noted getNeighbor(L, L , dir) where L, L are logs and dir is one of succ, pred. These two operators output a log of queries as answer. We now give the formal definitions. Definition 12. Let L be a log, q a query expression and comp a comparator in { , ≺ }, f ilterLog(L, q, comp) = L where L is the restriction of L to the set {a 1 , . . . , a p } such that for all a i , q comp L(a i ) is true and for all x ∈ {1, n} \ {a 1 , . . . , a p }, q comp L(x) is false. Let L be a log, L be a log such that pos(L ) ⊂ pos(L), with pos(L ) = {a 1 , . . . , a p }, getNeighbor(L, L , dir) = L ⊂ L where, if dir is succ (resp. pred), pos(L ) = {a 1 + 1, . . . , a p + 1} (resp. pos(L ) = {a 1 -1, . . . , a p -1}) and for all p in pos(L ), L (p) = L(p) if defined. f ilterLog(L, q, comp) can be implemented naively by scanning L. A more efficient implementation is proposed in Algorithm 9, where candidateQueries (resp., candidateCoveredQueries) is used for accessing only the relevant parts of the log L when comp is (resp., ≺). We illustrate these operators with some simple searches over the running example.

Example 10. Let us query the log L = q 1 , q 2 , q 3 where q 1 , q 2 , q 3 are the query expressions of Example 1. The query: "is member Perrier in the log?" is expressed by: f ilterLog(L, {Perrier}, / 0, / 0 , ) As this expression returns the empty set, the answer is interpreted as no. The query "what are the queries covered by Pepsi and S2-08?" is expressed by f ilterLog(L, {Pepsi}, {S2-08}, {All} , ≺ ) which returns q 1 . The query "what are the queries that immediately follow those queries covered by Pepsi and S2-08" is expressed by getNeighbor(L, f ilterLog(L, {Pepsi}, {S2-08}, {All} , ≺), succ) and returns q 2 . Finally note that summaries can also be used to query logs. Indeed SummarizeLog can be seen as an operator that outputs a log by summarizing another log. For instance, the expression L = SummarizeLog( f ilterLog(L, / 0, / 0, {North} , )) summarizes only queries q 2 and q 3 and f ilterLog(L , {Drink}, / 0, / 0 , ) checks if member Drink is used to summarize those queries.

Algorithm 9 filterLog

INPUT:

L: A log, q: A query expression comp: A comparator OUTPUT: A log. VARIABLES: A set of queries C.

1: Let S r be a summary of L constructed with QSL r 2: C ← / 0 3: for each m i (q) do 4:

for each m ∈ mi(q) do 5:

if comp = then 6:
for each q ∈ queries(S r ) such that ∃m ∈ member(q ) with m ≥ m do 7:

C ← C ∩ candidateQueries(q, m)

8:

end for 9: else 10:

C ← C ∩ candidateCoveredQueries(q, m)

11:

end if

12:

end for 13: end for 14: return L| {L -1 (q )|q ∈C,q comp q } {Access to L}

Use case: defining new analytical sessions

We conclude the section by presenting a realistic use case recapitulating the interest of summarizing and querying a log of OLAP queries.

Let L be a log containing a large number of past queries focused on the sales of various products.

We suppose that a user wishes to conduct a new analysis. In order to prepare his analysis, he decides to visualize a summary of L composed with only ten queries.

For summarizing a log by generalizing it, the SummarizeLog operator will use the QSL r language with Strategy 2 because the lca operator (generalizing the queries) is used in each step of summarization.

Thus, the user applied the function SummarizeLog(L) that outputs a summary of L.

We suppose that the user decides to conduct a new analysis about the cola sodas. Visualizing the summary, he notes no queries of the summary are composed with Coke products. However, Soda appears in these queries. Because Soda generalizes Coke, the user has to check if queries of the initial log are involved in an analysis about Coke. Therefore, he filters the initial log by using the function f ilterLog(L, {Coke}, / 0, / 0 , ). A sequence of queries L f ilter is returned to the user. Thus, he follows these query examples for forming first query of his new analysis session. For the rest of his analysis session, the user decides to obtain the queries immediately following the queries of L f ilter by using the function getNeighbor(L, f ilterLog(L, {Coke}, / 0, / 0 , ), succ).

Implementation and tests

The framework is implemented with Java 6. The implementation has been done considering that dimensions fit in main memory. These dimensions are represented by trees storing for each member the cardinality of its coverage at the most detailed level. Tests have been run on a computer equipped with Intel Core 2 Duo CPU E8400 clocked at 3.00 GHz with 3.48 Go of usable RAM, under windows 7 ultimate edition. The logs used are synthetic logs on the Foodmart database example coming with the Mondrian OLAP engine. The process of log generation is detailed in [START_REF] Giacometti | Query Recommendations for OLAP Discovery-Driven Analysis[END_REF] and aims at simulating real sessions. This process is based on a random choice between the DIFF and RELAX operators (described in [START_REF] Sarawagi | Explaining differences in multidimensional aggregates[END_REF] and [START_REF] Sarawagi | User-adaptive exploration of multidimensional data[END_REF]), applied on the data of the Foodmart database. These operators can automatically explore a cube by a sequence of drill-downs or roll-ups, identifying interesting differences between cell pairs. We suppose that these differences are likely to be identified by a real user, hence the simulation of an OLAP analysis.

