
HAL Id: hal-01499687
https://hal.science/hal-01499687v1

Submitted on 31 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Summarizing and Querying Logs of OLAP Queries
Julien Aligon, Patrick Marcel, Elsa Negre

To cite this version:
Julien Aligon, Patrick Marcel, Elsa Negre. Summarizing and Querying Logs of OLAP Queries. Fabrice
Guillet, Bruno Pinaud, Gilles Venturini, Djamel Abdelkader Zighed Advances in Knowledge Discovery
and Management, 471, Springer, pp.99-124, 2013, Studies in Computational Intelligence, 978-3-642-
35854-8. �10.1007/978-3-642-35855-5_6�. �hal-01499687�

https://hal.science/hal-01499687v1
https://hal.archives-ouvertes.fr

Summarizing and querying logs of OLAP
queries

Julien Aligon and Patrick Marcel and Elsa Negre

Abstract Leveraging query logs benefits the users analyzing large data warehouses
with OLAP queries. But so far nothing exists to allow the user to have concise and
usable representations of what is in the log. In this article, we present a framework
for summarizing and querying OLAP query logs. The basic idea is that a query sum-
marizes another query and that a log, which is a sequence of queries, summarizes
another log. Our formal framework includes a language to declaratively specify a
summary, and a language for querying and manipulating logs. We also propose a
simple measure based on precision and recall, to assess the quality of summaries,
and two strategies for automatically computing log summaries of good quality. Fi-
nally we show how some simple properties on the summaries can be used to query
the log efficiently. The framework is implemented using the Mondrian open source
OLAP engine. Its interest is illustrated with experiments on synthetic yet realistic
MDX query logs.

1 Introduction

It is becoming accepted that leveraging query logs would help the user analyzing
large databases or data warehouses [10]. As a clear evidence of this, it has recently
been shown that browsing and querying logs actually speeds up the query formula-
tion, by supporting better query reuse [11].

This is particularly relevant in a collaborative context for instance to issue recom-
mendations [3, 7, 8, 19]. But to the best of our knowledge, even the simple problem

Julien Aligon, Patrick Marcel
Université François Rabelais Tours, Laboratoire d’Informatique, France. e-mail:
firstname.lastname@univ-tours.fr

Elsa Negre
Université Paris-Dauphine, LAMSADE, France. e-mail: elsa.negre@dauphine.fr

1

2 Julien Aligon and Patrick Marcel and Elsa Negre

of providing the end user with a concise representation of what is inside a large log
has rarely been addressed, apart from helping a DBA to tune the RDBMS [10].

Using such a summary, that avoids overwhelming the user, would have many
advantages, including:

• allowing a decision maker to have a rough idea of the queries launched by other
decision makers,

• helping the user to access the precise part of the log containing particular queries
he/she is looking for,

• helping an administrator to manage and tune the OLAP server, e.g., if the sum-
mary indicates the frequently accessed members,

• aassisting the decision maker to perform new analysis sessions by considering
the previous queries.

In this article we present and develop the work initiated in [1, 2]. In these pa-
pers, we proposed a framework for summarizing an OLAP query log, and we stud-
ied basic properties of the framework for helping the user to query the log. The
present article provides a detailed presentation of the framework and introduces its
implementation as a system for summarizing and querying log files. To this end, we
extend the search facilities introduced in [2] to obtain a declarative language with
which complex queries over a log file can be expressed.

Our approach is based on the idea that a log, which is a sequence of queries, is
summarized by another sequence of queries, i.e., by another (much shorter) log. It
entails that a query summarizes other queries. Our framework includes:

• A language tailored for OLAP queries, named QSL, for declaratively expressing
summaries. This language is composed of binary and unary operators that allow
to summarize queries.

• A greedy algorithm using QSL for automatically constructing summaries of
query logs.

• A quality measure adapted from the classical precision and recall, that allows to
measure how faithful the constructed summaries are.

• Two sub-languages of QSL whose properties w.r.t. the quality measure are used
to ensure that summaries can help query the log efficiently.

• Compositional search operators with which the user can query the log for partic-
ular OLAP queries.

This paper is organized as follows. Next section motivates the approach with a
toy example. The QSL query language which is at the core of our framework is
presented in Section 3. Section 4 describes the quality measure based on precision
and recall, that is used to assess the summaries expressed in QSL. In Section 5, we
present the algorithm that automatically constructs summaries based on QSL and
the quality measure. We also introduce the properties of the summaries constructed
with sub-languages of QSL. Section 6 presents the language for querying logs, and
describes how properties of the framework can be used to ensure efficient searches.
Section 7 describes the implementation of the framework and the experiments con-
ducted to evaluate its effectiveness. Section 8 discusses related work. We conclude
and draw perspectives in Section 9.

Summarizing and querying logs of OLAP queries 3

2 Motivating example

In this section, we illustrate with a toy example our approach for summarizing a
log of OLAP queries. The context of this example is that of a user navigating a
data warehouse. In our example, the data warehouse records sales of beverages in
different locations at different times. The dimensions of this data warehouse are
given in Figure 1. Consider a sequence of queries L = 〈q1,q2,q3〉 where q1 is the
first query launched, q2 the second one and q3 the last one. Suppose these queries
are logged in a log L and ask respectively for:

1. The sales of Pepsi and Coke for July 2008, in cities Paris or Marseille,
2. The sales of Coke for July 2008, in regions North or South,
3. The sales of Orangina for the second semester 2008, in regions North or South.

Fig. 1 Dimensions used in the toy example

Assume we want to summarize these queries by another query. Various solutions
are possible. First, we can summarize the queries by retaining for each dimension
the most frequent members. This could be of interest for a DBA who would like
to know what indices to store. In that case, the resulting query would ask for sales
of Coke in regions North or South during July 2008 (i.e., query q2). A second al-
ternative would be to summarize the queries with another query having for each
dimension the members that cover all members present in the initial queries. For ex-
ample, note that Pepsi, Coke and Orangina are sodas, cities Paris and Marseille and
regions North and South are in France and all three queries concern year 2008. The
query summarizing the log L would then ask for the sales of Soda in France in 2008.
The user interested in more details on the query could then query the log to find the
queries that were indeed launched. Finally, note that we can have a compromise by
summarizing q1 and q2 first, say with the second alternative, and then summarizing
the resulting summary with q3, say with the first alternative. In that case, we would
obtain the query asking for the sales of Soda and Orangina in France, region North
and region South, for year 2008 and the second semester of 2008.

These examples show the need for flexibility in how the summary is computed.
This is why in our approach we propose that summaries can be specified declara-
tively with a query manipulation language called QSL. QSL expressions are used
to combine several queries into a query that summarises them. Note that so far, we
have illustrated the problem of summarizing queries by another query. But a set of

4 Julien Aligon and Patrick Marcel and Elsa Negre

queries could be summarized by another set of queries. Moreover, summaries for a
log should respect the fact that logs are sequences of queries. For instance, consider
again L, this log could be summarized by the sequence 〈q′1,q3〉 where q′1 is a sum-
mary of q1 and q2 asking for the sales of Soda in France in the second semester of
2008. To automatically construct a summary from a log, we propose an algorithm
that constructs QSL expressions for summarising subsequences of the log.

