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S U M M A R Y
Full waveform inversion using the conventional L2 distance to measure the misfit between
seismograms is known to suffer from cycle skipping. An alternative strategy is proposed in
this study, based on a measure of the misfit computed with an optimal transport distance. This
measure allows to account for the lateral coherency of events within the seismograms, instead
of considering each seismic trace independently, as is done generally in full waveform inver-
sion. The computation of this optimal transport distance relies on a particular mathematical
formulation allowing for the non-conservation of the total energy between seismograms. The
numerical solution of the optimal transport problem is performed using proximal splitting
techniques. Three synthetic case studies are investigated using this strategy: the Marmousi 2
model, the BP 2004 salt model, and the Chevron 2014 benchmark data. The results emphasize
interesting properties of the optimal transport distance. The associated misfit function is less
prone to cycle skipping. A workflow is designed to reconstruct accurately the salt structures
in the BP 2004 model, starting from an initial model containing no information about these
structures. A high-resolution P-wave velocity estimation is built from the Chevron 2014 bench-
mark data, following a frequency continuation strategy. This estimation explains accurately
the data. Using the same workflow, full waveform inversion based on the L2 distance converges
towards a local minimum. These results yield encouraging perspectives regarding the use of
the optimal transport distance for full waveform inversion: the sensitivity to the accuracy of
the initial model is reduced, the reconstruction of complex salt structure is made possible, the
method is robust to noise, and the interpretation of seismic data dominated by reflections is
enhanced.

Key words: Inverse theory; Numerical approximation and analysis; Controlled source seis-
mology; Computational seismology; Wave propagation.

1 I N T RO D U C T I O N

Full waveform inversion (FWI) is a data fitting procedure aiming
at computing high-resolution estimations of subsurface parameters.
The formalism of this method, based on the minimization of the
misfit between observed and synthetic data, yields the possibility
for estimating any parameter influencing the propagation of seismic
waves: P- and S-wave velocities, density, attenuation, anisotropy
parameters. In current applications, at the regional or global scale
in seismology, and at the exploration scale in seismic imaging,
FWI is mainly used as a high-resolution velocity model building
method (Fichtner et al. 2010; Plessix & Perkins 2010; Sirgue et al.
2010; Tape et al. 2010; Peter et al. 2011; Zhu et al. 2012; Warner
et al. 2013; Vigh et al. 2014; Borisov & Singh 2015; Operto et al.

2015). As opposed to conventional tomography methods based on
the matching of traveltimes only, FWI aims at taking into account
the whole recorded signal: all the seismic events (diving waves, pre-
and post-critical reflections, and converted waves) are considered, as
well as their amplitude, in the process of estimating the velocity. As a
consequence, higher resolution estimates are expected compared to
tomography methods, up to the theoretical limit of half the shortest
wavelength of the recorded signal (Devaney 1984).

The mismatch between observed and synthetic seismograms is
usually computed as the L2 norm of their difference. This is referred
to as the L2 distance in the following (the use of the L1 norm and
the hybrid L1/L2 Huber norm has also been promoted for interpret-
ing noisy data in Brossier et al. 2010). The minimization of this
distance is performed through quasi-Newton methods (Nocedal &
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Wright 2006), involving the computation of the gradient and an
approximation of the inverse Hessian operator (Pratt et al. 1998;
Métivier et al. 2013, 2014a).

The time-domain formalism of FWI has been introduced by
Lailly (1983) and Tarantola (1984). The limitations of FWI as a
high-resolution velocity model building tool from reflection seismic
data have been identified few years after. In Jannane et al. (1989),
the sensitivity of the seismic signal with respect to low wavenumber
and high wavenumber perturbations of the velocity model is studied.
While high wavenumber perturbations have mainly an effect on the
amplitude of the signal, low wavenumber variations of the velocity
are responsible for shifting in time the seismic traces, mainly influ-
encing the traveltime of the seismic events. Hence, from an inverse
problem point of view, reconstructing the large-scale, smooth com-
ponents of the velocity model, requires to match these traveltime
shifts. In addition, this reconstruction should be achieved before
injecting high wavenumber in the reconstruction.

Unfortunately, the L2 distance, based on a sample by sample
comparison, is not adapted to capture the time shifts between two
oscillatory signals. The two signals should have approximately the
same shape (prediction of the same events) and the time shift should
be no larger than half the period of the signal. These requirements
lead conventional FWI to focus (at least in the first stage of the in-
version) on low frequency transmitted waves such as diving waves.
These waves sample the subsurface without being reflected, there-
fore the difference between predicted and observed diving waves
should be mainly due to shifts in time of the seismic events. How-
ever, if these time shifts are too large, reducing the L2 distance
between the signals through a local optimization technique will
generate a wrong velocity model which matches the data with one
to several phase shifts. This phenomenon is commonly known as
cycle skipping. This is the reason why the accuracy of the initial
model is of primary importance in conventional FWI: it should be
kinematically compatible with the data, i.e. the phase of the main
seismic events should be predicted within half a period.

Mitigating this strong dependence on the accuracy of the start-
ing model is a long term issue in FWI. A first strategy, proposed
by Pratt (1999) in the frequency-domain, consists in matching the
lowest frequency components of the data as a preliminary step. This
increases the attraction valley of the misfit function as, in this case,
the initial velocity model should only explain the data up to half the
period corresponding to the low frequency components that have
been extracted. Following a hierarchical approach, the result of this
first inversion serves as an initial model for an inversion of data
containing higher frequencies. This procedure can be iterated until
the whole seismic data has been interpreted. This is the strategy
followed for instance in Bunks et al. (1995), Sirgue & Pratt (2004)
and Operto et al. (2004).

This hierarchical approach can be complemented with offset and
time-windowing strategies. Time-windowing is used to select the
diving waves and remove the reflected energy from the observed
seismograms. The offset is increased progressively, as large offsets
correspond to diving waves travelling across a long distance between
the subsurface, therefore containing a large number of oscillations,
and more subject to cycle skipping. Time-windowing and offset se-
lection is also known as layer stripping technique: the shallow part
of the subsurface is first reconstructed, the depth of investigation
being progressively increased by this data selection strategy. Ex-
amples of applications can be found for instance in Shipp & Singh
(2002); Wang & Rao (2009) in the 2-D acoustic approximation, or
in Brossier et al. (2009) for the interpretation of onshore data in the
2-D elastic approximation.

Despite these successful applications, the hierarchical approach
does not really overcome the cycle skipping limitation. Instead, the
data interpretation is re-organized in such a way that this limitation
does not preclude the estimation of the velocity through FWI. Com-
monly encountered difficulties for real data application preventing
this strategy to produce reliable velocity estimations encompass:
the impossibility of building an accurate enough and kinematically
compatible initial velocity model, the presence of strong noise cor-
rupting the low frequency part of the data, or offset limitations in
the acquisition design.

In the last decades, several attempts have been made to modify the
FWI misfit function itself, to avoid comparing the seismic signal
using the L2 distance, and to yield a more robust, convex misfit
function, less prone to cycle skipping. Two classes of strategies
designed to achieve this objective can be identified, referred to as
data-domain and image-domain techniques in the following.

The underlying concept of data-domain technique relies so far on
a hybridization between tomography methods and FWI. These hy-
brid methods try to emphasize the matching of traveltimes instead
of the full signal, to recover the properties of tomography methods,
while still benefiting from the expected high-resolution power of
FWI. One of the first attempt in this direction is the design of the
wave-equation tomography (WETT) proposed by Luo & Schuster
(1991). This is a tomography method, aiming at matching travel-
times. However, while classical tomography methods rely on travel-
time picking in the observed data (a possibly heavy pre-processing
step) and the computation of traveltimes through asymptotic ap-
proaches for instance, the traveltimes misfit is directly estimated
from the cross-correlation of the observed and synthetic traces.
This method is interesting as it bridges the gap between tomogra-
phy and FWI from a formal point of view: a full wave modelling
engine is used to compute the synthetic data, and the method can
be interpreted as a modification of the FWI misfit function, making
possible to use the adjoint formalism to compute the associated gra-
dient, as is commonly done in FWI. Originating from exploration
geophysics, this strategy has been adopted by the seismology com-
munity as the finite-frequency tomography method (Dahlen et al.
2000; Montelli et al. 2004; Tromp et al. 2005; Nolet 2008).

However, exploiting WETT results as an initial model for FWI
is not straightforward. It is well known that the resolution of the
tomography method may be too low for producing an accurate
enough starting model for FWI (Claerbout 1985). A sufficient ac-
curacy of the initial model is not guaranteed and cycle skipping
could still prevent FWI to converge to a reliable estimation. Second,
in the presence of non-predicted events (i.e. reflections), the estima-
tion of the time-shifts through cross-correlation collapses. Indeed,
evaluating time-shifts between two traces through cross-correlation
requires that the signal have approximately the same shape.

While the first difficulty is intrinsic to tomography method, an
attempt to enhance the robustness of the automatic traveltime misfit
computation through warping has been recently proposed by Ma
& Hale (2013). Dynamic image warping is a technology originally
designed for pattern recognition in signal processing. In a recent
study, Hale (2013) has demonstrated that this method could be
applied to determine time shifts between seismograms.

More recently, the design of a misfit function based on decon-
volution has been proposed by Luo & Sava (2011). The method
has been initially designed to overcome another limitation of cross-
correlation based tomography. Luo & Sava (2011) recognize that
standard implementations of this method using a penalization of
the nonzero time lags, as proposed for instance by van Leeuwen
& Mulder (2010), make the implicit assumption that the seismic
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data has been acquired with an impulsive source with an infinite
spectrum. When applied to real data acquired with band-limited
sources, this could result in non-negligible artefacts in the gradi-
ent. To this purpose, Luo & Sava (2011) propose to compute the
traveltime misfit between the synthetic and observed data through a
deconvolution of the synthetic data by the observed data, instead of
using a cross-correlation of the two signals. This method has started
to be applied to realistic scale case-studies in seismic exploration
and seems to provide a more robust misfit function, less prone to
cycle skipping (Warner & Guasch 2014).

In seismology, other data-domain modifications of the misfit
function have been proposed. Fichtner et al. (2008) propose to
use a time-frequency analysis of the data through a Gabor trans-
form in order to extract both the traveltimes and the amplitude
envelope information from the seismic signal. This allows to de-
fine a misfit function as a sum of two terms measuring the misfit
between traveltimes and amplitude envelope separately. Compared
to cross-correlation (Luo & Schuster 1991) or dynamic warping
(Ma & Hale 2013), the extraction of the traveltimes is performed
following a more robust technique based on a multi-scale analysis
in the time-frequency space. Besides, the information on the am-
plitude of the signal is not completely discarded as the amplitude
envelope is also matched in the inversion process. A similar strategy
has been proposed by Bŏzdag et al. (2011) where the amplitude and
traveltime information are computed following a Hilbert transform.
Compared to the Gabor transform, the Hilbert transform is a purely
time-domain related technique, and should thus require less data
processing than the Gabor transform. Both strategies can be used in
combination with different time-windowing strategies (Maggi et al.
2009). Envelope inversion has also been investigated in the context
of exploration seismology (Luo & Wu 2015).

