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Performance trade-offs in the observer design of a 2×2 linear
hyperbolic system

Jean Auriol1, Ulf Jakob F. Aarsnes2 and Florent Di Meglio3

Abstract— In this paper, we introduce a degree of freedom
in the design of backstepping observers for linear hyperbolic
systems. This enables tuning of observer and controller feed-
back aggressiveness, through a trade-off between performance
and noise sensitivity. This constitutes an important step towards
practical implementation of such observers, notably in observer-
controller schemes. The results are illustrated by frequency
analysis of the gang of four and time-domain simulations.

I. INTRODUCTION

This article presents an extension to the collocated bound-
ary observer presented in [17], for a system of two heterodi-
rectional first-order hyperbolic linear PDEs, in presence of
disturbances in the system and of noise in the measurements.
In particular, the observer designed in this article presents a
degree of freedom that can increase sensitivity-performance.

Most physical systems involving a transport phenomenon
can be modeled using hyperbolic partial differential equa-
tions (PDEs): traffic flow [1], heat exchangers [19], open
channel flow [5], [8] or multiphase flow [9], [10]. The
backstepping approach [11], [15] has enabled the design
of stabilizing full-state feedback laws for these systems.
These controllers are explicit, in the sense that they are
expressed as a linear functional of the distributed state at each
instant. The (distributed) gains can be computed offline. The
generalization of these stabilization results for a large number
of equations has been done during the last few years ([3], [6],
[11]). However, to enable application of these backstepping
results to industrial control-problems, the issues of noise
sensitivity, robustness and performance trade-offs have to be
better addressed. As an example, the backstepping results
typically yield a single controller for a given system without
any tuning capability.

The main contribution of this paper is a tunable observer
for linear hyperbolic systems. Using the backstepping ap-
proach, an extension to the observer presented in [17] in
presence of disturbances in the system and of noise in the
measurements is derived. This new observer provides an ad-
ditional degree of freedom which enables performance trade-
offs in the design between actuation noise sensitivity and
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CAS - Centre automatique et systèmes, 60 bd St Michel 75006 Paris, France.
florent.di meglio@mines-paristech.fr

convergence rate. Our approach to analyze the performance
of this new observer is the following: using the Laplace trans-
form we derive the systems loop transfer function [7], from
which the load sensitivity and noise sensitivity functions can
be found [2], [20] which illustrate the trade-off represented
by the new degree of freedom in the design.

The paper is organized as follows. In Section II-A, we
introduce the model equations and the notations; in particular
we introduce noise and disturbances in the ideal model.
The output feedback controller designed in [17] to stabilize
the ideal model in finite time is presented in Section II-B.
Retaining the backstepping approach, the new observer, that
provides an additional degree of freedom, is presented in
Section III. The transfer function of the closed-loop system
is computed in Section IV which enables the derivation of
the gang of four sensitivity functions. Finally, the result and
trade-off is illustrated by an example in Section V.

II. PROBLEM DESCRIPTION

A. System under consideration

We consider the following 2-state linear hyperbolic system

ut(t, x) + λux(t, x) = σ+−v(t, x) (1)

vt(t, x)− µvx(t, x) = σ−+u(t, x) (2)

evolving in {(t, x)| t > 0, x ∈ [0, 1]}, with the following
linear boundary conditions

u(t, 0) = qv(t, 0) + d1(t), (3)
v(t, 1) = ρu(t, 1) + d2(t) + U(t) (4)

with constant inside-domain coupling terms and constant
speeds λ and µ. The boundary couplings q and ρ are
assumed non-null. The initial conditions denoted u0 and
v0 are assumed to belong to L2([0, 1]). The terms d1(t)
and d2(t) represent unknown disturbances acting on the
boundaries. The sensor is located at the right boundary, i.e
we measure

y(t) = u(t, 1) + n(t) (5)

where n(t) represents an unknown noise term. The variable
U(t) represents the control input. The system is schemati-
cally depicted on Figure 1.