In addition, as various summaries can be computed from one log, the quality
of these summaries should be evaluated. For instance, for our first alternative, the
quality measure should take into account the fact that ’Orangina’ is present in the
log but not in the summary. In our second alternative, this measure should take
into account that indeed ’North’ and ’South’ covers ’Paris’ and ’Marseille’ but also
’Blois’, that is not present in the log. We propose such a quality measure that extends
the classical notions of precision and recall.

Finally, note that summaries computed from a log may not give precise informa-
tion on the queries in the log. For instance the user may wish to know if a query
on member ’Blois’ appears in the log, what are all the queries of the log that deal
with ’drink’ or one of its descendant, or what are the queries in the log following
queries dealing with ’Coke’. We thus propose two operators that allow to express
such searches on a log (or even on a summary).

3 QSL: a Query Summarizing Language

In this section, we formally define the manipulation language, called QSL, used to
summarize OLAP queries.

3.1 Preliminary definitions

As the query summarizing language is tailored for OLAP queries, we first begin
with the definition of an OLAP query. Note that in this paper, we do not consider
query result, and thus the definition of a query result is not given.

An n-dimensional cube C = 〈D1, ...,Dn,F〉 is defined as the classical n+1 rela-
tion instances of a star schema, with one relation instance for each of the n dimen-
sions Di and one relation instance for the fact table F . For a dimension Di having
schema Si = {Li

1, . . . ,L
i
di
}, a member m is any constant in

⋃
Li

j∈Si
πLi

j
(Di). For a di-

mension Di, we consider that members are arranged into a hierarchy <i and we note
m <i m′ (or m < m′ or m′ covers m) the fact that the member m′ is the ancestor of m
in this hierarchy.

Given such a cube, a cell reference (or reference for short) is an n-tuple 〈m1, ...,mn〉
where mi is a member of dimension Di,∀i ∈ [1,n]. We define multidimensional
queries as sets of references that can be expressed as Cartesian products of mul-
tisets. The reason for having multisets is to be able to define operators that count

Summarizing and querying logs of OLAP queries 5

members’ occurrences. In this work, we distinguish between a query and its expres-
sion called query expression. A query expression is a tuple of multisets, one multiset
of members in each dimension. The cross-product of these multisets is a multiset of
references, which is the query.

Definition 1. (Query expression and Query) Given an n-dimensional cube C =
〈D1, ...,Dn,F〉, let Ri be a multiset of members of dimension Di,∀i ∈ [1,n]. A query
expression q = 〈R1, ...,Rn〉 is a tuple of multisets of members, one for each dimen-
sion Di of C. Given such an expression, the query specified by q is the multiset of
references R1× ...×Rn.

The distinction between query expression and query is needed since a query can
be specified by different query expressions. For instance, the two following expres-
sions 〈{a},{b,b}〉 and 〈{a,a},{b}〉 both specify query {〈a,b〉,〈a,b〉}. When the
context is clear, a query expression and the query it specifies will be confounded.

A log L is a finite sequence of query expressions.

Definition 2. (Log) Let C be a cube and SC be a set of queries over C. A log L of m
queries over C is a function from an ordered set pos(L) of integers (called positions)
of size m to SC.

A log will be noted L = 〈q1, . . . ,qm〉. The set of positions of a log L is noted
pos(L). The set of query expressions appearing in a log L is noted queries(L).
We note q ∈ L for a log L if q ∈ queries(L). In what follows, we assume an n-
dimensional cube C = 〈D1, ...,Dn,F〉. In the subsequent definitions, i ranges from
1 to n. For a query expression q = 〈R1, ...,Rn〉, mi(q) = Ri denotes its multiset of
members in dimension Di. The multiset mi(q) will be noted 〈Si, fi〉, where Si is a set
and fi is a function giving the occurrences of each element of Si.

Example 1. Consider the three queries q1, q2 and q3 of the toy example described
in the previous section. Note that q1 can be expressed in the MDX query language:
SELECT {[Drink].[DrinkAll].[Soda].[Pepsi],

[Drink].[DrinkAll].[Soda].[Coke]} ON COLUMNS
Cross join({ [Country].[CountryAll].[France].[North].[Paris],
[Country].[CountryAll].[France].[South].[Marseille]},
{[Date].[DateAll].[2008].[S2-08].[July08]}) ON ROWS

FROM SalesCube
We have m1(q1)= {Pepsi,Coke}, m2(q1)= {July08}, m3(q1)= {Paris,Marseille}.

The query expression is: q1 = 〈{Pepsi,Coke} ,{July08} ,{Paris,Marseille}〉. The
query expressions q2 and q3 are:

• q2 = 〈{Coke} ,{July08} ,{North,South}〉
• q3 = 〈{Orangina},{S2-08},{North,South}〉

The language we propose is composed of unary operators and binary operators
that manipulate query expressions and output a query expression, that is called a
summary query (or simply summary for short). The main idea behind the definition
of these operators is that they operate dimension-wise: They define a new query
expression from the one(s) in parameter by treating each dimension independently.
We now present formally these operators, starting with the binary operators.

6 Julien Aligon and Patrick Marcel and Elsa Negre

3.2 The binary operators of QSL

The first operators are the classical bag operators [6] extended to multiple dimen-
sions.

Definition 3. (Bag operators) Given two query expressions q1 and q2 and op ∈
{∪B,∩B,\B}, q1 op q2 is the query expression q with ∀i ∈ [1, ...,n],mi(q) =
mi(q1) op mi(q2).

Example 2. Consider the first two query expressions of Example 1, we have:

• q4 = q1∪B q2 = 〈{Pepsi,Coke,Coke} ,{July08,July08} ,
{Paris,Marseille,North,South}〉

• q5 = q1∩B q2 = 〈{Coke} ,{July08} , /0〉
• q6 = q1 \B q2 = 〈{Pepsi} , /0,{Paris,Marseille}〉

Note that q5 and q6 are two different expressions of the same query which is the
empty set.

The next operator gives priority to one query expression over the other.

Definition 4. (Priority operator) Given two query expressions q1 and q2. q1 C q2
gives priority to q1 over q2. Hence, the priority operator C is simply defined by
q1 Cq2 = q1.

3.3 The unary operators of QSL

Our first operator outputs, for a query expression q in parameter, a query expression
for which only the most frequent members of q in each dimension are retained.

Definition 5. (Mostfreq operator) Let q be a query expression with mi(q) = 〈Si, fi〉
for all i. most freq(q) is the query expression q′ with ∀i ∈ [1,n],mi(q′) = 〈S′i = {m ∈
Si|@m′ ∈ Si, fi(m′)> fi(m)}, fi|S′i

〉 (fi|X denotes the restriction of a function fi to the

set X).

Example 3. most freq(q4) = 〈{Coke,Coke} ,{July08,July08} ,{Paris,Marseille,
North,South}〉.

Our second operator outputs, for a query expression q in parameter, a query ex-
pression for which only the most general members of q in each dimension are re-
tained, w.r.t. the hierarchy of the dimension.