Parallel to the development of these data-domain techniques, the
development of image-domain techniques started with the design
of Differential Semblance Optimization (Symes & Kern 1994) and
later on wave equation migration velocity analysis (Sava & Biondi
2004a,b; Symes 2008). These methods rely on the separability of
scales assumption: the velocity model is decomposed as the sum
of a smooth background model and a high wavenumber reflectivity
model. The reflectivity is related to the smooth background model
through an imaging condition: it is the sum for each source of the
cross-correlation between the incident wavefield and the backpropa-
gated residuals computed in the smooth background velocity model.
This imaging condition can be extended using either an offset selec-
tion (Symes & Kern 1994) or an illumination angle selection (Biondi
& Symes 2004) in the residuals (the angles are easily accessible
when the reflectivity is computed through asymptotic techniques),
or a time lag in the cross-correlation (Faye & Jeannot 1986; Sava &
Fomel 2006; Biondi & Almomin 2013). Within this framework, an
extended image thus consists in a collection of reflectivity models
depending on one of these additional parameters (offset, angle, time
lag). This extended image is used to probe the consistency of the
smooth background velocity model: the uniqueness of the subsur-
face implies that for the correct background, the energy should be
focused in the image domain, either along the offset/angle dimen-
sion, or at zero lag. A new optimization problem is thus defined,
either as the penalization of the defocusing of the energy, or as the
maximization of the coherency of the energy in the image domain.
The corresponding misfit function is minimized iteratively, follow-
ing standard numerical optimization schemes. The main drawback
of these approaches is related to their computational cost. A large
number of migration operations have to be performed to build the
extended image, and this has to be performed at each iteration of the

reconstruction of the smooth background velocity model. This high
computational cost seems to have precluded the use of these tech-
niques for 3-D waveform inversion up to now. It should also be noted
that these methods are based on the assumption that only primary
reflections will be used to generate the extended image through mi-
gration, which requires non negligible data pre-processing. Locally
coherent events in the image-domain associated with, for instance,
multiple reflections, would yield inconsistent smooth background
velocity models (Lambaré 2002).

Recently, new data-domain modifications of the misfit function
based on concepts developed in image processing have emerged.
While Baek et al. (2014) promote the use of warping strategies,
Engquist & Froese (2014) propose to replace the L2 distance by the
Wasserstein distance to compare seismic signals. The Wasserstein
distance is a mathematical tool derived from the optimal transport
theory, which has already numerous application in computational
geometry and image processing (Villani 2003). The underlying idea
is to see the comparison of two distributions as an optimal map-
ping problem. An optimization problem is thus solved to compute
the distance between two distributions, also known as the Monge–
Kantorovich problem. A cost is associated with all the mappings,
accounting for instance for the sum of all the displacements re-
quired to map one distribution onto the other. The Wasserstein
distance is computed as the minimal cost over the space of all the
mappings. These mathematical concepts originate from the work of
the French engineer Gaspard Monge at the end of the 18th century,
in an attempt to conceive the optimal way of transporting sand to
a building site. The Wasserstein distance is then used to define a
misfit function measuring the discrepancy between predicted and
observed data, which is minimized over the subsurface parameters
to be reconstructed. The resulting strategy can thus be seen as a
two-level optimization strategy with an outer level for the update of
the subsurface parameters and an inner level for the computation of
the misfit function using the Wasserstein distance.

In the study proposed by Engquist & Froese (2014), the proper-
ties of the Wasserstein distance for the comparison of 1-D seismic
signals are investigated. In particular, the convexity of the corre-
sponding misfit function with respect to time-shifts of the signal is
emphasized. This can be well understood, as within this context, the
measure of the distance is not based on the pure difference of the
oscillatory signals, but on all the mappings that can shift and distort
the original signal to map the targeted one. Therefore, an informa-
tion on the traveltime shifts as well as on the amplitude variations
of the signal is captured by this distance.

In this study, we are interested in an extension of this method to the
comparison of entire seismograms, more precisely common shot-
gathers, which are collections of traces corresponding to one seismic
experiment. Compared to individual seismic traces, the shot-gathers
(which can be seen as 2-D images), contain important additional
information as lateral coherency corresponds to identifiable seismic
events, such as reflections, refraction, or diving waves. Hence, the
aim of this study is twofold. The first objective is to present how shot-
gathers can be compared using an optimal transport based distance.
The second objective consists in demonstrating the interest of using
such a distance in the context of FWI through different case studies.

The proposition from Engquist & Froese (2014) is to use the
Monge-Ampère formulation of the optimal transport problem for
comparing the Wasserstein distance between 1-D traces, follow-
ing earlier studies from Knott & Smith (1984) and Brenier (1991).
The computation of the Wasserstein distance is brought back to
the solution of the Monge–Ampère problem, a nonlinear system of
partial-differential equations, which can be solved efficiently using
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finite-difference based method (Benamou et al. 2014) or semi-
discrete strategies (Mérigot 2011). These are supposed to be
amenable strategies for large scale optimal transport problems, how-
ever, they may still lack robustness to be extensively used within
FWI. A more fundamental difficulty is related to the positivity of the
signals and the energy conservation. Two underlying assumptions
of the Wasserstein distance is that the compared signals should be
positive, and that no energy is lost in the process of mapping one
signal to the other. These two assumptions are not verified when
comparing seismic signals. First, these are oscillatory signals, and
the positivity cannot be satisfied. Second, regarding the energy con-
servation, aside the difficulty of predicting accurately the signal
amplitude which requires an accurate information on the attenu-
ation and the density of the subsurface together with the use of
sophisticated forward modelling engines based on the visco-elasto-
dynamic equations, there is no fundamental reason that the predicted
data contains the same energy as the observed data. Generally, in the
simple case of missing reflectors in the models, predicted seismo-
grams will contain less energy than the observed ones. In addition,
noise corrupts the data, which is in essence a non-predictable quan-
tity. A strict conservation of the total energy is thus inappropriate
for waveform inversion.

A new strategy is introduced in this study to overcome these
difficulties. Instead of using the Wasserstein distance, a variant of
this distance is used. This variant relies on the dual formulation of
the Monge–Kantorovich problem, and is defined as a maximiza-
tion problem over the space of bounded functions with variations
bounded by the unity (bounded 1-Lipschitz functions). This allows
to overcome the restriction associated with the positivity and the
strict conservation of the energy between the signals which are
compared. An efficient numerical method is designed to compute
this distance, making possible the comparison of realistic size seis-
mograms, involving several thousands of time steps and receivers.
This method uses an algorithm recently developed in the context of
image processing, the Simultaneous Descent Method of Multipliers
(SDMM), an instance of the Rockafellar proximal point algorithm
(Rockafellar 1976) which is based on proximal splitting techniques
(Combettes & Pesquet 2011).

The first synthetic case study on the Marmousi 2 benchmark
model (Martin et al. 2006) emphasizes the properties of the misfit
function based on the optimal transport distance compared to the
misfit function based on the L2 distance. The sensitivity of both
strategies to the choice of the starting model is investigated. Bet-
ter P-wave velocity estimations are systematically recovered when
the optimal transport distance is used. The second synthetic case
study is based on the BP 2004 model (Billette & Brandsberg-Dahl
2004). The presence of complex salt structures makes this bench-
mark model challenging for seismic imaging. Most of the energy
of the seismic signal is reflected at the interface between the water
and these structures, and few percent of the energy travels from
the inside of the structures back to the receivers. Starting from a
background model containing no information on the presence of
the salt structures, a workflow is designed using the optimal trans-
port distance misfit function allowing for a correct reconstruction
of the salt bodies. This was not possible using a L2 distance based
misfit function. Finally, the third synthetic case study is presented
on the benchmark data set issued by Chevron in 2014. This 2-D
streamer elastic data set is challenging for FWI as the maximum
offset of 8 km limits the depth of penetration of the diving waves to
the first 3 km. The quality control on the data, the migrated images
and the CIG show that the P-wave velocity estimation obtained
with the optimal transport distance is reliable. The Chevron data

set also illustrates that the optimal transport distance is robust to
noise, a nice property having its roots in the regularizing properties
of the numerical solution of the optimal transport problem which is
defined.

In the remainder of the study, the mathematical formalism for
the computation of the Wasserstein distance is first introduced.
Its definition is given, and a general presentation of the numeri-
cal method implemented for its numerical approximation is pre-
sented. For the sake of clarity, the technical details regarding the
solution of the discrete optimal transport problem are presented
in the Appendices A, B and C. On this basis, a strategy for com-
puting the gradient of the optimal transport distance misfit function
using the adjoint-state method is presented, and a numerical illus-
tration on a schematic example using a borehole-to-borehole trans-
mission acquisition is introduced. The three synthetic cases studies
mentioned previously are then presented to outline characteristic
properties and performances of FWI based on the optimal transport
distance. A discussion and a conclusion are given in the two last
sections.

2 T H E O RY

2.1 Definition of the Wasserstein distance

Consider two functions f(x) and g(x) defined on a domain X subset
of R

d , such that

f, g : X −→ R, X ⊂ R
d , (1)

and M a function from X to X

M : X −→ X. (2)

The Lp Wasserstein distance between f and g, denoted by Wp(f, g),
is defined by a norm on R

d , denoted by ‖.‖, an exponent p ≥ 1, and
the constrained minimization problem⎧⎨
⎩

W p( f, g) = min
M

∫
x∈X ‖x − M(x)‖p f (x) dx, (3a)

where ∀A ⊂ X,
∫

x∈A g(x) dx = ∫
M(x)∈A f (x) dx . (3b)

The eq. (3b) is a constraint which specifies that M belongs to the
ensemble of all the mappings from f to g. In this study, we consider
the Wasserstein distance defined by the exponent p = 1 and the �1

distance ‖.‖1 on R
d such that

∀x = (x1, . . . , xd ) ∈ R
d , ‖x‖1 =

d∑
i=1

|xi |. (4)

We denote this distance by W1(f, g). Instead of using the previ-
ous (primal) formulation given by eqs (3a) and (3b), which in-
volves a nonlinear constraint associated with energy conservation,
the Wasserstein distance W1(f, g) has the interesting property that it
can be computed through the solution of the (dual) linear problem

W 1 ( f, g) = max
ϕ∈Lip1

∫
x∈X

ϕ(x) ( f (x) − g(x)) dx, (5)

where Lip1 is the space of 1-Lipschitz functions, such that

∀(x, y) ∈ X, |ϕ(x) − ϕ(y)| ≤ ‖x − y‖1. (6)

From this definition, one can see that the 1-Lipschitz property (6)
ensures bounded variations of the function and precludes fast vari-
ations and discontinuities of the function ϕ.

The dual definition of the Wasserstein distance W1(f, g) given in
eq. (5) can be found in classical optimal transport textbooks such
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as Evans (1997) or Villani (2008). The maximization problem (5)
is well defined if and only if the energy between f(x) and g(x) is
conserved in the sense that

E f,g ≡
∫

x∈X

( f (x) − g(x)) dx = 0. (7)

Indeed, let ϕ(x) = α ∈ R be a constant function. This function is
1-Lipschitz, and satisfies∫

x∈X
ϕ(x) ( f (x) − g(x)) dx = αE f,g. (8)

Therefore, if eq. (7) is not satisfied, the solution of (5) is the constant
function equal to ∞ or −∞ depending on the sign of Ef, g.

As the conservation of the energy cannot be guaranteed in seismic
imaging (Ef, g �= 0 in practice), a generalization of the Wasserstein
distance W1(f, g) for the non-conservative case is considered in
this study. This generalization relies on an additional constraint: the
function ϕ(x) ∈ Lip1 should be also bounded, such that

∃c > 0, ∀x ∈ X, |ϕ(x)| ≤ c. (9)

This condition can be seen as a threshold: instead of increasing
towards the infinity, the function is limited to reach a fixed, constant
value c. The space of bounded 1-Lipschitz functions is denoted by
BLip1 in the following. The distance defined between two functions
f and g should thus be computed as the solution of the maximization
problem

W̃ 1 ( f, g) = max
ϕ∈BLip1

∫
x∈X

ϕ(x) ( f (x) − g(x)) dx . (10)

Note that some theoretical links exist between the Wasserstein W1

and the distance W̃ 1: see for instance the work of Hanin (1992). A
mathematical analysis of this link is, however, beyond the scope of
this study.