Remark 1: The scalar coupling terms σ+− and σ−+ are
assumed constant here but the results of this paper can
be adjusted for spatially-varying coupling terms or and
velocities.
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Fig. 1. Schematic representation of system (1)-(5)

Remark 2: The system formulation (1)-(2) encompasses
systems on the form

ut(t, x) + λux(t, x) = σ++u(t, x) + σ+−v(t, x) (6)

vt(t, x)− µvx(t, x) = σ−+u(t, x) + σ−−v(t, x) (7)

through a variable change as presented in [16].

B. Output feedback controller in the ideal case

In the absence of disturbance or noise (i.e d1(t) =
d2(t) = n(t) = 0), a collocated output feedback con-
troller has been derived in [18, Theorem 3]: there exist
kernels Puu, Puv, P vu, P vv,Kvu and Kvv defined on T =
{(x, ξ) ∈ [0, 1]2|x ≤ ξ} such that the following theorem
holds:

Theorem 1: [18] Consider system (1)-(4) with initial con-
ditions u0 and v0, with d1(t) = d2(t) = n(t) = 0 and with
control law

U =− ρû(t, 1)

+

∫ 1

0

Kvu(1, ξ)û(ξ, t) +Kvv(1, ξ)v̂(ξ, t)dξ (8)

where û and v̂ are computed from

ût = −λûx + σ+−v̂ − λPuu(u(t, 1)− û(t, 1)) (9)
v̂t = µv̂x + σ−+û− λP vu(u(t, 1)− û(t, 1)) (10)

û(t, 0) = qv̂(t, 0), v̂(t, 1) = ρu(t, 1) + U(t) (11)

Its null-equilibrium is exponentially stable and is reached in
finite time t = 2( 1

λ + 1
µ ).

C. Formulation of the problem

The controller used in Theorem 1 stirs the system to zero
in finite time but does not take into account the closed loop
performance with regards to noise or disturbances, which is
of significant importance in practical application. The first
goal of this article is to derive a new observer with an addi-
tional degree of freedom which enables performance trade-
offs in the design, e.g. between actuation noise sensitivity
and convergence rate. This is the topic of the next section.

III. COLLOCATED OBSERVER DESIGN

In this section we design an observer that relies on the
noisy measurements at the right boundary: y(t) = u(t, 1) +
n(t). This observer will be designed as a function of a
parameter ε that represents a trade-off between measurement
reliability versus that of the model. The uncertainty of the
measurement and the model is represented by the noise and
the disturbances, respectively.

A. Observer design

Similarly to [18], the observer equations read as follows

ût(t, x) + λûx(t, x) =σ+−v̂(t, x)

− P+(x)(û(t, 1)− y(t)) (12)
v̂t(t, x)− µv̂x(t, x) =σ−+û(t, x)

− P−(x)(û(t, 1)− y(t)) (13)

with the modified boundary conditions

û(t, 0) = qv̂(t, 0), (14)
v̂(t, 1) = ρ(1− ε)û(t, 1) + ρεy(t) + U(t) (15)

where P+(·) and P−(·) are defined as

P+(x) = −λPuu(x, 1) + µρ(1− ε)Puv(x, 1) (16)

P−(x) = −λP vu(x, 1) + µρ(1− ε)P vv(x, 1) (17)

where the kernels Puu, Puv, P vu and P vv are defined in
[18].

Remark 3: The coefficient ε ∈ [0, 1] in (15) can be
interpreted as a measure of trust in our measurements relative
to the model (or unmeasured disturbances), where ε = 1
results in relying more on the measurements and ε = 0
relying more on the model. This trade-off will be made
explicit in the magnitude of d1 and d2 relative to n in the
following.

Remark 4: The coefficient ε cannot be chosen arbitrarily
in [0, 1]. As it will appear in the next subsection, it has to be
close enough to 1 to ensure the convergence of the observer.