Definition 6. (Max operator) Let q be a query expression. max(q) is the query ex-
pression q′ with ∀i ∈ [1,n],mi(q′) = 〈S′i = {m ∈ mi(q)|@m′ ∈ mi(q),m <i m′}, fi|S′i

〉.

Example 4. max(q4) = 〈{Pepsi,Coke,Coke} ,{July08,July08} ,{North,South}〉.

Summarizing and querying logs of OLAP queries 7

Our last operator outputs, for a query expression q in parameter, a query ex-
pression for which only the lowest common ancestors of the members of q in each
dimension are retained, w.r.t. the hierarchy of the dimension.

Definition 7. (lca operator) Let q be a query expression. Let lca be the function
that outputs, for a given set of members M in dimension Di, their common ancestor
w.r.t. <i, i.e., {m ∈ Di|∀m′ ∈ M,(m′ <i m)∧ @m′′,(m′ <i m′′ ∧m′′ <i m)}, or, if
lca(m) = /0 (i.e., if m is the All member) then lca(m) = {m}. Then, lca(q) is the
query expression q′ with ∀i ∈ [1, ...,n],mi(q′) = 〈lca(mi(q))〉.

Example 5. lca(q4) = 〈{Soda},{S2-08},{France}〉.

3.4 Expression of various summaries

We now briefly illustrate how QSL can be used. For instance, consider a log
L composed of 3 query expressions: L = 〈q1,q2,q3〉. This log can be summa-
rized by the query expression q1

s that retains only the members that appear in all
queries for each dimension, i.e., q1

s = q1 ∩B q2 ∩B q3. Alternatively, L can be sum-
marized by taking into account the frequency of the members used in the log:
q2

s = most freq(q1 ∪B q2 ∪B q3). Finally, L can be summarized by a query roughly
indicating the parts of the cube that were explored: q3

s = lca(q1 ∪B q2 ∪B q3). We
illustrate these possibilities on our running example.

Example 6. Summarizing by retaining the common members of all queries for
each dimension gives: q1

s = (q1 ∩B q2 ∩B q3) = 〈 /0, /0, /0〉. Summarizing basing
on the frequencies of the members gives: q2

s = most freq(q1 ∪B q2 ∪B q3) =
〈{Coke} ,{July08} ,{North,South}〉. Summarizing with lca gives: q3

s = lca(q1 ∪B
q2∪B q3) = 〈{Soda} ,{2008} ,{France}〉.

3.5 Properties of QSL

We first note that the QSL language cannot be presented as an algebra. In particular,
it is neither minimal, nor complete with respect to query expressions. For instance,
the intersection operator can be simulated using the difference operator, hence the
non minimality. In addition, not all query expressions can be computed using QSL
due to the fact that no operation enables to move down along hierarchies. Achieving
minimality and completeness, though theoretically compelling, may be of little prac-
tical use. For instance, it is well known that dropping minimality enables dedicated
optimisations, as it is the case for outer-join in the relational algebra. Nevertheless,
in the case of QSL, minimality can be achieved by dropping intersection. As to
completeness, instead of defining other operators, QSL completeness can be charac-
terized with respect to the kind of query expressions it can compute, which are more

8 Julien Aligon and Patrick Marcel and Elsa Negre

general expressions (in the sense of Definition 10, introduced in Section 6.2). While
a precise characterization is part of our future work, we list below the properties
of the QSL operators. Some of these properties, like for instance the distributivity
of max or the commutativity of max and lca are used in our implementation of the
framework.

Let q,q1,q2 be query expressions. We have the following:

• ∪B,∩B,\B keep their classical properties [6].
• max and most f req are idempotents: max(max(q)) = max(q) and

most f req(most f req(q)) = most f req(q).
• max is distributive over ∪B and \B: max(q1 ∪B q2) = max(max(q1)∪B max(q2))

and max(q1 \B q2) = max(q1 \B max(q2)).
• C is associative: qC (q1 Cq2) = (qCq1)Cq2 = q.
• max and lca commute: max(lca(q)) = lca(max(q)) = lca(q).
• most f req(lca(q)) = lca(q).

4 Assessing the quality of a summary

In this section, we present the measure used to evaluate the quality of summaries. We
begin with an intuitive presentation, then give the formal definition and we finally
give the properties of the QSL operators w.r.t. this measure.

4.1 Intuition

The measure should assess to which extends a query (respectively, a log), which is
a set of references (respectively, of queries), is a faithful summary of another query
(respectively, another log). The operators of QSL define summaries by adding or
removing references to their operands. For instance the lca operator summarizes
by adding references containing ancestors. The measure should thus assess the pro-
portion of what is added or removed to define the summary. This is achieved by
adapting the classical notion of precision and recall. In our context, these measures
should be extended to take into account the cover relation used by the operators.

For instance, in Example 5, the expression lca(q1∪B q2) summarizes q1 and q2 by
〈{Soda},{S2-08},{France}〉, which specifies the query q = {Soda}×{S2-08}×
{France}. Looking at the references of q1,q2 and q, it can be seen that q is obtained
by removing references {Coke,Pepsi}×{July08}× {Paris,Marseille,North,South}
and adding the reference {Soda}×{S2-08}×{France}. If we apply the classical
precision and recall measures to evaluate its quality, both are null. However, we can
consider this summary as a good summary with a good quality since the added ref-
erence covers the removed references. Its recall would then be 1 and its precision
would depend on the number of references covered by the added reference and not
in the removed references.

Summarizing and querying logs of OLAP queries 9

We propose to extend recall and precision by taking into account a cover relation
between the elements of the two sets, the summary and the summarized. In this
article we use the cover relation defined over references since both queries and logs
can be seen as sets of references, and thus the quality measure can be used on queries
or on logs, or on any sets of references. Note that the definition of the measure is
even more general in the sense that it does not rely on a particular cover relation.
We now formalize these notions.

4.2 Definitions and properties

We first introduce the notion of coverage of references.

Definition 8. (Coverage) A reference r = 〈m1, ...,mn〉 covers another reference
r′ = 〈m′1, ..., m′n〉 if ∀i ∈ [1,n], mi >i m′i or mi = m′i. For a set R of references,
cover(R)={ f ∈ΠL1

1
(D1)×ΠL2

1
(D2)× ...×ΠLn

1
(Dn) | ∃r ∈ R,r covers f}.

Figure 2 illustrates this principle. We note L the set of references of some queries
to be summarized, S the set of references of the summary, K = L∩ S, D = L \K
and A = S \K. The coverages of D and A are references (denoted by cover(A) and
cover(D) and depicted with the same color as A and D respectively) in the most
detailed level.

Fig. 2 Principle of the Quality Measure

For instance, consider Example 5. L = q1 ∪ q2, S =
lca(q4), K = /0 and cover(A) = {Pepsi,Coke,Orangina} ×
{July08,August08,September08,October08,November08,December08} ×
{Paris,Blois,Marseille} with |cover(A)| = 54. cover(D) = {Pepsi,Coke} ×

10 Julien Aligon and Patrick Marcel and Elsa Negre

{July08}×{Paris,Marseille}∪{Coke}×{July08}×{Blois} and |cover(D)|= 5.
We have cover(D) ⊂ cover(A). Intuitively, we expect a maximum recall and a bad
precision because all covered references are recalled but a lot of other references
are introduced.