Common shot-gathers are collections of seismic traces recorded
after the explosion of one source, in the time-receiver domain. As
such, they can be considered as real functions defined in a 2-D space.
The observed and calculated shot-gathers are denoted respectively
by

ds
obs(xr , t) and ds

cal[m](xr , t). (11)

The variable xr is associated with the receiver position and the
variable t corresponds to time. The superscript s corresponds to the
shot-gather number in a seismic survey containing S shot-gathers.
The dependence of the calculated data on to the model parameter m
is denoted by [m]. The following misfit function is thus introduced

fW̃ 1 (m) =
S∑

s=1

W̃ 1
(
ds

cal[m], ds
obs

)
, (12)

where

W̃ 1
(
ds

cal[m], ds
obs

) = max
ϕ∈BLip1

∫
t

∫
xr

ϕ(xr , t)(ds
cal[m](xr , t)

− ds
obs(xr , t)) dxr dt. (13)

For comparison, the conventional L2 misfit function is

fL2 (m) =
S∑

s=1

∫
t

∫
xr

∣∣ds
cal[m](xr , t) − ds

obs(xr , t)
∣∣2

dxr dt. (14)

2.2 Numerical computation of W̃1(dcal, dobs)

The numerical computation of the solution to the problem (13) is
presented here. The discrete analogous of the distance W̃ 1 is defined
as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

W̃ 1 (dcal[m], dobs) = maxϕ

Nr∑
i=1

Nt∑
j=1

ϕi j

(
(dcal[m])i j

− (dobs)i j

)
�t�xr (15a)

∀(i, j), |ϕi j | < c, (15b)

∀(i, j), (k, l) |ϕi j − ϕkl | < |(xr )i − (xr )k | + ∣∣t j − tl
∣∣ . (15c)

In (15), Nr and Nt are the number of receivers and discrete time
steps respectively, and the standard discrete notations are used

(xr )i = (i − 1) × �xr , t j = ( j − 1) × �t, ϕi j = ϕ((xr )i , t j ),

(16)

where �xr and �t are the discretization steps in the receiver coor-
dinate and time dimensions respectively.

With these notations, the total number of discrete points for the
representation of one shot-gather is N = Nt × Nr. The system (15)
defines a linear programming problem involving 2N2 + 2N linear
constraints. From a computational point of view, the algorithmic
complexity involved for the solution of such a problem would not
be affordable for realistic size seismograms, which can involve
thousands of receivers positions and discrete time steps, yielding a
complexity N = O(106). However, an equivalent discrete problem
involving only 6N linear constraints can be derived by imposing
only local constraints on ϕ to enforce the 1-Lipschitz property. This
yields the linear programming problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

W̃ 1 (dcal[m], dobs) = max
ϕ

Nr∑
i=1

Nt∑
j=1

ϕi j

(
(dcal[m])i j

− (dobs)i j

)
�t�xr (17a)

∀(i, j), |ϕi j | < c, (17b)

∀(i, j), |ϕi+1 j − ϕi j | < |(xr )i+1 − (xr )i | = �xr (17c)

∀(i, j), |ϕi j+1 − ϕi j | < |t j+1 − t j | = �t. (17d)

The two linear programming problems (15) and (17) are equiva-
lent. This results from a particular property of the �1 distance. The
proof of this equivalence is given in Appendix A.

The function hdcal[m],dobs (ϕ) is now introduced, such that

hdcal[m],dobs (ϕ) =
Nr∑

i=1

Nt∑
j=1

ϕi j

(
(dcal[m])i j − (dobs)i j

)
�t�xr . (18)

Let K be the unit hypercube of R
3N

K = {
x ∈ R

3N , |xi | ≤ 1, i = 1, . . . 3N
}
. (19)

The indicator function of K, denoted by iK is defined as

iK (x) =
∣∣∣∣∣ 0 if x ∈ K

+∞ if x /∈ K .
(20)

With these notations, the linear programming problem (17) can be
rewritten as

W 1 (dcal[m], dobs) = max
ϕ

hdcal[m],dobs (ϕ) − iK (Aϕ), (21)

where the matrix A is a 3N × N, sparse, rectangular matrix represent-
ing the constraints on ϕ following the eqs (17b)–(17d). Assuming
an ordering of the discrete vectors ϕij

ϕ = [
ϕ11, ϕ21, . . . ϕNr 1, ϕ12, . . . , ϕNr Nt ,

]
(22)
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the matrix A is such that

(Aϕ)k =

∣∣∣∣∣∣∣∣∣∣∣

ϕk

c
for k = 1, . . . , N

ϕk+1 − ϕk

�xr
for k = N + 1, . . . , 2 × N

ϕk+Nr − ϕk

�t
for k = 2 × N + 1, . . . , 3 × N .

(23)

The matrix A is thus a column block matrix with one diagonal
block and two bi-diagonal blocks. This pattern is due to the local-
ity of the discrete constraints which are imposed. In the formula-
tion (21), the constraints are encoded in the term −iK(Aϕ). Indeed,
the linear programming problem amounts to the maximization
of the function expressed in (21). According to the definition of
iK, the corresponding misfit function equals −∞ as soon as one of
the linear constraints is not respected, therefore any solution of the
maximization problem has to satisfy these constraints.

Rewriting the problem (17) as the problem (21) recasts a lin-
ear programming problem into a convex non-smooth optimization
problem. The advantage of such a transformation is that there exist
efficient techniques to solve such convex non-smooth optimization
problems, based on proximal splitting techniques. These techniques
use the concept of proximity operator. For the sake of compactness,
the definition of proximity operators is given in Appendix B, as
well as the proximity operator of the functions hdcal[m],dobs and iK,
denoted by proxhdcal[m],dobs

and proxiK
. These operators have a closed-

form and can be calculated with a linear complexity, making them
inexpensive to compute.

y0
1 = 0, y0

2 = 0, z0
1 = 0, z0

2 = 0;
for n = 0, 1, . . . do

ϕn = (
IN + AT A

)−1 [(
yn

1 − zn
1

) + AT
(
yn

2 − zn
2

)]
;

yn+1
1 = proxhdcal[m],dobs

(
ϕn + zn

1

)
;

zn+1
1 = zn

1 + ϕn − yn+1
1 ;

yn+1
2 = proxiK

(
Aϕn + zn

2

)
;

zn+1
2 = zn

2 + Aϕn − yn+1
2 ;

end
Algorithm 1: SDMM method for the solution of the problem (21).

In this study, the problem (21) is solved using the simultane-
ous direction method of multipliers (SDMM) described in Com-
bettes & Pesquet (2011), which is an instance of the proximal
point algorithm (Rockafellar 1976). Following this method, the so-
lution of (21) is obtained through the iterative scheme described in
Algorithm 1. At each iteration of this algorithm, the proximity op-
erators proxhdcal[m],dobs

and proxiK
are invoked, as well as the solution

of a linear system involving the square matrix of size N

Q = IN + AT A, (24)

where IN is the identity matrix of size N. The solution of these linear
systems is the more intensive computational task in the SDMM al-
gorithm, as the application of the proximity operators proxhdcal[m],dobs

and proxiK
has a linear complexity in number of operations and a

negligible cost in terms of memory requirement.
The matrix Q is a sparse square matrix of size N, symmetric pos-

itive definite by construction, related only to the definition of the
eqs (17b)–(17d). As a consequence, the matrix Q remains constant
throughout the whole FWI process. In a first attempt to design an
efficient algorithm for the solution of (21), it can be interesting, in a
pre-processing step, to factorize this matrix as a product LLT, where
L is a lower triangular matrix, using a Cholesky decomposition. Un-
der the assumption Nt � Nr, this allows to benefit from a complexity
in O(N3/2) for the solution of these linear systems through forward

and backward substitutions. However, the memory requirement as-
sociated with the storage of the factor L is also in O(N3/2), which is
non negligible for realistic size problems for which the size N can
reach O(106).

For this reason, an alternative method to solve the linear systems
related to Q is designed in this study, which takes advantage of the
particular structure of Q. This method is adapted from the work of
Buzbee et al. (1970). A reduction of the memory requirement from
O(N3/2) to O(N) is achieved, while maintaining the same computa-
tional complexity as forward and backward substitution in O(N3/2).
In addition, while these operations are intrinsically sequential, the
algorithm proposed in this study is based on matrix-vector products
which can be easily parallelized. For the sake of compactness, the
full description of this strategy is given in Appendix C.

2.3 Minimization of the optimal transport distance based
misfit function and gradient computation

The minimization of the misfit function (12) is based on conven-
tional quasi-Newton techniques. From an initial estimation m0, these
methods construct the sequence

mk+1 = mk + αk�mk, (25)

where αk is a positive scalar parameter computed through a line
search strategy (Bonnans et al. 2006; Nocedal & Wright 2006), and
�mk is a model update satisfying

�mk = −Hk∇ fW̃1
(mk). (26)

In eq. (26), ∇ fW̃1
(mk) is the gradient of the misfit function (12), and

Hk is an estimation of the inverse of its Hessian. In this study, this es-
timation is computed through the l-BFGS approximation (Nocedal
1980). This approximation is based on the values of the gradient at
iteration k and the l previous iterations k − 1, . . . k − l + 1.

Therefore, the practical implementation of the proposed strat-
egy in the FWI context only requires the capability of computing
the misfit function fW̃1

(m) and its gradient ∇ fW̃1
(m). To this pur-

pose, the adjoint-state technique is used (Lions 1968; Chavent 1974;
Plessix 2006). For the sake of notation simplification, the case of one
single shot-gather is considered here (S = 1), as the generalization
to several shot-gathers is straightforward by summation.

The following Lagrangian function is introduced

L(m, u, dcal, λ, μ) = W̃ 1 (dcal, dobs) + (F(m, u), λ)W

+ (Ru − dcal, μ)D, (27)

where the standard Euclidean scalar product in the wavefield space
and the data space is denoted by (., .)W and (., .)D respectively.
The state variables are the incident wavefield, denoted by u, and the
calculated data, denoted by dcal. The adjoint variables are denoted by
λ and μ. The extraction operator which maps the incident wavefield
to the receiver locations is denoted by R. The two state equations
relating the state variables and the model m are

F(m, u) = 0, dcal = Ru. (28)

Using the adjoint-state approach, the gradient ∇ fW̃1
(m) is given

by

∇ fW̃1
(m) =

(
∂ F(m, u(m))

∂m
, λ

)
, (29)

where u(m) and λ(m) are respectively the incident and the adjoint
wavefields satisfying the state equation and the adjoint state equation
[see Plessix (2006) for the derivation of (29)].
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The adjoint-state equations are obtained by cancelling the deriva-
tives of the Lagrangian function with respect to the state variables.
This gives⎧⎪⎪⎨
⎪⎪⎩

∂ F(m, u(m))T

∂u
λ = −RT μ

μ = ∂W̃ 1 (dcal, dobs)

∂dcal
.

(30)

The first of these two equations involves the adjoint of the wave
operator. The wavefield λ thus corresponds to the backpropagation
of the source term −RTμ. The second equation relates μ to the
derivatives of the misfit function with respect to the calculated data.
Therefore, as already noticed in Brossier et al. (2010) and Luo &
Sava (2011) for instance, the modification of the misfit function
only impacts the source term of the adjoint wavefield λ. Remarking
that

∂W̃ 1 (dcal, dobs)

∂dcal
= ∂

∂dcal

(
max

ϕ∈BLip1

∫
ϕ(xr , t)(dcal(xr , t)

− dobs(xr , t))dxr dt

)
, (31)

the secondary adjoint wavefield μ is simply given by

μ = arg max
ϕ∈BLip1

∫
ϕ(xr , t) (dcal(xr , t) − dobs(xr , t)) dxr dt. (32)

The difference between eqs (32) and (13) should be emphasized
here. The eq. (13) defines W̃ 1 as the maximal value of the crite-
rion over the space of bounded 1-Lipschitz functions. The eq. (32)
defines μ as the particular bounded 1-Lipschitz function for which
this maximal value is reached. This is the meaning to be given to the
notations max and argmax . Compared to a L2 norm-based misfit
function where μ would be the difference between the observed and
calculated seismograms, here μ is computed as the maximizer of
the optimal transport problem designed to compute the W̃ 1 distance
between these seismograms.