Applying the observer (12)–(15) to the system (1)–(4)
yields the error system (denoting ũ(t, x) = u(t, x)− û(t, x)
and ṽ(t, x) = v(t, x)− v̂(t, x)):

ũt(t, x)+λũx(t, x) = σ+−ṽ(t, x)

− P+(x)ũ(t, 1)− n(t)P+(x) (18)
ṽt(t, x)+µṽx(t, x) = σ−+ũ(t, x)

− P−(x)ũ(t, 1)− n(t)P−(x) (19)

with the boundary conditions

ũ(t, 0) = qṽ(t, 0) + d1(t), (20)
ṽ(t, 1) = d2(t) + ρ(1− ε)ũ(t, 1)− ρεn(t) (21)

B. Ideal error system

In this section, we consider the unperturbed system with
uncorrupted measurements; to give insight on the impact of
ε in the ideal case. Using the backstepping approach and
a Volterra transformation identical to the one presented in



[18], we can map system (18)-(21) to a simpler target system.
Consider the kernels Puu, Puv, P vu and P vv defined in [18]
and the following Volterra transformation

ũ(t, x) = α̃id(t, x)−
∫ 1

x

(Puu(x, ξ)α̃id(t, ξ)

+Puv(x, ξ)β̃id(t, ξ))dξ (22)

ṽ(t, x) = β̃id(t, x)−
∫ 1

x

(P vu(x, ξ)α̃id(t, ξ)

+P vv(x, ξ)β̃id(t, ξ))dξ (23)

Differentiating (22) and (23) with respect to space and time,
one can easily prove that system (18)-(21) is equivalent to
the following system

(α̃id)t(t, x) + λ(α̃id)x(t, x) = 0 (24)

(β̃id)t(t, x)− µ(β̃id)x(t, x) = 0 (25)

with the following boundary conditions

α̃id(t, 0) = qβ̃id(t, 0) (26)

β̃id(t, 1) = ρ(1− ε)α̃id(t, 1) (27)

We then have the following lemma
Lemma 1: System (24)-(27) is exponentially stable if and

only if

1− 1

|ρq|
< ε ≤ 1 (28)

Remark 5: In the case ε = 1 we have the same target
system as the one presented in [18]. It converges in finite
time 1

λ + 1
µ to zero.

C. Error system including noise and disturbance

We consider in this section the real error-system (18)-(21),
including the noise and disturbances n, d1, d2. Applying the
Volterra transformation (22)-(23), system (18)-(21) can be
mapped to the following target system

α̃t(t, x) + λα̃x(t, x) = n(t)f1(x) + d2(t)f2(x) (29)

β̃t(t, x)− µβ̃x(t, x) = n(t)f3(x) + d2(t)f4(x) (30)

with the boundary conditions

α̃(t, 0) = qβ̃(t, 0) + d1(t) (31)

β̃(t, 1) = d2(t) + ρ(1− ε)α̃(t, 1)− ρεn(t) (32)

where f1, f2, f3 and f4 are the solutions of the following
integral equations

f1(x) = −P+(x)− µρεPuv(x, 1)

−
∫ 1

x

Puu(x, ξ)f1(ξ) + Puv(x, ξ)f3(ξ)dξ (33)

f2(x) = µPuv(x, 1)

+

∫ 1

x

Puu(x, ξ)f2(ξ) + Puv(x, ξ)f4(ξ)dξ (34)

f3(x) = −P−(x)− µρεP vv(x, 1)

−
∫ 1

x

P vv(x, ξ)f3(ξ) + P vu(x, ξ)f1(ξ)dξ (35)

f4(x) = µP vv(x, 1)

+

∫ 1

x

P vv(x, ξ)f4(ξ) + P vu(x, ξ)f2(ξ)dξ (36)

One can prove that this system is Input-State-Stable (ISS)
with respect to d1, d2 and n and remains consequently stable
in presence of noise and disturbances.

Proof: (Sketch) Assume that n(t) = d1(t) = 0, consider
the following Lyapunov function

V (t) =

∫ 1

0

p

λ
e−δxα̃2(t, x) +

l

µ
eδxβ̃2(t, x)dx (37)

where p, l and δ are positive constant such that

pq2 < l le2δ(ρ(1− ε))2 < p (38)

With these conditions, differentiating V and using Young’s
inequalities yields

V̇ (t) ≤ −
∫ 1

0

[(δpe−δx − 1

K2
)α̃2(t, x)

+ (δleδx − 1

K2
)β̃2(t, x)]dx+ d22(t)g(K2) (39)

where K can be chosen as large as necessary and with g a
positive function of K2. Taking K large enough yields the
expected result.