To formalize this intuition, our measure of recall is the proportion of covered
references existing in cover(D) and found in cover(A) compared with the set of
references in cover(D). Moreover, recall favours maximality of K. Our measure of
precision is the proportion of covered references existing in cover(D) and found in
cover(A) compared with the set of references in cover(A). As for recall, precision
encourages maximality of K. Of course if the summary is empty then the measure
should be zero.

Definition 9. (h f -measure) Let L and R be two sets and K = L ∩ R, D =
L \ K and A = R \ K. Let {D1, ...,Dn} be the set of dimensions defining
the coverage. h-recall is r = |K ∪ (cover(D) ∩ cover(A))|

|K ∪ cover(D)| and h-precision is p =
|K ∪ (cover(D) ∩ cover(A))|

|K ∪ cover(A)| . These measures are aggregated with the classical F-

measure: h f -measure (L,R,{D1, ...,Dn}) = 2 × p × r
p + r .

We conclude this section by noting that all operators of QSL maximize either
h-recall or h-precision. Indeed, ∪B and lca lead to a h-recall of 1 and precision in
0 and 1, and all other operators lead to a h-precision of 1 and a recall in 0 and 1.
Table 1 gives the range of values for h-recall, h-precision, recall and precision of
each operator of QSL. The following property can easily be shown.

Property 1. Let L and R be two sets and {D1, ...,Dn} be a set of dimensions defining
a coverage. h f -measure (L,R,{D1, ...,Dn}) = 1 if and only if R and L cover exactly
the same set of references.

operators h-precision h-recall precision recall
∪B [0..1] 1 [0..1] 1
∩B 1 [0..1] 1 [0..1]
\B 1 [0..1] 1 [0..1]
/ 1 [0..1] 1 [0..1]

lca [0..1] 1 [0..1] [0..1]
max 1 [0..1] 1 [0..1]

most f req 1 [0..1] 1 [0..1]

Table 1 Table of h-recall, h-precision, recall and precision for each operator

Summarizing and querying logs of OLAP queries 11

5 Automatic summarization of a query log

In this section, we present an algorithm for summarizing a log, based on QSL and
our quality measure h f -measure. The main idea is that a summary of a log is also a
log. We also present the properties of the summaries constructed with the algorithm.

5.1 SummarizeLog Algorithm

SummarizeLog algorithm is a greedy algorithm successively summarizing the
queries of a log using QSL operators until a given length α for the summary is
reached. The QSL expression used is that maximizing h f -measure while changing
the log. Two strategies are defined for the choice of the expression. The first one
checks for each query or each pair of consecutive queries what is the QSL operation
maximizing h f -measure. The chosen expression is this particular operation (strat-
egy 1). The second strategy checks for each pair of consecutive queries what is the
QSL binary operation maximizing h f -measure and applies this operation. Then the
strategy looks for on this result, the unary operation maximizing h f -measure (strat-
egy 2). In this case, the QSL expression used is of the form u(q b q′) where u is
a unary operator and b is a binary operator. In what follows, if q is a query result-
ing of a QSL expression, we call queries(q) the set of queries involved in the QSL
expression defining q.

Let us illustrate briefly how strategy 1 operates on the toy example. Suppose it
is called with the following parameters: L = 〈q1,q2,q3〉, U and B are respectively
the sets of unary and binary operators of QSL, D is the set of dimensions of the
toy example and α = 2. All unary operators are applied on each query q1,q2,q3
of the log and only the output that effectively summarizes the query is considered,
i.e., a summary different from the query it summarizes and that achieves the best
h f -measure (line 2-10). In our example, this is lca(q3). Then all binary operators
are applied on each pair of consecutive queries q1,q2 and q2,q3. Again, only the
summary achieving the best h f -measure is considered (line 11-12), in our example
this is q1 ∪B q2. Finally, among the two summaries considered, the one achieving
the best h f -measure is used to produce the summary of the log at this step. In our
example, the resulting summary at this step is 〈q1 ∪B q2,q3〉. The algorithm then
stops since the desired length of the summary, 2, is reached.

5.2 Properties of the summaries

We first note that by construction, the summary S of a log L defines a partition of the
log. Indeed, each query of S is defined by a QSL expression that involves a distinct
subsequence of queries in L.

12 Julien Aligon and Patrick Marcel and Elsa Negre

Algorithm 1 SummarizeLog (strategy 1)
INPUT:

L: A log
U : A set of unary operators
B: A set of binary operators
D: A set of dimensions
α: A positive integer

OUTPUT: A summary of L
VARIABLES:

qu,qb: Queries
maxu,maxb: Real

1: while |L|> α do
2: maxu← 0
3: for each op ∈U do
4: for each q ∈ L do
5: if op(q) 6= q and h f -measure(q,op(q),D)> max then
6: maxu← h f -measure(q,op(q),D)
7: qu← op(q)
8: end if
9: end for

10: end for
11: qb← argmax2({h f -measure(q∪q′,op(q,q′),D)|op ∈B,L−1(q) = L−1(q′)−1})
12: maxb← max({h f -measure(q∪q′,op(q,q′),D)|op ∈B,L−1(q) = L−1(q′)−1})
13: if maxu > maxb then
14: replace in L queries(qu) by qu
15: else
16: replace in L queries(qb) by qb
17: end if
18: end while
19: return L

Algorithm 2 SummarizeLog (strategy 2)
INPUT:

L: A log
U : A set of unary operators
B: A set of binary operators
D: A set of dimensions
α: A positive integer

OUTPUT: A summary of L
VARIABLES: qu,qb: Queries
1: while |L|> α do
2: qb← argmax2({h f -measure(q′ ∪q′′,q′′′,D)|q′′′ = op(q′,q′′),op ∈B,q′,q′′ ∈ L})
3: qu← argmax2({h f -measure(qb,q′′,D)|q′′ = op(qb),op ∈U }
4: replace in L queries(q) by qu
5: end while
6: return L

Property 2. (Partitioning) A summary S = 〈s1, . . . ,sm〉 of a log L defines a partition
of L where each si summarizes with a QSL expression a non empty subsequence of
L, the summarized sequences being pairwise disjoint and covering exactly L.

Using the properties of the QSL operators, we identify two sublanguages called
respectively QSLr and QSLp. QSLr is the language composed of operators maxi-
mizing the h-recall i.e., QSLr ={∪B, lca} and QSLp is the language composed of
operators maximizing h-precision, i.e., QSLp ={∩B,\B,C,most f req,max}. These
two languages lead to the following simple properties. In what follows, we call for a
query q, member(q) the set of members appearing in q, i.e., member(q) =

⋃
i mi(q)

and for a set X of queries, member(X) =
⋃

q∈X member(q).