This has the following consequence regarding the implementa-
tion of the proposed strategy. The additional computational cost
related to the modification of the misfit function from the stan-
dard L2 norm to the W̃ 1 distance is related to the solution of the
maximization problem (21). This solution yields not only the misfit
function value, which is the value of the criterion to be maximized,
but also the adjoint variable μ, which corresponds to the function
ϕ ∈ BLip1 which achieves this maximization. Hence, one optimal
transport problem is solved per source, and its solution allows to
compute the misfit function as well as the adjoint variable μ, which
is backpropagated following the adjoint state-strategy for getting
the adjoint field λ. From λ and the incident wavefield u, the gradient
of the misfit function (12) is computed using the eq. (29).

2.4 Numerical illustration on a simple synthetic study

An illustration of the optimal transport based distance for FWI on
a schematic 2-D example is now presented. A borehole to borehole
transmission acquisition is considered, as presented in Fig. 1. The
two boreholes are 2500 m apart. A single source is used, located at
2500 m depth in the leftmost borehole. An array of 196 receivers
equally spaced each 25 m is located in the second borehole, from
50 m depth to 4900 m depth. A Ricker source centred on 5 Hz is used
to generate a single shot-gather. The modelling is performed in the
acoustic approximation and the pressure wavefield is recorded. The
density model is kept constant, equal to 1000 kg m−3. The velocity

Figure 1. Configuration of the borehole to borehole experiment.

of the true medium is homogeneous and set to v∗
P = 2000 m s−1.

One synthetic shot-gather is computed in a homogeneous medium
with a velocity set to vP = 1500 m s−1 and with the correct density.

The convergence of the SDMM algorithm is investigated along 50
iterations. The bound c corresponding to the constraint (17b) is set
to 1. This pragmatical choice is done in conjunction with a scaling
of the residuals prior to the solution of the optimal transport prob-
lem. The rationale behind this scaling is that the bound constraint
(17b) should be active at the convergence of the SDMM algorithm
as the solution of such convex constrained optimization problem
lies on the boundary of the convex set. The evolution of μ through-
out the SDMM iterations is presented in Fig. 2, and compared to
the standard L2 residuals.

The standard residuals (Fig. 2a) present two distinct arrivals: the
first one corresponds to the observed data, the second corresponds
to the synthetic data. The predicted data arrives later compared to
the observed one as the velocity is underestimated. The temporal
support of the two arrivals does not overlap, which is a situation
typical of cycle skipping: the data is predicted with more than
half a phase delay. The SDMM method starts from the initial resid-
ual, and converges to an estimation of ϕ where the two distinct
arrivals are progressively smoothed. The negative values of the two
arrivals are also progressively removed. These negative values cor-
respond to the white part in the initial residuals. In counterpart, the
area below the last arrival is set to an almost constant negative value
(white zone below the last arrival). To assess the convergence of this
maximization problem with linear constraints, the relative evolution
of the criterion depending on the number of iterations is considered.
When no progress is observed, the convergence is assumed to be
reached. Fig. 3 confirms the convergence towards a stationary point
after 50 iterations.
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Figure 2. L2 residuals (a) and optimal transport based residuals with 5(b),
10 (c), 25 (d) and 50 (e) SDMM iterations.

The shape of the optimal transport solution may not be intu-
itive. To better understand how this can be an approximate solution
of the problem (21), consider the situation where the constraints
on ϕ would be only to be bounded by c, relaxing the 1-Lipschitz
constraint. In this case, the solution of the discrete maximization
problem would be

ϕi =
∣∣∣∣∣ c if dcal,i [m] − dobs,i > 0

−c if dcal,i [m] − dobs,i < 0
(33)

which would correspond to a discontinuous solution. The effect of
the 1-Lipschitz constraint thus consists in smoothing the solution of

the maximization problem. This hard constraint forces the SDMM
algorithm to find a trade-off between this imposed regularity and
the maximization of the criterion. The selected solution thus starts
by giving more weight to the large positive values of the original
arrivals (black areas), while the smoothing constraint tends to re-
move the strong initial oscillations, therefore setting weak positive
weights in the position of the negative values of the original arrivals
(white areas). Because the zone below the last arrival in the original
residuals is slightly negative, the SDMM algorithm sets a negative
values in all this area to further maximize the criterion while pre-
serving the smooth property of the solution. Two transverse traces
are extracted from the L2 residuals and the solution found by SDMM
in Figs 4 and 5. The first is a vertical trace extracted for the receiver
located at 2.5 km in depth. The second is a horizontal trace extracted
at time t = 2 s. These traces emphasize the regularity of the optimal
transport solution compared to the L2 residuals. The shape of the
optimal transport traces resembles the envelope of the L2 traces.

For further analysis of this schematic example, the L2 and
W̃ 1 misfit function are evaluated for velocity values going from
vP = 1500 m s−1 to vP = 2500 m s−1 with 20 m s−1 sampling.
The results are presented in Fig. 6. The W̃ 1 misfit function is
evaluated for a number of SDMM iterations going from 5 to 50.
As expected, the misfit functions all reach the global minimum at
v = 2000 m s−1. The L2 misfit function presents two secondary min-
ima at vP = 1780 m s−1 and vP = 2300 m s−1. This is an illustration
of cycle skipping. For these two values of velocity, the seismogram
generated by the Ricker source in v∗

P is matched up to one phase
delay. Interestingly, the W̃ 1 misfit function profiles tends to become
more and more convex as the value of SDMM iterations increases.
The secondary minima still exist, however, they are progressively
lifted up, rendering the misfit function closer from a convex func-
tion. At the same time, the valley of attraction remains as sharp
as for the L2 misfit, which ensures that the ‘resolution power’ of
the method is unchanged. This behaviour is notably different from
the one observed for the cross-correlation based misfit function
which ensures more convex misfit function detrimental to the size
of the valley of attraction which is significantly broadened, leading
to lower resolution methods (van Leeuwen & Mulder 2010).

This schematic example provides a first insight on the behaviour
of the optimal transport distance for the comparison of seismo-
grams in application to FWI. Using this distance does not prevent
from cycle skipping issues, as secondary minima are still present.
However, the misfit function tends to be more convex as the nu-
merical approximation of the optimal transport distance converges
to a stationary point. In addition, the corresponding backpropa-
gated residuals can be seen as smooth version of the standard L2

residuals, the smoothing operator being related to the computation
of the optimal transport distance between the observed and pre-
dicted seismograms, and more specifically to the enforcement of the
1-Lipschitz constraint.

3 C A S E S T U D I E S

3.1 Settings

The numerical experiments which are presented in this section are
based on a 2-D acoustic time-domain FWI code. The wave mod-
elling is performed using a fourth-order (for the Marmousi and BP
2004 case studies) and an eighth-order (for the Chevron 2014 bench-
mark data set) finite-difference stencil for the spatial discretiza-
tion. A second-order leap-frog scheme is implemented for the time
discretization. The three case studies are performed in a marine
seismic environment. A free surface condition is implemented at
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Figure 3. Evolution of the criterion maximized by the SDMM method along 50 iterations on the borehole to borehole schematic experiment. The criterion
tends asymptotically towards a maximum value of 4000, which suggests that the convergence is reached. This is supported by the evolution of the solution that
also seems to have reached a stationary point (Fig. 2).

Figure 4. Traces extracted at 2.5 km depth from the original residuals (black) and from the solution computed after 50 SDMM iterations for the borehole to
borehole schematic experiment.

Figure 5. Traces extracted at time t = 2 s from the original residuals (black) and from the solution computed after 50 SDMM iterations for the borehole to
borehole schematic experiment.

the water/air interface. A windowed sinc interpolation is used to
account for receivers not located on grid points in the Chevron case
study (Hicks 2002).

The minimization of the misfit function, either the standard L2

misfit function or the W̃ 1 misfit function, is performed using the
preconditioned l-BFGS method (Nocedal 1980). The SEISCOPE
optimization toolbox is used to implement this minimization scheme
(Métivier & Brossier 2016). This requires to compute the mis-

fit function and its gradient. The gradient is computed as the
cross-correlation in time of the incident wavefield and the ad-
joint wavefield (eq. 29) following the adjoint-state method. A ver-
tical scaling linear in depth is used as a pre-conditioner for the
Marmousi and Chevron case studies. This preconditioning com-
pensates for the loss of amplitude of the gradient in depth as-
sociated with geometrical spreading effects when using surface
acquisition.
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354 L. Métivier et al.

Figure 6. L2 misfit function (black) and Wasserstein misfit function obtained with 5 (red), 10 (blue), 25 (green) and 50 (purple) SDMM iterations. The misfit
functions are evaluated for a background velocity value ranging from 1500 to 2500 m s−1.

In terms of implementation, the computation of the cross-
correlation of the incident and adjoint wavefields requires the
capability of accessing to the two wavefields at a given time step.
This is a well-known difficulty in time-domain FWI or Reverse Time
Migration approaches, as the incident wavefield is propagated from
an initial condition while the adjoint wavefield is backpropagated
from a final condition (Clapp 2009). The strategy implemented in
our code consists of first computing the incident wavefield from
the initial condition, and storing it at each time steps only at the
boundaries of the domain. The incident wavefield is then backprop-
agated from its final state, reversing in time the boundary conditions
which have been stored. The adjoint is backpropagated conjointly
with the incident wavefield from its final condition. A more detailed
description of this strategy is given in Brossier et al. (2014). The
method is based on the assumption that no attenuation is taken into
account, otherwise the backpropagation of the incident wavefield is
numerically unstable.

Besides, a hybrid MPI/OpenMP implementation is used to exe-
cute the code in parallel. The MPI communicator is used to perform
the computations associated with each shot-gather in parallel. For
each shot-gather, the computation of the incident and adjoint wave-
fields is further accelerated using OpenMP parallelization of the
spatial finite-difference loops. The time cross-correlation loop for
the computation of the gradient is also accelerated with OpenMP
directives.

In the three following experiments, the computation of the opti-
mal transport distance and the corresponding adjoint source is per-
formed through 50 iterations of the SDMM method (Algorithm 1).
This is a rather pragmatical choice, as it guarantees a manage-
able additional computational cost (see for instance Table 3 for
the Chevron benchmark data set case studies), while the conver-
gence of the SDMM iterations appears to be reached: although
not shown here, the maximization of the criterion and the solution
of the optimal transport problem only marginally evolves after 50
SDMM iterations. As for the previous experiment, the bound c of
the constraint (17b) is also set to 1 and a scaling of the residuals is
employed.

3.2 Marmousi 2 case study

For the Marmousi 2 case study, a fixed-spread surface acquisition is
used, involving 128 sources located every 125 m and 168 receivers
located every 100 m at 50 m depth. The density model is assumed to

be homogeneous, set to the value ρ0 = 1000 kg m−3. The topography
of the original Marmousi 2 model is also modified so that the water
layer has no horizontal variations (flat bathymetry). This layer is
kept fixed to the water P-wave velocity vP = 1500 m s−1 during the
inversion.