IV. FREQUENCY DOMAIN ANALYSIS

In order to analyze the performance of the output-feedback
controller (8), (12)-(17) in presence of noise and distur-
bances, we derive in the next section the closed loop transfer
function of system (29)-(32), with inputs n, d1, d2 and out-
puts y and U . To obtain these transfer functions we divide
the system in three subsystems

• The controlled system whose direct inputs are d1, d2
and U(t) and whose direct output is u(t, 1)

• The observer whose direct inputs are y(t) and U(t) and
whose outputs are û and v̂.

• The controller whose direct inputs are û and v̂ and
whose output is U(t)

We denote s the Laplace variable. The Laplace transform of
u(t, x) will be denoted u(s, x). Moreover, we denote in the
following ŵ(t, x) = (û(t, x), v̂(t, x))T .

The feedback system satisfies the canonical block diagram
shown in Figure 2, with the transfer functions

y

U
(s) = P(s),

U

y
(s) = C(s). (40)

A. Computation of the Gang of Four

The four transfer functions mapping n, d2 to y, U(s) form
the canonical Gang of Four [2], the evaluation of which are
considered essential for the practical implementation of any
feedback control system. They are defined as
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Fig. 2. Block representation of the closed-loop system

• Load sensitivity function

PS(s) =
y

d2
(s) =

P(s)

1 + P(s)C(s)
(41)

• Sensitivity function

S(s) =
y
n

(s) =
−1

1 + P(s)C(s)
(42)

• Complementary sensitivity function

T(s) =
U
d2

(s) = − P(s)C(s)

1 + P(s)C(s)
(43)

• Noise sensitivity function

CS(s) =
U
n

(s) =
C(s)

1 + P(s)C(s)
(44)

In the next section we derive the transfer functions C(s) and
P(s).

B. Transfer function of the controlled system

We consider in this subsection the subsystem composed
of equations (1)-(4). The objective is to obtain a relation
between y(s), U(s), d1(s) and d2(s). Taking the Laplace
transform of the subsystem (1)-(2) yields

d

dx

(
u(s, x)
v(s, x)

)
=

(
− s
λ

σ+−

λ

−σ
−+

µ
s
µ

)(
u(s, x)
v(s, x)

)
(45)

In the following we denote

A(s) =

(
− s
λ

σ+−

λ

−σ
−+

µ
s
µ

)
(46)

B(s, x) =

(
b11(s, x) b12(s, x)
b21(s, x) b22(s, x)

)
= exp(A(s)x) (47)

It yields

u(s, x) = b11(s, x)u(s, 0) + b12(s, x)v(s, 0) (48)
v(s, x) = b21(s, x)u(s, 0) + b22(s, x)v(s, 0) (49)

Rewritting the boundary conditions (3)-(4) yields:

u(s, 0) = qv(s, 0) + d1(s) (50)
v(s, 1) = ρb(s, 1) + d2(s) + U(s) (51)

Consequently, we obtain after some computation

u(s, 1) = H(s)d1(s) + P (s)d2(s) + P (s)U(s) (52)

where H(s) and P (s) are defined by

H(s) =
(b11(s, 1)− b21(s, 1)H0(s))

1− ρH0(s)
(53)

P (s) =
H0(s)

1− ρH0(s)
(54)

with H0(s) =
qb11(s, 1) + b12(s, 1)

qb21(s, 1) + b22(s, 1)
(55)

It immediately yields

y(s) = H(s)d1(s) + P (s)d2(s) + P (s)U(s)− n(s)
(56)

P(s) represents the plant block.

C. Transfer function of the observer

We consider in this subsection the subsystem (18)-(21).
We compute the transfer function between ŵ(t, x) and y(t)
and the transfer function between ŵ(t, x) and U(t).