The query generator is parametrized by a number of dimensions, called the density, that represents the number of dimensions used for navigation. Another parameter indicates the maximum number of queries per session. For our tests, we have used logs of high density (5 dimensions out of the 13 available are used to simulate the navigation) and low density (13 dimensions are used to simulate the navigation). The high density logs are respectively composed of 119, 242, 437 and 905 queries. The low density logs are respectively composed of 121, 239, 470 and 907 queries. In what follows, the length of summaries are expressed as a ratio of the original log size.

We have conducted a large set of tests, and we report the main results here in 4 categories:

• Study of the quality measure, • Assessment of the two strategies proposed for SummarizeLog, • Sensitivity of the approach to the log density, • Efficiency of the operators for searching logs.

Study of the quality measure

The aim of our first tests is to study our quality measure. We begin by assessing the overall usage of each operator of QSL existing in the QSL expression built by SummarizeLog. Figure 3 shows for QSL that the hf-measure favors the union and lca operator, and that the \ B operator is never used. We note h f -measure favours the lca and ∪ B operators. This demonstrates that the sublanguage QSL r , which is used for implementing the search operators efficiently, is indeed of particular interest. Our second test is to compute the ratio of general queries a summary contains. A general query is a query having only the All member in each dimension. Such queries reveal little information to the user and thus their appearance in summaries should be limited. Figures 5,[START_REF] Khoussainova | A case for a collaborative query management system[END_REF][START_REF] Khoussainova | Session-based browsing for more effective query reuse[END_REF][START_REF] Pitarch | Summarizing multidimensional data streams: A hierarchy-graph-based approach[END_REF][START_REF] Saint-Paul | General purpose database summarization[END_REF] show that the ratio of general queries increases as the length of the summary decreases, as expected. We note that the number of general queries never exceeds 50 % of the number of queries in the summary. This test shows that our quality measure can limit these queries and favours more interesting ones.

Finally we investigate the usefulness of the quality measure to assess the overall quality of the summaries. This overall quality is evaluated as follows: For each query q of the summary, we evaluate its quality using h f -measure between its references and the references of the queries of the log that q summarizes. The overall quality of the summary is the minimum, i.e., the worst, of the qualities of all queries of the summary. Interestingly, Figures 4 shows that this overall quality is eventually good for summaries of small length. It can also be seen on Figures 8,9, 17 and 18, for logs of different lengths.

Assessment of the two strategies

This series of tests assess the efficiency and effectiveness of the two strategies proposed for SummarizeLog. The behaviours reported below are observed whatever the log length. Figures 6 (with a logarithmic scale) and 7 report the computation time needed for summarizing. Note that, as expected, the computation time is polynomial in the length of the log. This time is quite expensive for large logs. Strategy 2 is globally more efficient, requiring less quality tests (the most expensive part of SummarizeLog). Note that due to the fact that h f -measure is evaluated on references and computes a coverage at the lowest level of details, the computation time for languages including ∪ B can be extremely high. Indeed, for QSL r , strategy 1 can result in successive unions that produce queries that are large sets of references, whereas strategy 2 systematically uses lca that reduces the number of references. Figures 8 and9 show the overall quality of the summaries produced with the two strategies. It can be seen that strat-egy 1 globally achieves a better quality than strategy 2. This can be explained by the fact that strategy 1 explores more combinations of QSL operators than strategy 2. It can be seen that strategy 1 and 2 have a similar behaviour, the number of general in queries produced with strategy 1 increasing more slowly. Consequently, strategy 1 produces fewer general queries than strategy 2 which confirms that strategy 1 computes summaries of better quality. 

Sensitivity to the log density

Efficiency of the search operators

Our last series of tests assess the efficiency of the Lookup algorithm, that is at the core of the search operators. This operator relies on two summaries constructed respectively with QSL p and QSL r . Figures 19 and20 show the proportion of general queries produced by QSL r . (Note that summaries constructed with QSL p cannot have general queries unless already present in the initial log, which for our tests was not the case.) It can be seen that the gain is in favour of lookup algorithm whatever the density.

Related Work

Summarization of structured data has attracted a lot of attention in various domain, covering web server log [START_REF] Zadrozny | Summarizing the contents of web server logs: A fuzzy linguistic approach[END_REF] pattern mining (see e.g., [START_REF] Ndiaye | Cube based summaries of large association rule sets[END_REF] that includes a brief survey), sequences of event [START_REF] Peng | Event summarization for system management[END_REF], database instance [START_REF] Saint-Paul | General purpose database summarization[END_REF], multidimensional data stream [START_REF] Pitarch | Summarizing multidimensional data streams: A hierarchy-graph-based approach[END_REF], database workloads [START_REF] Chaudhuri | Primitives for Workload Summarization and Implications for SQL[END_REF] and datacubes [START_REF] Laks | Quotient cube: How to summarize the semantics of a data cube[END_REF].