The observed data is generated using a filtered Ricker wavelet,
centred on a 5 Hz frequency. The low frequency content of this
wavelet, below 2.5 Hz, is removed using a minimum phase But-
terworth filter. For real seismic marine data, the noise level below
this frequency is too strong for the information to be relevant to
constrain the P-wave velocity model. The spectrum and the shape
of the resulting wavelet are presented in Fig. 7. The spatial dis-
cretization step is set to 25 m to guarantee at least 4 discretization
points by wavelength. The time discretization step is set to 0.0023 s
according to the Courant Friedriech Levy (CFL) condition. The
recording is performed over 2000 time steps, which corresponds
to a total recording time of 4.6 s. In this experiment, a Gaussian
filter smoothing with a short correlation length (between 60 m and
100 m depending on the local dominant wavelength) is applied to
the gradient, to remove fast oscillations which are due to a sparse
acquisition design (only one source every 125 m).

Two initial models are created by smoothing the exact model us-
ing a Gaussian filter, with vertical and horizontal correlation lengths
equal to 250 m and 2000 m respectively. The first model is very close
from the exact model, with only smoother interfaces. The second
model is more distant from the exact model, as it presents almost
only vertical variations, and underestimates the increase of the ve-
locity in depth.

Starting from these two initial models, FWI using the L2 misfit
function and the optimal transport distance based misfit function
is used to interpret the data. The results are presented in Fig. 8.
For the first initial model, the results obtained after 100 iterations
are presented (Figs 8c and d). For the second initial model, the best
results obtained using the two misfit functions are presented (Figs 8f
and g). The exact data as well as the corresponding residuals in the
initial and the calculated models are presented in Fig. 9.

Starting from the first initial model, both the L2 distance and
the optimal transport distance yield estimations very close from the
exact model (Figs 8c and d). However, a difference can be noted
regarding the reconstruction of the low-velocity zone near x = 11 km
and z = 2.5 km. A high-velocity artefact is present in this zone in
the estimation obtained with the L2 distance. This is not the case in
the estimation obtained with the optimal transport distance.
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Figure 7. Source wavelet used to generate the synthetic data set on the Marmousi model (a). This source is obtained from a Ricker wavelet centred on 5 Hz
after applying a minimum phase Butterworth filter below 2.5 Hz. Corresponding spectrum (b).

Figure 8. Marmousi 2 exact P-wave velocity model (a). Initial P-wave velocity models, computed from the exact model using a Gaussian filter with correlation
lengths of 250 m (b) and 2000 m (e). Corresponding P-wave velocity estimations with FWI using the L2 misfit function (c,f). Corresponding P-wave velocity
estimations with FWI using the optimal transport distance based misfit function (d,g).

Starting from the second initial model, FWI based on the L2

distance is unable to provide a satisfactory P-wave velocity esti-
mation (Fig. 8f). This is emphasized by the residuals computed in
the corresponding final estimations (Fig. 9f). In comparison, the
P-wave velocity estimation obtained using FWI based on the opti-
mal transport distance is significantly closer from the exact model
(Fig. 8g). Low-velocity artefacts, typical of cycle skipping, can still
be seen in depth, below 3 km. Low wavenumber artefacts are also
visible on the left part of the model (x < 1 km). However, in the
central part, the P-wave velocity model is correctly recovered, even
starting from this crude approximation. The computed estimation

seems to explain correctly the data, as can be seen in Fig. 9(g).
Compared to the results obtained using the first initial model, there
are unexplained seismic events, especially for late arrivals around
T = 4 s. However, most of the data is explained by the computed
estimation.

To complete this analysis on the Marmousi case study, the L2

residuals in the two initial models are compared with their optimal
transport counterpart [the adjoint variable μ defined by eq. (32)] in
Fig. 10. The optimal transport residuals are smoother than the L2

residuals, with a lower frequency content. An emphasis of particular
seismic events in the optimal transport residuals is also noticeable,
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356 L. Métivier et al.

Figure 9. Marmousi 2 exact data for the shot-gather corresponding to the source position xS = 8 km (a). Associated residuals in the initial P-wave velocity
models (b,e). Associated residuals in the P-wave velocity models estimated with FWI using the L2 misfit function (c,f). Associated residuals in the P-wave
velocity models estimated with FWI using optimal transport distance based misfit function (d,g).

compared to the L2 residuals. This is mainly observable for the
reflections around 3 s and 8 km offset, and this does not depend
on the initial model. The optimal transport thus seems to weight
differently the uninterpreted part of the seismograms.

The effect of the modification of the residuals by the optimal
transport distance is also emphasized in Fig. 11, where two gradi-
ents, one associated with the L2 distance, the other with the optimal
transport distance, are compared. These gradient are computed in
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Figure 10. L2 residuals in the initial model 1 (a) and 2 (c). Corresponding optimal transport residuals (b,d).

the second initial model, which generates a strong cycle skipping
effect with the L2 distance. In order to interpret these gradient as
velocity updates, they have been multiplied by −1: they represent
the first model perturbation used by a steepest descent method. Cy-
cle skipping can be detected in the L2 gradient through the strong
shallow low-velocity updates, in a zone where the velocity should
be increased. The optimal transport distance seems to be able to ef-
ficiently mitigate these strong artefacts. The energy in depth is also

better balanced. The main interfaces constituting the Marmousi
model also appear in this velocity update.

From this first experiment, the optimal transport distance based
misfit function appears more robust than the conventional L2 norm-
based misfit function. For each initial model, a better P-wave veloc-
ity estimation is computed using the optimal transport than using
the L2 distance. In particular, correct estimations are obtained in the
shallow part located above the depth z = 3 km, even starting from a
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358 L. Métivier et al.

Figure 11. Initial descent direction (opposite of the gradient) in the initial model 3 using the L2 distance (a) and the optimal transport distance (b).

very crude approximation of the exact model. This is a first indica-
tion that using the optimal transport distance may be an interesting
strategy to mitigate cycle skipping issues in the context of FWI.

3.3 BP 2004 case study

The BP 2004 benchmark model is representative of the geology of
the Gulf of Mexico (Billette & Brandsberg-Dahl 2004). This area
is characterized by a deep water environment and the presence of
complex salt structures. The large P-wave velocity value of the salt
structures is responsible for most of the energy of the seismic signal
to be reflected back to the receivers from the interface between the
water layer and the salt. Only a few percentage of energy of the
seismic signal travels within the structure and below before being
recorded. This particular configuration makes seismic imaging in
the presence of salt structures challenging. The first challenge is to
correctly identify and delineate the salt structures. The second chal-
lenge consists in correctly imaging zones below the salt structure
(sub-salt imaging).

A fixed-spread surface acquisition is used, with 128 sources and
161 receivers distant from 125 m and 100 m respectively. The depth
of the sources and receivers is set to z = 50 m. The density model
is assumed to be homogeneous such that ρ0 = 1000 kg m−3. The
wavelet used to generate the data is based on a Ricker wavelet cen-
tred on 5 Hz. A whitening of the frequency content is performed
before a minimum phase Butterworth low-pass and high-pass fil-
ters are applied. The spectrum of the resulting wavelet is within

an interval from 3 to 9 Hz (Fig. 12). The spatial discretization step
is set to 25 m and the time discretization step is set to 0.0023 s to
respect the CFL condition. The maximum recording time is per-
formed over 4500 time steps, which corresponds to a recording
time of 10.3 s.

The exact and initial models are presented in Figs 13(a) and (b).
The left part of the original BP 2004 model has been extracted
(Billette & Brandsberg-Dahl 2004). The initial model has been
designed such that the imprint of the salt structure has been to-
tally removed: it contains no information on the presence of salt.
From this starting model, FWI using a standard L2 distance fails
to produce meaningful results, as can be seen in Fig. 13(c). The
time-window is reduced to 4.6 s to focus the inversion on the shal-
lowest part of the model and reduce cycle skipping issues, however
this does not prevent the minimization from converging towards
a local minimum far from the exact model. The incorrect P-wave
velocity estimation of the starting model prevents the FWI algo-
rithm from locating the reflectors associated with the top of the
salt. Instead, diffracting points are created to match the most en-
ergetic events without lateral coherency. In comparison, the same
experiment is performed using the optimal transport distance. The
results are presented in Fig. 13(d). As can be seen, the top of the
salt structure is correctly delineated. Synthetic shot-gathers cor-
responding to the source located at x = 8 km, computed in the
exact model, initial model, L2 estimation, and optimal transport es-
timation, are presented in Fig. 14. This picture shows clearly that
the strong reflection coming from the top of salt is inaccurately
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Figure 12. Source wavelet used to generate the synthetic data set on the BP 2004 model (a). This source is obtained from a Ricker wavelet centred on 5 Hz. A
whitening of its frequency content is performed before a low-pass and a high-pass filter are applied, so that the corresponding spectrum spans an interval from
3 to 9 Hz (b).

Figure 13. BP 2004 exact model (a) and initial model (b). P-wave velocity estimation with a standard L2 norm on short-time window data (4.6 s) (c). The
same with the optimal transport distance (d).

predicted by the L2 estimation; in particular, the reflected energy
which is introduced is discontinuous (Fig. 14c). In comparison,
the optimal transport estimation yields a correct prediction of this
reflection (Fig. 14d). The L2 residuals and the optimal transport
residuals (the adjoint variable μ defined by the eq. 32) computed
in the initial model are presented in Fig. 15. The uninterpreted div-
ing waves appearing in the left bottom corner of the L2 residuals
(Fig. 15a) seem to be strongly damped in the corresponding optimal
transport residuals. The optimal transport distance seems to rather
enhance the reflected events, which is consistent with the previous
observations.

Building on this result, a layer stripping workflow is suggested.
Five increasing time-windows are defined, with recording time equal
to 4.6, 5.75, 6.9, 9.2 s, and finally 10.3 s. For each time-window, two
to three successive inversions are performed. A Gaussian smoothing
with a small correlation length is applied to the model computed
after each inversion, which serves as an initial model for the next
inversion. This Gaussian smoothing serves only to remove high-
frequency artefacts appearing in the late iterations of the inversion.
Alternative strategies such as Tikhonov regularization or gradient
smoothing could have been used instead. A total of 15 inversions
is performed following this process, with in average 221 iterations
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360 L. Métivier et al.

Figure 14. BP 2004 exact data (a) and initial data (b). Predicted data in the final model using a standard L2 norm (c). Predicted data in the final model using
the optimal transport distance using together with a layer stripping workflow (d). The red ellipses highlight the reflection on the salt roof. This reflection is not
present in the initial data (b). Its reconstruction using the L2 distance is discontinuous (c). The use of the optimal transport distance yields a better reconstruction
of this event (d).

of the l-BFGS algorithm for each inversion. The stopping criterion
is only based on a line search failure to give the possibility to
the optimizer to minimize as much as possible the misfit function
based on the optimal transport distance. The detailed workflow is
summarized in Table 1.

The results obtained after the 1st, 3rd, 6th, 9th, 12th and 15th
inversions are presented in Fig. 16. As can be seen, the salt structure

is practically entirely recovered at the end of the cycle of inversions
(Fig 16f). A continuous progression is achieved from the initial
delineation of the top of the salt structure to the full reconstruction of
its deeper parts. The subsalt zone, however, whose reconstruction is
critical, is not satisfactorily recovered. To this purpose, a possibility
would consist in building an initial model from this reconstruction
by freezing the salt, which is correctly delineated, and smoothing
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Figure 15. BP 2004 case study. L2 residuals in the initial model (a). Optimal transport residuals in the initial model (b).

Table 1. Workflow followed for the BP 2004 case study.