Summarizing and querying logs of OLAP queries 13

Property 3. (Query defined with QSLr) Let qr be a query defined with a QSLr ex-
pression and let m be a member. If there is no member m′ ∈ member(qr) such that
m′ ≥ m then m 6∈ member(queries(qr)) and @m′′ ∈ member(queries(qr)) such that
m > m′′. If ∃m′ ∈ member(qr) such that m > m′ then ∃m′′ ∈ member(queries(qr))
such that m > m′′.

This property states that if a summary is constructed only with operators max-
imizing h-recall, then every member not covered by a member appearing in the
summary cannot appear in the queries involved in the expression. A dual property
holds for h-precision.

Property 4. (Query defined with QSLp) Let qp a query defined with a QSLp expres-
sion and m a member. If m ∈ member(qp) then m ∈ member(queries(qp)).

These two properties extend straightforwardly to summaries.

Property 5. (Summary defined with QSLr) Let Sr be a summary constructed with
QSLr expressions from a log L. If a member m is not covered by a member appearing
in Sr, then neither m nor none m′ covered by m can appear in L. If m covers some
members of Sr, then m covers members of L.

Property 6. (Summary defined with QSLp) Let Sp be a summary constructed with
QSLp expressions from a log L. A member m appearing in Sp appears necessarily in
L.

The following section illustrates the interest of these properties.

6 Querying the log efficiently

In this section, we propose a language for searching a log. We first begin by describ-
ing how the properties given in the previous section allow for efficient searches in
the log.

6.1 Using summaries for an efficient search

If a query log is very large, and does not fit in main memory, searching for a member
in this log can be very costly. We now describe how the basic properties of QSL
operators can be used for efficient querying. Suppose that for a given log L, two
summaries are available, the first one Sr constructed with QSLr and the second one
Sp constructed with QSLp. Consider a first boolean function called lookup(m) that
returns true if a member m is present in some queries of the log, or false otherwise.
The lookup algorithm (see Algorithm 3), uses properties 2 to 6 to avoid accessing
all the log.

14 Julien Aligon and Patrick Marcel and Elsa Negre

Algorithm 3 lookup
INPUT:

L: a log,
Sr : a summary of L constructed with QSLr ,
Sp: a summary of L constructed with QSLp,
m : a member.

OUTPUT: A boolean.
1: if m ∈ member(Sp) then
2: return True
3: end if
4: if ∃q ∈ queries(Sr) with q = q1 ∪B . . .∪B qx and

m ∈ member(q) then
5: return True
6: end if
7: for each q ∈ queries(Sr) such that
∃m′ ∈ member(q) with m′ ≥ m do

8: for each q′ ∈ candidateQueries(q,m) do
9: if m ∈ q′ then

10: return True
11: end if
12: end for
13: end for
14: return False

Algorithm 4 candidateQueries
INPUT:

q: a query,
m : a member.

OUTPUT: A set of queries where m may appear.
VARIABLE: A set of queries Q, a set of members M.
1: Q← /0
2: let lca(e1)∪B . . .∪B lca(ex)∪B q1∪B . . .∪B qy be the QSL

expression defining q
3: M←{m′ ∈ member(q)|m′ ≥ m}
4: if m ∈M then
5: Q← Q∪{q1, . . . ,qy}
6: end if
7: for each m′ ∈M do
8: for each q′ appearing in lca(e1)∪B . . .∪B lca(ex) do
9: if (q′ appears in a number of compositions of lca

≤ level(m′)− level(m)) OR m is DefaultMember
then

10: Q← Q∪{q′}
11: end if
12: end for
13: end for
14: return Q

Example 7. Consider the log of Example 1 and its summaries Sr = 〈q′1,q′2〉 and
Sp = 〈q′3〉, where q′1 = lca(q1) = 〈{Soda},{S2-08},{France}〉, q′2 = q2 ∪B q3 =
〈{Coke,Orangina},{July08,S2-08},{North,South}〉, and q′3 = q1Cq2Cq3 = q1 =
〈{Pepsi,Coke},{July08},{Paris,Marseille}〉. The call to lookup(Pepsi) requires
only to access Sp to answer true and the call to lookup(2008) requires only to ac-
cess Sp and Sr to answer f alse. lookup(Orangina) requires only to access Sp and
Sr to answer true (cf. lignes 4 to 6). To output f alse, lookup(August08) requires
to access Sp,Sr and finally q1, but avoids the access to q2 and q3 since August08
cannot appear in the operands of an union whose result does not contain it (cf. lines
3 to 6 of candidateQueries).

lookup algorithm also serves as the basis for the algorithm lookupCover(m), that
particularly uses property 5. lookupCover returns true if there is at least one member
covered by m in the log L and false otherwise.

Example 8. Consider the same queries of Example 8. The call to
lookupCover(2008) requires only to access Sp to answer true.

Summarizing and querying logs of OLAP queries 15

AlgorithmCover 5 lookupCover
INPUT:

L: a log,
Sr : a summary of L constructed with QSLr ,
Sp: a summary of L constructed with QSLp,
m : a member.

OUTPUT: A boolean.
1: if ∃m′ ∈ member(Sp) with m≥ m′ then
2: return True
3: end if
4: if ∃q ∈ queries(Sr) and ∃m′ ∈

member(q) with m≥ m′ then
5: return True
6: end if
7: for each q ∈ queries(Sr) such that
∃m′ ∈ member(q) with m′ ≥ m do

8: for each q′ ∈
candidateCoveredQueries(q,m) do

9: if ∃m′′ ∈ member(q′) with m≥ m′′ then
10: return True
11: end if
12: end for
13: end for
14: return False

Algorithm 6 candidateCoveredQueries
INPUT:

q: a query,
m : a member.

OUTPUT: A set of queries where m may appear.
VARIABLE: A set of queries Q, a set of members M.
1: Q← /0
2: let lca(e1)∪B . . .∪B lca(ex)∪B q1∪B . . .∪B qy be the QSL

expression defining q
3: M←{m′ ∈ member(q)|m′ ≥ m}
4: if m ∈M then
5: Q← Q∪{q1, . . . ,qy}
6: end if
7: for each q′ appearing in lca(e1)∪B . . .∪B lca(ex) do
8: Q← Q∪{q′}
9: end for

10: return Q

We introduce now function getQueries, returning the queries of the log where
member m is present. It can be easily deduced from lookup by removing the
first lines and outputting the relevant queries instead of a boolean. getQueries can
also be used to find the queries where m×m′ appears, since this corresponds to
getQueries(m)∩getQueries(m′), and thus it can also be used to query the log using
references. getQueries is at the core of getCoveredQueries since it only requires to
implement fully property 5.

Algorithm 7 getQueries
INPUT:

L: a log,
Sr : a summary of L constructed with QSLr ,
m : a member.

OUTPUT: A set of queries from L.
VARIABLES: A set of queries Q.
1: Q← /0
2: for each q ∈ queries(Sr) such that ∃m′ ∈

member(q) with m′ ≥ m do
3: for each q′ ∈ candidateQueries(q,m) do
4: if m ∈ member(q′) then
5: Q← Q∪{q′}
6: end if
7: end for
8: end for
9: return Q

AlgorithmGet 8 getCoveredQueries
INPUT:

L: a log,
m : a member.