Taking the Laplace transform of (18)-(19) yields

d

dx
ŵ(s, x) =

(
λ 0
0 −µ

)−1

[

(
−s σ+−

σ−+ −s

)
ŵ

−
(
P+(x)
P−(x)

)
(û(s, 1)− y(s))] (57)

Since the boundary term û(x, 1) is inside the equation
we have to solve this equation in retrograde space. We
consequently denote

ŵ(s, x) = ŵ(s, 1− x), û(s, 0) = û(s, 0) (58)

Λ =

(
−λ 0
0 µ

)
Σ =

(
0 σ+−

σ−+ 0

)
(59)

D(s) = Λ−1(Σ− sI2) P (x) =

(
P+(1− x)
P−(1− x)

)
(60)

Consequently (57) can be rewritten as

d

dx
ŵ(s, x) = D(s)ŵ − Λ−1[P (x)(û(s, 0)− y(s))] (61)

The ODE (61) is well-posed and can be implicitly solved.
The general structure of the solutions is given by

ŵ(s, x) = Φw(x, s)ŵ(s, 0) + Φy(x, s)y(s) (62)

where Φw(x) and Φy(x) ∈M2,2×M2,1. We denote (Φw)1
(resp. (Φw)2) the first (resp. second) column of Φw. Their
expressions are obtained solving (61) with y = 0 and the

initial condition ŵ(s, 0) =

(
1
0

)
(resp.

(
0
1

)
). It yields

(Φw)1(x, s) = exp(D(s)x)
(
1 0

)T
−
∫ x

0

exp((x− ν)D(s))Λ−1P (ν)dν (63)

(Φw)2(x, s) = exp(D(s)x)
(
0 1

)T
(64)



Similarly, solving (61) with y = 1 and the initial condition
ŵ(s, 0) = 0 yields the expression of Φy

Φy(x, s) =

∫ x

0

exp((x− ν)D(s))Λ−1P (ν)dν (65)

Consequently, we have

ŵ(s, x) = Φw(1− x, s)ŵ(s, 1) + Φy(1− x, s)y(s) (66)

We now use the boundary conditions (14)-(15) We have(
−ρ(1− ε) 1

)
ŵ(s, 1) = ρεy(s) + U(s) (67)

(1 − q)ŵ(s, 0) = 0 (68)

We have

ŵ(s, 0) = Φw(1, s)ŵ(s, 1) + Φy(1, s)y(s) (69)

Denoting K(s) =

(
−(1 − q)Φw(1, s)
−ρ(1− ε) 1

)
, it yields

K(s)ŵ(s, 1) =

(
0
1

)
U(s) +

(
(1 − q)Φy(1, s)

ρε

)
y(s)

(70)

Consequently, one has

ŵ(s, x) = Φw(1− x, s)K(s)−1

(
0
1

)
U(s)

+ (Φw(1− x, s)K(s)−1

(
(1,−q)Φy(1, s)

ρε

)
+ Φy(1− x, s))y(s) (71)

Thus,

ŵ(s, x) = HU (s, x)U(s) + Hy(s, x)y(s) (72)

D. Transfer function of the control law

We consider in this section the control law (8). We now
compute (using (72)) a relation between y(s) and U(s). In
the following, we denote

R =
(
ρ 0

)
, M(ξ) =

(
K(1, ξ) L(1, ξ)

)
(73)

We immediately have from (8)

U(s) = −Rŵ(s,1) +

∫ 1

0

M(ξ)ŵ(s, ξ)dξ (74)

Using (72) yields

U(s) = −R
(
HU (s, 1)U(s) + Hy(s, 1)y(s)

)
+

(∫ 1

0

M(ξ)HU (s, ξ)dξ

)
U(s)

+

(∫ 1

0

M(ξ)Hy(s, ξ)dξ

)
y(s) (75)

and consequently

U(s) = −C(s)y(s) (76)

where

C(s) =
RHy(s, 1)−

∫ 1

0
M(ξ)Hy(s, ξ)dξ

1 +RHU (1, s)−
∫ 1

0
M(ξ)HU (s, ξ)dξ)

(77)
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Fig. 3. Noise sensitivity function, CS, for different values of ε

C(s) represents the feedback block (including the observer).
Using these expressions it is henceforth possible to compute
numerically the transfer functions of the Gang of Four. In
the following section these transfer functions are analyzed
for a particular example.