Inversion step Recording time l-BFGS iterations Smoothing

1 4.6 s 218 rz = 125 m, rx = 125 m
2 4.6 s 251 rz = 125 m, rx = 125 m
3 4.6 s 150 rz = 125 m, rx = 125 m
4 5.75 s 279 rz = 75 m, rx = 75 m
5 5.75 s 199 rz = 75 m, rx = 75 m
6 6.9 s 130 rz = 75 m, rx = 75 m
7 6.9 s 230 rz = 75 m, rx = 75 m
8 8.05 s 177 rz = 75 m, rx = 75 m
9 8.05 s 269 rz = 75 m, rx = 75 m
10 8.05 s 283 rz = 75 m, rx = 75 m
11 9.2 s 152 rz = 75 m, rx = 75 m
12 9.2 s 366 rz = 75 m, rx = 75 m
13 10.35 s 192 rz = 75 m, rx = 75 m
14 10.35 s 287 rz = 75 m, rx = 75 m
15 10.35 s 144 rz = 75 m, rx = 75 m

below the salt. From such an initial model, our previous study
show that FWI based on the L2 distance with a truncated Newton
optimization strategy should be able to reconstruct accurately the
subsalt region (Métivier et al. 2014a).

A better insight of the reconstruction process is given by the
synthetic data computed in intermediate models throughout the dif-
ferent steps of the workflow presented in Fig. 17. The shot-gathers
are computed for a source located at x = 8 km. A particular at-
tention should be accorded to the left part of the seismogram (red
rectangles), as this part corresponds to the main salt structure in
the exact model. After interpreting correctly the reflections coming
from the salt roof (Fig. 17a), the transmitted wave traveling within
and below the salt is progressively adjusted while deeper reflections
are also progressively integrated (Figs 17b–f). This behaviour is in
contrast with standard multi-scale approaches for which the trans-
mitted energy is fitted prior to the reflected energy. However, this
may not be inputted to the use of the optimal transport distance.
Due to the high-velocity contrast, the reflected energy dominates
the transmitted energy in the data. This, in conjunction with the
layer stripping strategy which focuses the prior steps of the inver-
sion towards short offset data, favours the fit of the reflections prior
to the diving waves.

3.4 Chevron 2014 case study

In 2014, the Chevron oil company has issued a blind benchmark
synthetic data set for FWI. The aim of such blind benchmark is to
provide realistic exploration seismic data to practitioners with which
they can experiment various FWI workflow and test methodological
developments. As the exact model which has served to build the
data is not known, such a case study is closer from an application to
field data than synthetic experiments for which the exact model is
known.

The Chevron 2014 benchmark data set is built from a 2-D
isotropic elastic modelling engine. A frequency-dependent noise
has been added to the data to mimic a realistic data set. Especially,
the signal over noise ratio (SNR) for low frequencies (below 3 Hz)
is much less than for higher frequencies. Free surface multiples are
incorporated in the data. A streamer acquisition is used, with a max-
imum of 8 km offset, with 321 receivers by sources equally spaced
each 25 m. The depth of the sources and receivers is z = 15 m.
Among the 1600 available shots gathers, 256 have been used in this
study, with a distance of 150 m between each sources. A frequency
continuation strategy similar to the one proposed by Bunks et al.
(1995) is implemented: Butterworth low-pass and high-pass filters
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362 L. Métivier et al.

Figure 16. BP 2004 P-wave velocity estimation computed after the 1st (a), 3rd (b), 6th (c), 9th (d), 12th (e) and 15th (f) inversions using the optimal transport
distance.

are applied to the selected shot-gathers to generate an ensemble of
15 data sets with an increasing bandwidth from 2–4 Hz to 2–25 Hz.

The shot-gathers corresponding to the source located at
x = 150 m are presented for the 1st, 5th, 10th and 15th frequency
bands in Fig. 18. As mentioned previously, the noise imprint is
clearly stronger for the first frequency bands.

The initial model provided by Chevron is presented in Fig. 19(a).
This is a 1-D layered model with no horizontal variations except
for the water layer on top for which the correct bathymetry has
been incorporated. The P-wave velocity in the water layer is set to
1500 m s−1. The initial model incorporates an important feature:
a low-velocity layer is located between the depth z = 2.3 km and
z = 3 km. This velocity inversion and the relatively short available
offsets (only 8 km) prevent diving waves from sampling the deepest
part of the model. This makes the benchmark data challenging as
only reflection information is available for constraining the deep
part of the model.

The workflow which is applied to the Chevron benchmark data
set is the following. Prior to inversion, an estimation of the source
wavelet is performed in the initial model, for each frequency band,
following the frequency-domain strategy introduced by Pratt (1999).
For the first ten frequency bands, 20 iterations of a preconditioned
l-BFGS algorithm are performed. For the frequency bands 11 and
12, 50 iterations are performed. For the last three frequency bands,

40 iterations are performed with a restart of the l-BFGS algorithm
after the 20 first iterations. This restart is only due the configuration
of the queue of the Blue Gene/Q machine of the IDRIS centre,
which does not accept jobs running longer than 20 hours. The
restart could be avoided by storing the l-BFGS approximation on
disk, however this option is not yet implemented in the SEISCOPE
optimization toolbox. The spatial and time discretization steps are
set to 37.5 m and 0.004 s respectively for the 8 first frequency
bands. They are decreased to 25 m and 0.003 s respectively for the
frequency bands 9 to 12. For the last three frequency bands, the
discretization step is set to 12.5 m and the time step to 0.001 s. The
misfit function is based on the optimal transport distance. According
to the frequency continuation strategy, the P-wave velocity model
estimated for one frequency band serves as the initial model for the
next frequency band. No regularization is introduced throughout
the inversion. However, the model estimated at the end of each
inversion is smoothed using a Gaussian filter with a correlation
length adapted to the resolution expected after the inversion of each
frequency-band. The workflow is summarized in Table 2.

The 256 shot-gathers are inverted using 1024 core units of the
Blue Gene/Q machine of the IDRIS centre. This yields the possi-
bility to assign 16 threads (4 physical threads × 4 hyperthreads) for
each shot-gather. For such a configuration, the computational times
for one gradient depending on the discretization are summarized in
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Figure 17. Synthetic data in the exact model (a) and in the intermediate models obtained with FWI using an optimal transport distance after the 1st (b), 3rd
(c), 6th (d), 9th (e), 12th (f) and 15th (g) inversions. The red rectangles highlight the shot-gather zone associated with the diving waves travelling within the
salt dome and the reflections generated by deeper interfaces.

Table 3. In particular, we are interested in the additional cost due to
the use of the optimal transport distance. The results presented in
Table 3 show that the proportion of computational time spent for the
solution of the optimal transport problem decreases from 75 per cent

to 20 per cent as the size of the discrete problem increases. This in-
teresting feature is due to the fact the computational complexity of
the SDMM algorithm is in O(N 2

r × Nt ) (see Appendix C), while the
computational complexity of the solution of one wave propagation
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364 L. Métivier et al.

Figure 18. Chevron 2014 data set. Common shot-gather for the source situated at x = 0 km for the frequency bands 1 (a), 5 (b), 10 (c) and 15 (d).

problem is in O(Nt × Nx × Nz), Nx and Nz being the number of grid
points in the horizontal and vertical dimensions respectively.

The results obtained after inverting the data up to 4 Hz (frequency
band 1), 10 Hz (frequency band 8), 16 Hz (frequency band 12)
and 25 Hz (frequency band 15) are presented in Figs 19(b)–(e),
respectively. Three shallow low-velocity anomalies are recovered at
approximately 500 m depth and at the lateral positions x = 12 km,

x = 18 km and x = 30 km. An additional small-scale low-velocity
anomaly appears at x = 14.75 km and z = 1 km in the highest
resolution estimation. The original layered structure of the initial
model is tilted in the final estimation. The upper (faster) layers
bend downwards (from left to right), while the low-velocity layer
at depth z = 2.5 km bends upwards. Three high-velocity anomalies
are also recovered on top of the layer above the low-velocity layer, at
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Figure 19. Chevron 2014 starting P-wave velocity model (a). Estimated P-wave velocity model at 4 Hz (b), 10 Hz (c), 16 Hz (d) and 25 Hz (e).

Table 2. Workflow followed for the Chevron 2014 benchmark case study.

Band Range Steps l-BFGS iterations Final smoothing

1 2–4 Hz �x = 37.5 m, �t = 0.004 s 20 rz = 112.5 m, rx = 750 m
2 2–4.5 Hz �x = 37.5 m, �t = 0.004 s 20 rz = 112.5 m, rx = 750 m
3 2–5 Hz �x = 37.5 m, �t = 0.004 s 20 rz = 112.5 m, rx = 750 m
4 2–5.5 Hz �x = 37.5 m, �t = 0.004 s 20 rz = 112.5 m, rx = 750 m
5 2–6 Hz �x = 37.5 m, �t = 0.004 s 20 rz = 112.5 m, rx = 750 m
6 2–7 Hz �x = 37.5 m, �t = 0.004 s 20 rz = 112.5 m, rx = 750 m
7 2–8 Hz �x = 37.5 m, �t = 0.004 s 20 rz = 37.5 m, rx = 375 m
8 2–10 Hz �x = 37.5 m, �t = 0.004 s 20 rz = 37.5 m, rx = 375 m
9 2–11 Hz �x = 25 m, �t = 0.003 s 20 rz = 25 m, rx = 250 m
10 2–12 Hz �x = 25 m, �t = 0.003 s 20 rz = 25 m, rx = 250 m
11 2–14 Hz �x = 25 m, �t = 0.003 s 50 rz = 25 m, rx = 250 m
12 2–16 Hz �x = 25 m, �t = 0.003 s 50 rz = 0 m, rx = 250 m
13 2–18 Hz �x = 12.5 m, �t = 0.001 s 40 rz = 0 m, rx = 250 m
14 2–20 Hz �x = 12.5 m, �t = 0.001 s 40 rz = 0 m, rx = 250 m
15 2–25 Hz �x = 12.5 m, �t = 0.001 s 40 rz = 0 m, rx = 125 m
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Table 3. Computational times for one gradient. This time is decomposed in the following steps: computation of the incident wavefield, backpropagation
of the adjoint and the incident wavefields, solution of the optimal transport problem.

Frequency bands Nx × Nz Nt Gradient Incident Adjoint + incident SDMM per cent of time for SDMM

1–8 20 960 2001 171 s 9 s 33 s 127 s 74 per cent
9–12 47 160 2667 332 s 39 s 121 s 171 s 51 per cent
13–15 1 886 400 8001 2455 s 479 s 1461 s 511 s 20 per cent

Figure 20. Exact common shot-gather for the left most source at 25 Hz, compared to the corresponding synthetic in the final model at 25 Hz (orange panels).
The synthetic data are mirrored and placed on both sides of the real data to better compare the match of the different phases.

depth 1.8 km and lateral positions x = 8 km, x = 19 km, x = 22 km.
The deeper part of the model, below 3 km depth, seems less well
reconstructed, as it could be expected from the lack of illumination
of this zone. However, a curved interface seems to be properly
recovered at a depth between 4.5 and 5 km. A flat reflector is also
clearly visible at the bottom of the model, at depth z = 5.8 km.

As the exact model is not known, it is important to perform quality
controls of the computed P-wave velocity estimation. A synthetic
shot-gather in the model estimated at 25 Hz is computed and com-
pared to the corresponding benchmark shot-gather in Fig. 20. The
similarity between the two gathers is important. The kinematic of
the diving waves is correctly predicted. Most of the reflected events
are in phase. Destructive interference due to free surface effects
is also correctly recovered. A slight time-shift can however be ob-
served for the long-offsets diving waves. This time-shift is not in
the cycle skipping regime. A similar phenomenon is observed in
Operto et al. (2015) where FWI is applied to invert the 3-D Val-
hall data. As mentioned in this study, this time-shift may be due to
the accumulation of error with propagating time or an increasing
kinematic inconsistency with large scattering angles. The residuals
between the two data sets are presented in Fig. 21. As both diving
and reflected waves are (almost) in phase, the differences are mainly
due to amplitude mismatch. This is not surprising as the inversion
is based on acoustic modelling. The amplitude mismatch should

therefore be the imprint of elastic effects not accounted for in the
inversion.