OUTPUT: A set of queries from L.
VARIABLES: A set of queries Q.
1: Q← /0
2: for each q ∈ queries(L) do
3: for each q′ ∈ candidateCoveredQueries(q,m) do
4: if ∃m′ ∈ member(q′) with m≥ m′ then
5: Q← Q∪{q′}
6: end if
7: end for
8: end for
9: return Q

16 Julien Aligon and Patrick Marcel and Elsa Negre

6.2 Querying a log

In the previous subsection, we propose algorithms to search efficiently a member in
the log. We now describe a language that enables to declaratively express complex
searches for retrieving queries in a log. Consider the following simple queries on a
log:

• Are there queries in the log that contain the members of the query q?
• Are there queries in the log that contain members covered by the members of q?
• What are the queries in the log that contain the members of q? That contain

members covered by the members of q?
• What are the queries of the log that follow a query containing members the mem-

bers of q?

To define operators for searching the log with a query expression as parameter,
we define the two following relations over query expressions.

Definition 10. (Specialization relation over query expression) Let q and q′ be two
query expressions. q specialises q′, noted q ≺ q′, if ∀i ∈ [1,n] and for all members
m′ ∈ mi(q′), there is a member m ∈ mi(q) such that m′ covers m.

Definition 11. (Inclusion of query expressions) Let q and q’ be two query expres-
sions. q v q′ if for all i ∈ [1,n], mi(q)⊆ mi(q′)

Example 9. 〈{Soda},{all},{all}〉 is more general than
〈{Pepsi,Drink},{All},{All}〉. The opposite is not true. 〈{Pepsi}, /0, /0〉 is in-
cluded in 〈{Pepsi,Poke},{2008},{All}〉.

The search language is composed of two operators for querying a log.
The first one is unary and allows to filter the log with a query. It is noted
f ilterLog(L,q,comp) where L is a log, q is a query expression and comp is a com-
parison symbol, either v or ≺. The second operator is binary and allows to find
neighbors of queries. It is noted getNeighbor(L,L′,dir) where L,L′ are logs and dir
is one of succ, pred. These two operators output a log of queries as answer. We now
give the formal definitions.

Definition 12. Let L be a log, q a query expression and comp a comparator in {v,≺
}, f ilterLog(L,q,comp) = L′ where L′ is the restriction of L to the set {a1, . . . ,ap}
such that for all ai, q comp L(ai) is true and for all x ∈ {1,n} \ {a1, . . . ,ap}, q
comp L(x) is false. Let L be a log, L′ be a log such that pos(L′) ⊂ pos(L), with
pos(L′) = {a1, . . . ,ap}, getNeighbor(L,L′,dir) = L′′ ⊂ L where, if dir is succ (resp.
pred), pos(L′′) = {a1+1, . . . ,ap+1} (resp. pos(L′′) = {a1−1, . . . ,ap−1}) and for
all p in pos(L′′), L′′(p) = L(p) if defined.

f ilterLog(L,q,comp) can be implemented naively by scanning L. A more effi-
cient implementation is proposed in Algorithm 9, where candidateQueries (resp.,
candidateCoveredQueries) is used for accessing only the relevant parts of the log L
when comp is v (resp., ≺). We illustrate these operators with some simple searches
over the running example.

Summarizing and querying logs of OLAP queries 17

Example 10. Let us query the log L = 〈q1,q2,q3〉 where q1,q2,q3 are the query
expressions of Example 1. The query: ”is member Perrier in the log?” is ex-
pressed by: f ilterLog(L,〈{Perrier}, /0, /0〉,v) As this expression returns the empty
set, the answer is interpreted as no. The query ”what are the queries covered
by Pepsi and S2-08?” is expressed by f ilterLog(L,〈{Pepsi},{S2-08},{All}〉,≺
) which returns 〈q1〉. The query ”what are the queries that immedi-
ately follow those queries covered by Pepsi and S2-08” is expressed by
getNeighbor(L, f ilterLog(L,〈{Pepsi},{S2-08},{All}〉,≺),succ) and returns 〈q2〉.
Finally note that summaries can also be used to query logs. Indeed SummarizeLog
can be seen as an operator that outputs a log by summarizing another log. For in-
stance, the expression L′ = SummarizeLog(f ilterLog(L,〈 /0, /0,{North}〉,v)) sum-
marizes only queries q2 and q3 and f ilterLog(L′,〈{Drink}, /0, /0〉,v) checks if mem-
ber Drink is used to summarize those queries.

Algorithm 9 filterLog
INPUT:

L: A log,
q: A query expression
comp: A comparator

OUTPUT: A log.
VARIABLES: A set of queries C.
1: Let Sr be a summary of L constructed with QSLr

2: C← /0
3: for each mi(q) do
4: for each m ∈ mi(q) do
5: if comp =v then
6: for each q′ ∈ queries(Sr) such that ∃m′ ∈ member(q′) with m′ ≥ m do
7: C←C∩ candidateQueries(q,m)
8: end for
9: else

10: C←C∩ candidateCoveredQueries(q,m)
11: end if
12: end for
13: end for
14: return L|{L−1(q′)|q′∈C,q comp q′} {Access to L}

6.3 Use case: defining new analytical sessions

We conclude the section by presenting a realistic use case recapitulating the interest
of summarizing and querying a log of OLAP queries.

Let L be a log containing a large number of past queries focused on the sales of
various products.

We suppose that a user wishes to conduct a new analysis. In order to prepare his
analysis, he decides to visualize a summary of L composed with only ten queries.

For summarizing a log by generalizing it, the SummarizeLog operator will use the
QSLr language with Strategy 2 because the lca operator (generalizing the queries)
is used in each step of summarization.

18 Julien Aligon and Patrick Marcel and Elsa Negre

Thus, the user applied the function SummarizeLog(L) that outputs a summary of
L.

We suppose that the user decides to conduct a new analysis about the cola sodas.
Visualizing the summary, he notes no queries of the summary are composed with
Coke products. However, Soda appears in these queries. Because Soda general-
izes Coke, the user has to check if queries of the initial log are involved in an
analysis about Coke. Therefore, he filters the initial log by using the function
f ilterLog(L,〈{Coke}, /0, /0〉,v). A sequence of queries L f ilter is returned to the
user. Thus, he follows these query examples for forming the first query of his
new analysis session. For the rest of his analysis session, the user decides to ob-
tain the queries immediately following the queries of L f ilter by using the function
getNeighbor(L, f ilterLog(L,〈{Coke}, /0, /0〉,v),succ).

7 Implementation and tests

The framework is implemented with Java 6. The implementation has been done
considering that dimensions fit in main memory. These dimensions are represented
by trees storing for each member the cardinality of its coverage at the most detailed
level. Tests have been run on a computer equipped with Intel Core 2 Duo CPU
E8400 clocked at 3.00 GHz with 3.48 Go of usable RAM, under windows 7 ultimate
edition. The logs used are synthetic logs on the Foodmart database example coming
with the Mondrian OLAP engine. The process of log generation is detailed in [8] and
aims at simulating real sessions. This process is based on a random choice between
the DIFF and RELAX operators (described in [17] and [18]), applied on the data
of the Foodmart database. These operators can automatically explore a cube by a
sequence of drill-downs or roll-ups, identifying interesting differences between cell
pairs. We suppose that these differences are likely to be identified by a real user,
hence the simulation of an OLAP analysis.