Remark 6: In order to fulfill the closed loop analysis one
could compute the two last transfer functions between y(s)
and d1(s) and between U(s) and d1(s)

y
d1

(s) =
H(s)

1 + P(s)C(s)
(78)

U
d1

(s) =
−C(s)H(s)

1 + P(s)C(s)
(79)

where H is defined by (53).

V. RESPONSE CURVES AND SIMULATIONS RESULTS

In this section, we consider the problem (1)-(4) where the
coefficients are set to the following values

λ = µ = 1, σ+− = 0.2, σ−+ = 0.4, q = 1, ρ = 0.5

The numerical values of the parameters of this example
are chosen such that the system is unstable [4]. Since the
product |ρq| is less than 1, one can arbitrarily choose the
term ε between 0 and 1 (see equation (28)). The goal of this
section is to analyze deeper the role of the proposed degree
of freedom and particularly the underlying trade-off.

A. Frequency response: Bode analysis

1) Noise sensitivity function: We compute for different
values of ε the Bode’s gain of the noise sensitivity function.
For this purpose the transfer functions are evaluated along
the imaginary axis s = jω.

Figure 3 shows the gain of the noise sensitivity function

CS =
C(jω)

1 + P(jω)C(jω)
. (80)

One can notice that the smaller ε is, the lower the peaks
of the Bode’s gain are. This would mean that to reduce the
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Fig. 5. Load sensitivity function for different values of ε

impact of the noise one should choose a small ε. This is
coherent since reducing ε corresponds feeding in less of the
measurement at the right boundary, c.f. (15). This is directly
related to the fact that the control effort is smaller for a small
ε as shown in Figure 4, which shows the transfer function
of C for different values of ε.

2) Load sensitivity function: Figure 5 shows the gain of
the load sensitivity function, PS, where

PS(jω) =
P(jω)

1−P(jω)S(jω)
(81)

The results here seem to indicate that if the pulsation
ω is large enough, then the value of ε does not play a
preponderant role for the response of the system. However,
for low to medium frequency ranges ω < 0.4 rad/s, it is
clear that a larger value of ε yields better performance in
terms of rejection of transient disturbances in this frequency
range. This result may however be treated carefully: for
different system parameters (in particular with a higher ρ)
there can be a large variation between the response curves
depending on the chosen value of ε.

B. Temporal response

To illustrate the previous result we simulate in Figs.
6–8 the response to a single square wave at the second
disturbance input: d2 = H(t)−H(t−1), where H(·) is the
Heaviside step function. The Figures show the output y for
different ε with no noise (Fig. 6), and with noise (Fig. 7),
and the control action u (Fig. 8).

Considering Fig. 6, it is clear that taking ε = 1 leads to
a better response: the higher ε is, the faster the convergence
will be. With the addition of significant measurement noise,
however, the results are more nuanced, see Fig 7. Although
the fast convergence rate is retained for ε = 1, the high-
frequency gain from the measurement to the actuation is
much higher, causing significant deterioration of the perfor-
mance and excessive use of the control action, see Fig 8.
Reducing the ε reduces the effect of the noise on the system
output y and the control action u, where for the extreme
case ε = 0 the effect of the white noise is barely noticeable.
These simulations clearly illustrate the trade-off between
convergence rate and noise sensitivity made available by
introduction of the ε parameter.

VI. CONCLUSION

Using the backstepping approach we have derived an
extension to the observer presented in [17] in presence of
disturbances in the system and of noise in the measurements.
Nevertheless some aspects are neglected by such an approach
since the trade-off between disturbance error reduction and
sensor noise error reduction is not the only constraint on
feedback design. For instance a lower value of ε means a
slower convergence to the equilibrium (in particular if there
is no noise and if either λ or µ is large). Moreover, the
proposed approach does not reflect the influence of ε on
the size of the observer gains, shadowing the robustness
aspects of the problem. Analyzing the impact of adding
an integrator on the control law, as proposed in [13], to
improve disturbance rejection will be the purpose of further
contributions. Further, a similar degree of freedom can be
added to the dual control design. Investigating such an
addition, and extending to the case of multiple inputs will
lead to compare the backstepping approach with the optimal
control approaches derived in [12], [14] which lead to similar
closed loop behavior.
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