As a second quality control, migrations of the data in the initial
model and the estimated models at 10 and 16 Hz are performed. The
migration results correspond to impedance gradients computed on
30 Hz low-pass filtered data, with a filter applied on the diving waves
to focus on reflection data only. The spatial and time discretization
steps are set to 12.5 m and 0.001 s, respectively. The number of
sources is doubled to 512 (one source each 75 m) to avoid spatial
aliasing. As a post-processing, a polynomial gain is used to balance
the energy in depth. The resulting images are presented in Fig. 22.
The migrated image obtained in the estimated model at 10 Hz is
significantly improved in the shallow part of the model (above 3 km
depth) (Fig. 22b). A significant uplift of this part of the model can
be observed. The continuity and the flatness of the reflectors are
globally improved. However, the reflectors in the deepest part of
the model (z > 2.5 km) remain unfocused. The migrated image in
the estimated model at 16 Hz yields a better delineation of these
deep reflectors, as indicated by the three red arrows at the bottom
(Fig. 22c). In particular, a continuous tilted reflector appears clearly
at 5 km depth in the left part of the model. This is an indication
of a progress in constraining the deep part of the P-wave velocity
model, even if this remains challenging as only reflections sample
this part of the model.
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Figure 21. Residuals between the exact common shot-gather for the left
most source at 25 Hz and the corresponding synthetic common shot-gather.

Another conventional control for assessing the quality of veloc-
ity model consists in considering the flatness of CIG. The CIG
presented in Fig. 23 are obtained by computing migrated images
following the previous strategy for different offset ranges. A dip
filtering is used in addition, to remove events associated with low-
energy S-waves. Consistently with what is observed for the migrated
images, the curve and the offset extension of the shallowest reflec-
tors is improved by the P-wave velocity model obtained at 10 Hz
(Fig 23b). The P-wave velocity model obtained at 16 Hz further im-
proves this energy refocusing. Some of the deeper reflectors are also
better flatten, as indicated by the bottom arrows in Fig. 23(c), even
if the progress in depth are less significant than the improvement
observed in the shallow part.

Finally, a vertical well log of the exact P-wave velocity model
taken at x = 39375 m, at a depth between 1000 m and 2450 m is
provided in the benchmark data. The corresponding log is extracted
from the final estimation obtained at 25 Hz maximum frequency
and compared to this log in Fig. 24. This provides another criterion
to assess the quality of the estimation. As can be seen in Fig. 24,
the agreement between the exact and estimated logs is excellent.
However, only the shallowest part of the model is constrained here.
A deeper exact log would be interesting to have quality control on
the deeper part of the model, which is more challenging to recover
in this configuration.

To emphasize the benefits provided by using the optimal transport
distance, the same frequency continuation workflow is applied to
the Chevron 2014 benchmark data set, with a FWI algorithm based

on the conventional L2 distance. The results obtained after the first
frequency band and the eighth frequency band are compared to
the results obtained when the optimal transport distance is used in
Fig. 25. As can be seen, the L2 distance based FWI converges to a
local minimum. Already after the first frequency band, the shallow
part of the P-wave velocity estimation seems incorrect as a strong,
flat reflector is introduced at the depth z = 500 m. Note that for
this simple comparison, no data-windowing strategy is used. As
previous experiments in our group indicate, better results using the
L2 distance can be obtained for the reconstruction of the shallow
part of the model by designing a hierarchical workflow based on the
interpretation of transmitted energy first.

To complement this comparison, the residuals associated with
the L2 norm and the optimal transport distance in the initial model,
for the first frequency band, are presented in Fig. 26. This Figure
emphasizes the regularization role played by the optimal transport
distance. Besides the smoothing effect already detected in the first
numerical test, the SDMM algorithm seems to act as a coherency
filter, restoring the continuity of the main seismic events. This fea-
ture is particularly important for the interpretation of real data, as
the signal over noise ratio of seismic signal below 3 Hz is generally
poor.

4 D I S C U S S I O N

The method proposed in this study is designed to mitigate issues
related to the use of the L2 norm to compare seismic signals in the
framework of FWI. An optimal transport distance is used instead.
This change in the measure of the misfit between seismograms ap-
pears to bring a more robust strategy, capable of overcoming cycle
skipping issues, allowing to better interpret seismic data through
FWI. In addition, it seems to facilitate the interpretation of noisy
data as it acts as a coherency filter on the residuals which are back-
propagated to form the gradient through the adjoint-state method.

Distances based on Lp norms are built as a sum of mismatch over
each source and each receiver. As a consequence, these distances
consider each seismic traces individually, without accounting for
a potential correlation between these traces. However, it is well
known from seismic imaging practitioners that shot-gathers, pre-
sented in the 2-D receiver/time plane, carry much more information
than individual traces. Seismic events such as reflection, refraction,
conversion, are identifiable on 2-D shot-gathers from their lateral
coherency in the receiver dimension. In conventional FWI based
on Lp distance, this information is used for visualizing the data,
but is not accounted for in the inversion. This loss of information
is severe and penalizes the inversion. The main advantage of the
optimal transport distance presented in this study is its capability
of accounting for this lateral coherency in the gather panel. Indeed,
the traces of one common shot-gather are now interpreted jointly,
through a measure of the distance in the 2-D receiver/time plane.

To illustrate this property, a comparison with an alternative strat-
egy based on 1-D optimal transport is performed on the Marmousi
2 model. This strategy is closer from the approach promoted by
Engquist & Froese (2014): the seismic data is considered as a col-
lection of 1-D time signals which are compared independently using
a 1-D optimal transport distance. The resulting misfit function is a
summation over all the traces of this distance between observed
and calculated data. The lateral coherency of the seismic event in
the receiver dimension is thus not accounted for. This method can
be implemented easily using the SDMM method (Algorithm 1).
The block tridiagonal system reduces to a tridiagonal system which
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Figure 22. Migrated images in the initial model (a), in the model obtained at 10 Hz maximum frequency (b) and in the model obtained at 16 Hz maximum
frequency (c). Red arrows indicate identifiable improvements of the reconstruction of the reflectors and refocusing of the energy. Improvements in the shallow
part (above 3 km) are already obtained with the 10 Hz P-wave velocity estimation (b). Improvements in the deeper part (below 3 km) are yielded by the P-wave
estimation at 16 Hz.
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Figure 23. CIG in the initial model (a), in the model obtained at 10 Hz maximum frequency (b), in the model obtained at 16 Hz maximum frequency (c). Red
arrows indicate identifiable improvement of the CIG continuity in the offset direction. As for the migrated images, improvements in the shallow part (above
3 km) are already obtained with the 10 Hz P-wave velocity estimation (b). Improvements in the deeper part (below 3 km) are yielded by the P-wave estimation
at 16 Hz.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/205/1/345/2594839 by C

N
R

S - ISTO
 user on 22 June 2021



370 L. Métivier et al.

Figure 24. Vertical P-wave velocity log taken at x = 39, 375 km. Initial
model (blue); exact model (black); estimation at 25 Hz (red).

can be efficiently solved using the Thomas algorithm. The compu-
tational complexity of the solution of these 1-D optimal transport
problem reduces to O(Nt × Nr) = O(N) [compared to O(N3/2)
for the 2-D optimal transport distance]. However this reduction of
the complexity comes with a price, as is shown on Fig. 27. The
reconstruction (Fig. 27d), although more accurate than the recon-
struction obtained using the L2 distance (Fig. 27c), is far from being
as accurate as the one obtained with the 2-D optimal transport dis-
tance (Fig. 27e). A strong degradation of the results thus occurs
when neglecting the lateral coherency of the events in the receiver
dimension.

For further 2-D and 3-D large size application to real seismic
data, the question of the computational cost of the optimal trans-
port distance remains opened. In 3-D, as the acquisition comprises
inline and crossline receivers, common shot-gathers should be rep-
resented as data cubes, with a coherency of seismic events both
in inline and crossline directions. The previous experiment, based
on 1-D optimal transport, suggests that there is an interest in fully
exploiting the lateral coherency of the seismic signal. However, fur-
ther numerical improvements are required to design a method with a

manageable computational time in such a configuration. This could
be achieved through a better account of the structure of the matrix
Q, which is related to a second-order discretization of the Laplacian
operator with Neumann boundary conditions. The linear system to
be solved at each iteration of the SDMM algorithm could thus be
identified as a Poisson equation, for which fast solver exist, either
based on Fast Fourier Transform (Swarztrauber 1974), or multigrid
methods (Brandt 1977; Adams 1989). If this strategy reveals unfea-
sible, dimensionality reduction (such as the one presented here from
2-D to 1-D optimal transport) could still be worthy to investigate,
using appropriate regularization techniques. Another option may
also consist in changing the formulation of the optimal transport
problem to a primal formulation with entropic regularization, as
this strategy is indicated to benefit from a reduced computational
complexity (Benamou et al. 2015).

Regarding the application of the method, the results obtained on
the BP 2004 case study indicate that the measure of the distance
between synthetic and observed data through optimal transport dis-
tance yields the possibility to better recover salt structures. This
may be a first step towards more efficient sub-salt reconstructions.
This could be assessed on more realistic data sets than the synthetic
BP 2004 model. The Chevron 2012 Gulf Of Mexico data set could
be investigated to this purpose.

An enhancement of the results obtained on the Chevron 2014
benchmark, especially in the deep part of the model, could be pos-
sibly obtained by combining the use of optimal transport distance
with reflection-based waveform inversion strategies. These meth-
ods aim at enhancing the recovery of velocity parameters in zones
where the subsurface is mainly sampled by reflected waves rather
than transmitted waves. They are based on the scale separability
assumption and alternatively reconstruct the smooth velocity and
the reflectivity model. This generates transmission kernels between
the reflectors and the receivers which provide low wavenumber
update of the velocity. The method has been first introduced by
Chavent et al. (1994) and Plessix et al. (1999), then extended by Xu
et al. (2012), Brossier et al. (2015) and Zhou et al. (2015). In the
Chevron 2014 benchmark data set, relatively short offsets are used
(8 km streamer data), and the velocity inversion in the low-velocity
layer prevents diving waves to penetrate deeply the subsurface. A
combination of the optimal transport distance with reflection FWI
is thus a potentially interesting investigation.

Another important current issue in FWI is its ability to reconstruct
several classes of parameters simultaneously, in a multi-parameter
framework. An overview of the challenges associated with this issue
is given in Operto et al. (2013). In particular, the importance of an
accurate estimation of the inverse Hessian operator to mitigate as
much as possible trade-offs between parameters is emphasized. To
this purpose, recent results indicate the interest of using truncated
Newton techniques instead of more conventional quasi-Newton op-
timization strategies (Métivier et al. 2014b, 2015; Castellanos et al.
2015). These techniques rely on an efficient estimation of Hessian-
vector products through second-order adjoint state formulas. An
extension of this formalism to the case where the optimal trans-
port distance is used instead of the standard L2 should thus be
investigated.

5 C O N C LU S I O N S

An FWI algorithm using a misfit function based on an optimal
transport distance is presented in this study. Instead of using the
Wasserstein distance, as proposed in Engquist & Froese (2014), a
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Figure 25. Chevron 2014 starting P-wave velocity model (a). Estimated P-wave velocity model at 4 Hz with the optimal transport distance (b), with the L2

distance (c). Estimated P-wave velocity model at 10 Hz with the optimal transport distance (d), with the L2 distance (e).

modified Monge–Kantorovich problem is solved to compute the
distance between seismograms, yielding the possibility to account
for non-conservation of the energy. The numerical computation of
this distance requires the solution of a linear programming prob-
lem, which is solved through the SDMM algorithm. This algorithm
is based on proximal splitting techniques (Combettes & Pesquet
2011). The main computationally intensive task to be performed
within this algorithm is related to the solution of linear systems
involving a matrix associated with the constraints of the linear pro-
gramming problem. An efficient algorithm, based on the work of
Buzbee et al. (1970), is set up to solve these linear systems with a
complexity in O(N) and O(N3/2) in terms of memory requirement
and number of operations respectively.