The query generator is parametrized by a number of dimensions, called the
density, that represents the number of dimensions used for navigation. Another pa-
rameter indicates the maximum number of queries per session. For our tests, we
have used logs of high density (5 dimensions out of the 13 available are used to
simulate the navigation) and low density (13 dimensions are used to simulate the
navigation). The high density logs are respectively composed of 119, 242, 437 and
905 queries. The low density logs are respectively composed of 121, 239, 470 and
907 queries. In what follows, the length of summaries are expressed as a ratio of the
original log size.

We have conducted a large set of tests, and we report the main results here in 4
categories:

• Study of the quality measure,
• Assessment of the two strategies proposed for SummarizeLog,
• Sensitivity of the approach to the log density,
• Efficiency of the operators for searching logs.

Summarizing and querying logs of OLAP queries 19

7.1 Study of the quality measure

The aim of our first tests is to study our quality measure. We begin by assessing
the overall usage of each operator of QSL existing in the QSL expression built by
SummarizeLog. Figure 3 shows for QSL that the hf-measure favors the union and
lca operator, and that the \B operator is never used.

Fig. 3 Usage of the operators of QSL, QSLp and QSLr in two strategies on logs of high density

We note h f -measure favours the lca and ∪B operators. This demonstrates that the
sublanguage QSLr, which is used for implementing the search operators efficiently,
is indeed of particular interest.

Fig. 4 Overall quality for QSL on 905
queries of high density in strategy 1

Fig. 5 Ratio of general queries for QSL on 905
queries of high density in strategy 1

Our second test is to compute the ratio of general queries a summary contains.
A general query is a query having only the All member in each dimension. Such
queries reveal little information to the user and thus their appearance in summaries
should be limited. Figures 5, 10, 11, 15, 16 show that the ratio of general queries
increases as the length of the summary decreases, as expected. We note that the

20 Julien Aligon and Patrick Marcel and Elsa Negre

number of general queries never exceeds 50 % of the number of queries in the sum-
mary. This test shows that our quality measure can limit these queries and favours
more interesting ones.

Finally we investigate the usefulness of the quality measure to assess the overall
quality of the summaries. This overall quality is evaluated as follows: For each query
q of the summary, we evaluate its quality using h f -measure between its references
and the references of the queries of the log that q summarizes. The overall quality
of the summary is the minimum, i.e., the worst, of the qualities of all queries of the
summary. Interestingly, Figures 4 shows that this overall quality is eventually good
for summaries of small length. It can also be seen on Figures 8,9, 17 and 18, for logs
of different lengths.

7.2 Assessment of the two strategies

This series of tests assess the efficiency and effectiveness of the two strategies pro-
posed for SummarizeLog. The behaviours reported below are observed whatever the
log length. Figures 6 (with a logarithmic scale) and 7 report the computation time
needed for summarizing.

Fig. 6 Efficiency for QSL for the two strate-
gies on logs of high density Fig. 7 Efficiency for QSLp and QSLr for the two

strategies on 905 queries of high density

Note that, as expected, the computation time is polynomial in the length of the
log. This time is quite expensive for large logs. Strategy 2 is globally more efficient,
requiring less quality tests (the most expensive part of SummarizeLog). Note that
due to the fact that h f -measure is evaluated on references and computes a coverage
at the lowest level of details, the computation time for languages including ∪B can
be extremely high. Indeed, for QSLr, strategy 1 can result in successive unions that
produce queries that are large sets of references, whereas strategy 2 systematically
uses lca that reduces the number of references. Figures 8 and 9 show the overall
quality of the summaries produced with the two strategies. It can be seen that strat-

Summarizing and querying logs of OLAP queries 21

egy 1 globally achieves a better quality than strategy 2. This can be explained by the
fact that strategy 1 explores more combinations of QSL operators than strategy 2.

Fig. 8 Overall quality for QSL on 242
queries of high density for strategy 1

Fig. 9 Overall quality for QSL on 242 queries of
high density for strategy 2

Finally, Figures 10, 11 and 12 indicate the ratio of general queries in the sum-
maries constructed with each of the strategies.

Fig. 10 Ratio of general queries for QSL on
242 queries of high density for strategy 1

Fig. 11 Ratio of general queries for QSL on 242
queries of high density for strategy 2

Fig. 12 Ratio of general queries for QSL on 905 queries of high density for strategy 2

It can be seen that strategy 1 and 2 have a similar behaviour, the number of
general in queries produced with strategy 1 increasing more slowly. Consequently,

22 Julien Aligon and Patrick Marcel and Elsa Negre

strategy 1 produces fewer general queries than strategy 2 which confirms that strat-
egy 1 computes summaries of better quality.

7.3 Sensitivity to the log density

Figures 13, 14, 15, 16, 17, 18 report the result of tests on logs of similar lengths
but different densities, in terms of efficiency, global quality and ratio of general
queries. It can be seen that SummarizeLog achieves both a better quality and a better
computation time on logs of high density, as expected. Remarkably, even on logs of
low density, the ratio of general queries remains acceptable.

Fig. 13 Efficiency for QSL on three logs of
high density for strategy 1

Fig. 14 Efficiency for QSL on three logs of low
density for strategy 1

Fig. 15 Ratio of general queries for QSL on
437 queries of high density for strategy 1

Fig. 16 Ratio of general queries for QSL on 470
queries of low density for strategy 1

Summarizing and querying logs of OLAP queries 23

Fig. 17 Overall quality for QSL on 437
queries of high density for strategy 1

Fig. 18 Overall quality for QSL on 470 queries of
low density for strategy 1

7.4 Efficiency of the search operators

Our last series of tests assess the efficiency of the Lookup algorithm, that is at the
core of the search operators. This operator relies on two summaries constructed
respectively with QSLp and QSLr. Figures 19 and 20 show the proportion of general
queries produced by QSLr. (Note that summaries constructed with QSLp cannot
have general queries unless already present in the initial log, which for our tests was
not the case.)

Fig. 19 Ratio of general queries for QSLr on
905 queries of high density for strategy 1

Fig. 20 Ratio of general queries for QSLr on 907
queries of low density for strategy 1

Figures 21 and 22 show the average gain in efficiency for a lookup search of 3210
members chosen randomly, from two summaries computed with QSLp and QSLr for
strategy 1 on logs of high and low density. The gain is the ratio of computation time
between the lookup algorithm and a basic scan with disk accesses of the log file.

24 Julien Aligon and Patrick Marcel and Elsa Negre

Fig. 21 Gain for Lookup Algorithm on 905 queries of high density for strategy 1

Fig. 22 Gain for Lookup Algorithm on 907 queries of low density for strategy 1

It can be seen that the gain is in favour of lookup algorithm whatever the density.