Many of these works rely on fuzzy set theory [START_REF] Zadrozny | Summarizing the contents of web server logs: A fuzzy linguistic approach[END_REF][START_REF] Saint-Paul | General purpose database summarization[END_REF] and/or are compression techniques for which it is important that original data can be regenerated [START_REF] Laks | Quotient cube: How to summarize the semantics of a data cube[END_REF][START_REF] Ndiaye | Cube based summaries of large association rule sets[END_REF]. Moreover, it can be the case that the summary has not the same type as the data it summarizes. In the domain of databases [START_REF] Saint-Paul | General purpose database summarization[END_REF][START_REF] Pitarch | Summarizing multidimensional data streams: A hierarchy-graph-based approach[END_REF][START_REF] Laks | Quotient cube: How to summarize the semantics of a data cube[END_REF], summarizing is applied to the database instance where, for OLAP data, measure values are taken into account.

In this paper we address the problem of summarizing an OLAP server query log. Our approach has the following salient features:

• We do not summarize a database instance, but a sequence of database queries.

• Summaries can be expressed declaratively with a manipulation language or constructed automatically. • We do not assume any imprecise description of the members used in the queries, that could e.g., be described via fuzzy set theory. Instead, we only need the information at hand, i.e., the hierarchies described in the dimension tables. • The type of the summary is the same as the type of the original data.

• We do not address the problem of regenerating the data from the summary, instead we focus on how to use summaries to efficiently search the log.

To the best of our knowledge, no work have yet addressed the problem of summarizing a database query log in a suitable and concise representation. As pointed out in [START_REF] Khoussainova | A case for a collaborative query management system[END_REF], many RDBMs provide query logging, but logs are used essentially for physical tuning, and noticeably, the term workload is often termed instead of log. Notable papers are [START_REF] Chaudhuri | Primitives for Workload Summarization and Implications for SQL[END_REF] for relational databases and [START_REF] Golfarelli | Handling large workloads by profiling and clustering[END_REF] for multidimensional databases. [START_REF] Chaudhuri | Primitives for Workload Summarization and Implications for SQL[END_REF] defines various primitives for summarizing query logs, essentially to filter it. The model of queries used covers both the query expression and query evaluation information (indexes used, execution cost, memory used, etc.) In this work, summarization aims at satisfying a given objective function for assisting DBA like finding queries in the log that have a low index usage. In [START_REF] Golfarelli | Handling large workloads by profiling and clustering[END_REF], logs are analysed for identifying views to materialize, using an operator that resembles our lca operator.

Usually, when a query log is displayed, often in flat table or file, it is not suitable for browsing or searching into it. In our earlier work [START_REF] Colas | Organisation de log de requêtes OLAP sous forme de site web[END_REF], we propose to organize an OLAP query log under the form of a website. But if the log is large, browsing this website may be tedious. An effective log visualization and browsing tool is yet to be designed, and the present work is a step in that direction.

Conclusion and Perspectives

In this article, we propose a framework for summarizing and querying OLAP query logs. This framework relies on the idea that a query can summarize another query and that a log can summarize another log. Our contributions include a query manipulation language that allows to declaratively specify a summary, and an algorithm for automatically computing a query log summary of good quality. We also propose operators for querying OLAP query logs and show how summaries can be used to achieve an efficient implementation. The framework has been implemented and tests were conducted to show its interest.

Future work include the development and study of the different languages proposed in this article, as well as the validation of the approach on real and large query logs. Our long term goal is to study how query logs can support effectively the On-Line Analysis Process. Our future work will thus include the extension of our framework to a collaborative context where a log, composed of many sequences of queries performed by different users, each with a particular goal in mind, can be efficiently browsed and searched. Another direction is the generalisation of our framework to other types of logs (like web query logs for instance).
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 13 Figures 13,[START_REF] Peng | Event summarization for system management[END_REF][START_REF] Pitarch | Summarizing multidimensional data streams: A hierarchy-graph-based approach[END_REF][START_REF] Saint-Paul | General purpose database summarization[END_REF][START_REF] Sarawagi | Explaining differences in multidimensional aggregates[END_REF][START_REF] Sarawagi | User-adaptive exploration of multidimensional data[END_REF] report the result of tests logs of similar lengths but different densities, in terms of efficiency, global quality and ratio of general queries. It can be seen that SummarizeLog achieves both a better quality and a better computation time on logs of high density, as expected. Remarkably, even on logs of low density, the ratio of general queries remains acceptable.

Fig. 13 1 Fig. 14 Fig. 15 1 Fig. 16 1 Fig. 17

 1311415116117 Fig. 13 Efficiency for QSL on three logs of high density for strategy 1 Fig. 14 Efficiency for QSL on three logs of low density for strategy 1

1 Fig. 18

 118 Fig. 17 Overall quality for QSL on 437 queries of high density for strategy 1 Fig. 18 Overall quality for QSL on 470 queries of low density for strategy 1

Fig. 19 Fig. 20
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