Synthetic experiments emphasize the properties of this distance
when applied to FWI. The resulting misfit function is more convex,
which helps to mitigate cycle skipping issues related to the use
of the more conventional L2 norm. This is illustrated on a simple

transmission from borehole to borehole experiment, as well as on the
Marmousi 2 case study. From crude initial models, more reliable
estimations of the P-wave velocity model are obtained using the
optimal transport distance.

The property of the optimal transport distance is also tested in
the context of salt imaging. The experiment on the BP 2004 case
study emphasizes the capability of the method to recover the salt
structures from an initial model containing no information about
their presence. This yields interesting perspectives in terms of sub-
salt imaging.

The experiment on the more realistic Chevron 2014 benchmark
data set emphasizes the satisfactory performances of the method,
particularly its robustness to noise. It seems also able to provide
a reliable estimation of the P-wave velocity in the zone which
are sampled by diving waves. In the deepest part where the seis-
mic information is dominated by reflection, the method faces the
same difficulties as conventional FWI. This could be overcome by
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Figure 26. Residuals in the initial model for the first frequency band, using the L2 norm misfit function (a), using the optimal transport distance (b).

Figure 27. Exact Marmousi 2 P-wave velocity model (a). Initial model corresponding to the third initial model of Fig. 8 (b). Reconstructed model using the
L2 distance (c), 1-D optimal transport distance (d) and 2-D optimal transport distance (e).

combining the use of the optimal transport distance with reflection
FWI strategies.

The proposed method thus seems promising and should be in-
vestigated in more realistic configurations, implying 3-D waveform
inversion. Measuring the misfit between data cubes using the op-
timal transport distance is a challenging issue, which could yield
interesting perspectives for 3-D FWI. The introduction of viscous,
elastic and anisotropic effects should also be investigated. As the
proposed strategy is data-domain oriented, such extension should be
straightforward. Finally, specific investigations have to be made to
extend the formalism of the method for the computation of second-
order derivatives information (Hessian-vector products) through the

adjoint-state method. These investigations should be carried on in
the perspective of applying this method to multi-parameter FWI.
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ful advice and his availability to comment on these results. The
authors also thank Paul Wellington for his help on figure edi-
tion, as well as the associated editor and the two reviewers for
their helpful comments. This study was partially funded by the
SEISCOPE consortium (http://seiscope2.osug.fr), sponsored by BP,

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/205/1/345/2594839 by C

N
R

S - ISTO
 user on 22 June 2021

http://seiscope2.osug.fr


Optimal transport distance for FWI 373

CGG, CHEVRON, EXXON-MOBIL, JGI, PETROBRAS, SAUDI
ARAMCO, SCHLUMBERGER, SHELL, SINOPEC, STATOIL,
TOTAL and WOODSIDE. This study was granted access to the HPC
resources of the Froggy platform of the CIMENT infrastructure
(https://ciment.ujf-grenoble.fr), which is supported by the Rhône-
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A P P E N D I X A : E Q U I VA L E N C E B E T W E E N L I N E A R P RO G R A M M I N G P RO B L E M S

In this appendix, the proof of equivalence between the linear programming problems (15) and (17) is given. The first of these two problems
is the discrete analogous of the problem (10), which uses global constraints to impose the Lipschitz property. The second only uses local
constraints to impose the Lipschitz property and is therefore less expensive to solve numerically.

It is straightforward to see that if the global constraints are imposed, the local constraints are satisfied. Interestingly, the reciprocal is also
true. To see this, consider a pair of points v = (xv , tv) and w = (xw , tw) in the 2-D grid. A sequence of N points zi = (xi, ti), i = 1, . . . , N, with
z1 = v and zN = w can be chosen to form a path from v to w, such that the points zi are all adjacent on the grid, with monotonically varying
coordinates: this means that each of the sequences xi and zi are either increasing or decreasing monotonically. The key is to see that, for such
a sequence of points, the �1 distance (also known as Manhattan distance) ensures that

||w − v||1 =
∑

i

||zi+1 − zi ||1. (A1)

Now, consider a function ϕ satisfying only the local constraints. The triangle inequality yields

||ϕ(w) − ϕ(v)||1 ≤
∑

i

||ϕ(zi+1) − ϕ(zi )||1. (A2)

As the points zi are adjacent, the local inequality satisfied by ϕ can be used to obtained∑
i

||ϕ(zi+1) − ϕ(zi )||1 ≤
∑

i

||zi+1 − zi ||1. (A3)

Putting together eqs (A2), (A3) and (A1) yields

||ϕ(w) − ϕ(v)||1 ≤ ||w − v||1. (A4)

This proves that satisfying the local constraints implies that the global constraints are verified. The linear programming problem (17) is thus
the one which is solved to approximate the solution of the continuous problem (10).

A P P E N D I X B : P ROX I M I T Y O P E R AT O R S

For a given convex function f(x), its proximity operator proxf is defined by

prox f (x) = arg min
y

f (y) + 1

2
‖x − y‖2

2, (B1)

where the standard Euclidean distance on R
d is denoted by ‖.‖2. Closed-form proximity operators exist for numerous convex functions, which

can make them inexpensive to compute. This is the case for the proximity operators of the indicator function iK and the linear function h(ϕ).
The proximity operator of the indicator function iK corresponds to the projection on the ensemble K (Combettes & Pesquet 2011):

∀i = 1, . . . , 3N ,
(
proxiK

(x)
)

i
=

∣∣∣∣∣∣∣
xi if −1 < xi < 1

1 if xi > 1

−1 if xi < −1.

(B2)

This can be seen as a thresholding operation: any value of x lower than −1 (respectively higher than 1) is set to the threshold value −1
(respectively 1). The values between −1 and 1 remain unchanged. Following the definition (B1), the proximity operator of the function
hdcal[m],dobs (ϕ) is simply

proxhdcal[m],dobs
(ϕ) = ϕ − dcal[m] + dobs. (B3)

A P P E N D I X C : E F F I C I E N T S O LU T I O N O F T H E B L O C K T R I D I A G O NA L L I N E A R
S Y S T E M W I T H I N T H E S D M M A L G O R I T H M

The solution of the problem (21) with the SDMM algorithm involves solving at each iteration a linear system of type

Qx = b, (x, b) ∈ R
N × R

N , Q ∈ MN (R), (C1)

where Q is defined by the eq. (24) and MN (R) denotes the ensemble of square matrices of size N with real coefficients. The following ordering
is used for the vectors of R

N . Recall that the total size N is the product of the number of time steps Nt and the number of receivers Nr. The
vectors of R

N are decomposed in Nt blocks of size Nr, such that for all x ∈ R
N

x = [
x1, . . . xNt

] ∈ R
N , (C2)

and

∀i = 1, . . . , Nt , xi = [
xi1, . . . xi Nr

] ∈ R
Nr . (C3)
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The matrix Q is block tridiagonal such that

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F + B B

B F B

. . .
. . .

. . .

B F B

B F + B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C4)

Introducing α = 1
�x2

r
, β = 1

�t2 , B is the diagonal matrix

B = diag(−β) ∈ MNr (R), (C5)

and F is the tridiagonal symmetric positive definite matrix

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + α + 2β −α

−α 1 + 2(α + β) −α

. . .
. . .

. . .

−α 1 + 2(α + β) −α

−α 1 + α + 2β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ MNr (R). (C6)

The matrix Q is thus decomposed in Nt blocks of size Nr. The method for block tridiagonal Toeplitz matrices proposed by Buzbee et al.
(1970) can be adapted to the solution of this system using the following strategy. First each row of Q is multiplied by B−1, which yields the
system⎧⎪⎨
⎪⎩

(E + I )x1 + x2 = b′
1

xi−1 + Exi + xi+1 = b′
i , i = 2, Nt − 1

xNt −1 + (E + I )xNt = b′
Nt

,

(C7)

where b′
i = B−1bi and E = B−1F. The matrix E is symmetric positive definite by construction, and can be factorized as

E = P D PT , D = diag(d j ), j = 1, . . . Nr , PT P = I. (C8)

Using this factorization in eq. (C7) yields⎧⎪⎨
⎪⎩

(D + I )y1 + y2 = c1

yi−1 + Dyi + yi+1 = ci , i = 2, Nt − 1

yNt −1 + (D + I )yNt = cNt ,

(C9)

where

yi = PT xi , ci = PT b′
i , i = 1, . . . Nt . (C10)

The system (C9) can now be expanded as⎧⎪⎨
⎪⎩

(d j + 1)y1 j + y2 j = c1 j , j = 1, Nr

yi−1 j + d j yi j + yi+1 j = ci j , i = 2, Nt − 1, j = 1, Nr

yNt −1 j + (d j + 1)yNt j = cNt j j = 1, Nr .

(C11)

The vectors y∗ j and c∗ j are such that

∀ j = 1, . . . , Nr , y∗ j = [
y1 j , . . . , yNt j

] ∈ R
Nt , c∗ j = [

c1 j , . . . , cNt j

] ∈ R
Nt (C12)

are introduced. These vectors satisfy the equation

K j y∗ j = c∗ j , (C13)

where Kj is the tridiagonal matrix

K j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d j + 1 1

1 d j 1

. . .
. . .

. . .

1 d j 1

1 d j + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C14)
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Pre-processing step: compute the eigenvectors of E and store them in P;
for i = 1, . . . , Nt do

b′
i = B−1bi ;

end
for i = 1, . . . , Nt do

ci = PT b′
i ;

end
for j = 1, . . . , Nr do

form c∗ j from c = [
c1, . . . , cNt

]
;

solve K j y∗ j = c∗ j ;
end
for i = 1, . . . , Nt do

form ci from c∗ j from c = [
c∗1, . . . , c∗Nr

]
;

xi = Pci ;
end
Algorithm 2: Efficient solution of the block tridiagonal linear system.

These transformations yield Algorithm 2 to solve the initial system (C1). As a pre-processing step, the matrix E is factorized as in eq. (C8),
and the eigenvectors are stored in the matrix P. The computation cost and the memory requirement of this operation is in O(N 2

r ) as E is
tridiagonal. The solution of the eq. (C1) is then obtained through the following operations. First, the vectors bi are multiplied by the diagonal
matrix B−1 which requires O(N) operations. Second, the vectors ci are formed following eq. (C10). As the matrix P is full, this requires
O(N 2

r × Nt ) operations. Third, the vectors y∗ j are computed through the solution of Nr tridiagonal systems of size Nt. Tridiagonal systems are
efficiently solved through the Thomas algorithm which has a linear complexity (Golub 1996). Therefore, the computation cost of computing
y∗ j is merely in O(Nr × Nt) = O(N). The final step consists in computing the vector x from the vectors y∗ j through the eq. (C10). This
requires to multiply each vector yi by P, which costs O(N 2

r × Nt ) operations. The overall complexity of the algorithm is thus O(N 2
r × Nt ),

and the memory requirement in O(N). In contrast, a Cholesky factorization has the same computational complexity, but requires to store
O(N3/2) elements. In addition, the forward backward substitution is an intrinsically sequential algorithm, while the most expensive part of
Algorithm 2 are the matrix-vector multiplications involving the eigenvectors of the matrix E, which can be efficiently parallelized. As a final
remark, in the case Nt < Nr, the matrices and vectors can be re-organized in Nr blocks of size Nt to yield a complexity in O(N 2

t × Nr ) instead
of O(N 2

r × Nt ).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/205/1/345/2594839 by C

N
R

S - ISTO
 user on 22 June 2021