8 Related Work

Summarization of structured data has attracted a lot of attention in various domain,
covering web server log [20] pattern mining (see e.g., [13] that includes a brief sur-
vey), sequences of event [14], database instance [16], multidimensional data stream
[15], database workloads [4] and datacubes [12].

Summarizing and querying logs of OLAP queries 25

Many of these works rely on fuzzy set theory [20, 16] and/or are compression
techniques for which it is important that original data can be regenerated [12, 13].
Moreover, it can be the case that the summary has not the same type as the data it
summarizes. In the domain of databases [16, 15, 12], summarizing is applied to the
database instance where, for OLAP data, measure values are taken into account.

In this paper we address the problem of summarizing an OLAP server query log.
Our approach has the following salient features:

• We do not summarize a database instance, but a sequence of database queries.
• Summaries can be expressed declaratively with a manipulation language or con-

structed automatically.
• We do not assume any imprecise description of the members used in the queries,

that could e.g., be described via fuzzy set theory. Instead, we only need the in-
formation at hand, i.e., the hierarchies described in the dimension tables.

• The type of the summary is the same as the type of the original data.
• We do not address the problem of regenerating the data from the summary, in-

stead we focus on how to use summaries to efficiently search the log.

To the best of our knowledge, no work have yet addressed the problem of summa-
rizing a database query log in a suitable and concise representation. As pointed out
in [10], many RDBMs provide query logging, but logs are used essentially for phys-
ical tuning, and noticeably, the term workload is often termed instead of log. No-
table papers are [4] for relational databases and [9] for multidimensional databases.
[4] defines various primitives for summarizing query logs, essentially to filter it.
The model of queries used covers both the query expression and query evaluation
information (indexes used, execution cost, memory used, etc.) In this work, summa-
rization aims at satisfying a given objective function for assisting DBA like finding
queries in the log that have a low index usage. In [9], logs are analysed for identify-
ing views to materialize, using an operator that resembles our lca operator.

Usually, when a query log is displayed, often in flat table or file, it is not suitable
for browsing or searching into it. In our earlier work [5], we propose to organize an
OLAP query log under the form of a website. But if the log is large, browsing this
website may be tedious. An effective log visualization and browsing tool is yet to
be designed, and the present work is a step in that direction.

9 Conclusion and Perspectives

In this article, we propose a framework for summarizing and querying OLAP query
logs. This framework relies on the idea that a query can summarize another query
and that a log can summarize another log. Our contributions include a query manip-
ulation language that allows to declaratively specify a summary, and an algorithm
for automatically computing a query log summary of good quality. We also propose
operators for querying OLAP query logs and show how summaries can be used to

26 Julien Aligon and Patrick Marcel and Elsa Negre

achieve an efficient implementation. The framework has been implemented and tests
were conducted to show its interest.

Future work include the development and study of the different languages pro-
posed in this article, as well as the validation of the approach on real and large
query logs. Our long term goal is to study how query logs can support effectively
the On-Line Analysis Process. Our future work will thus include the extension of
our framework to a collaborative context where a log, composed of many sequences
of queries performed by different users, each with a particular goal in mind, can
be efficiently browsed and searched. Another direction is the generalisation of our
framework to other types of logs (like web query logs for instance).

References

1. Julien Aligon, Patrick Marcel, and Elsa Negre. A framework for summarizing a log of OLAP
queries. In IEEE ICMWI, Special Track on OLAP and Data Warehousing, 2010.

2. Julien Aligon, Patrick Marcel, and Elsa Negre. Résumé et interrogation de logs de requêtes
OLAP. In Proc. 11ème Conférence Internationale Francophone sur l’Extraction et la Gestion
des Connaissances EGC, 2011.

3. Gloria Chatzopoulou, Magdalini Eirinaki, and Neoklis Polyzotis. Query recommendations for
interactive database exploration. In SSDBM, pages 3–18, 2009.

4. Surajit Chaudhuri, Prasanna Ganesan, and Vivek R. Narasayya. Primitives for Workload Sum-
marization and Implications for SQL. In VLDB, pages 730–741, 2003.

5. Sonia Colas, Patrick Marcel, and Elsa Negre. Organisation de log de requêtes OLAP sous
forme de site web. In EDA 2010, volume B-6 of RNTI, pages 81–95, Toulouse, Juin 2010.
Cépaduès.

6. Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems: The Com-
plete Book. Prentice Hall Press, Upper Saddle River, NJ, USA, 2008.

7. Arnaud Giacometti, Patrick Marcel, and Elsa Negre. Recommending multidimensional
queries. In DaWaK, pages 453–466, 2009.

8. Arnaud Giacometti, Patrick Marcel, Elsa Negre, and Arnaud Soulet. Query Recommendations
for OLAP Discovery-Driven Analysis. IJDWM, 7(2):1–25, 2011.

9. Matteo Golfarelli. Handling large workloads by profiling and clustering. In DaWaK, pages
212–223, 2003.

10. Nodira Khoussainova, Magdalena Balazinska, Wolfgang Gatterbauer, YongChul Kwon, and
Dan Suciu. A case for a collaborative query management system. In CIDR. www.crdrdb.org,
2009.

11. Nodira Khoussainova, YongChul Kwon, Wei-Ting Liao, Magdalena Balazinska, Wolfgang
Gatterbauer, and Dan Suciu. Session-based browsing for more effective query reuse. In
SSDBM, pages 583–585, 2011.

12. Laks V. S. Lakshmanan, Jian Pei, and Jiawei Han. Quotient cube: How to summarize the
semantics of a data cube. In VLDB, pages 778–789. Morgan Kaufmann, 2002.

13. Marie Ndiaye, Cheikh Talibouya Diop, Arnaud Giacometti, Patrick Marcel, and Arnaud
Soulet. Cube based summaries of large association rule sets. In ADMA (1), pages 73–85,
2010.

14. Wei Peng, Charles Perng, Tao Li, and Haixun Wang. Event summarization for system man-
agement. In Pavel Berkhin, Rich Caruana, and Xindong Wu, editors, KDD, pages 1028–1032.
ACM, 2007.

15. Yoann Pitarch, Anne Laurent, and Pascal Poncelet. Summarizing multidimensional data
streams: A hierarchy-graph-based approach. In PAKDD (2), pages 335–342, 2010.

Summarizing and querying logs of OLAP queries 27

16. Régis Saint-Paul, Guillaume Raschia, and Noureddine Mouaddib. General purpose database
summarization. In VLDB, pages 733–744, 2005.

17. Sunita Sarawagi. Explaining differences in multidimensional aggregates. In VLDB, pages
42–53, 1999.

18. Sunita Sarawagi. User-adaptive exploration of multidimensional data. In VLDB, pages 307–
316, 2000.

19. Kostas Stefanidis, Marina Drosou, and Evaggelia Pitoura. ”You May Also Like” Results in
Relational Databases. In PersDB, 2009.

20. Slawomir Zadrozny and Janusz Kacprzyk. Summarizing the contents of web server logs: A
fuzzy linguistic approach. In FUZZ-IEEE, pages 1–6. IEEE, 2007.

