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Abstract
Internet of Robotic Things (IoRT) is a new concept introduced for the first
time by ABI Research. Unlike the Internet of Things (IoT), IoRT provides a
dynamic actuation and is considered as the new evolution of IoT. This new
concept will bring new opportunities and challenges, while providing new
business ideas for IoT and robotics’ entrepreneurs. In this work, we will focus
particularly on two issues: (i) connectivity maintenance among multiple IoRT
robots, and (ii) their collective coverage. We will propose (i) IoT-based, and
(ii) a neural network control scheme to efficiently maintain the global con-
nectivity among multiple mobile robots to a desired quality-of-service (QoS)
level. The proposed approaches will try to find a trade-off between collective
coverage and communication quality. The IoT-based approach is based on
the computation of the algebraic connectivity and the use of virtual force
algorithm. The neural network controller, in turn, is completely distributed
and mimics perfectly the IoT-based approach. Results show that our ap-
proaches are efficient, in terms of convergence time, connectivity, and energy
consumption.
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1 Introduction

Nowadays, Internet of Things (IoT) technology begins to take an important
place in economic systems and in society daily life [10]. It has got a large
success in several application areas, ranging from smart city applications [4],
[20] to smart grid [21]. However, most of IoT applications are based only on
static actuation. Later, adding an active role for actuators will be needed,
in order to optimize the systems where they are present. Robotic systems
match very well to this new need, since robots can sense and interact with
their environment. Therefore, integrate robots as a device in IoT is obvious.

1.1 Overview of Internet of Robotic Things

Internet of Robotic Things (IoRT) is a new concept introduced for the first
time by ABI Research [1]. It was defined as an intelligent set of devices that
can monitor events, fuse sensor data from a variety of sources, use local and
distributed intelligence to determine a best course of action, and then act to
control or manipulate objects in the physical world [1]. This new concept is
expected to be the evolution of IoT and robotics.

Fig. 1: Internet of Robotic Things

In most of the time, the brain of robots and control mechanisms are local ie
on-board the robots themselves. However, in IoRT concept, the computation
and the control can be assigned to the cloud. In this case, Internet allows the
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IoRT robots to be connected to the Cloud. With advances in robot operating
system framework, communication with the Internet is not complicated. It
requires only a simple call of an application programming interface (API).

Assigning the processing to the Cloud increases the data-processing and
interpretation capabilities. However, even if Cloud computing plays impor-
tant role in the IoRT concept, local and distributed computations are still
required for real-time applications or when the access to the Cloud is not
feasible (e.g. after a disaster).

As mentioned before, local and distributed intelligence are also used to
determine a best course of action. Hence, intelligence is also a vital part for
the IoRT concept. The differents kinds of intelligences used in this work will
be detailed in Sections 3 and 4.

1.2 Issues and motivations

In various IoRT applications (e.g: smart agriculture, smart environment mon-
itoring, smart exploration, smart disaster rescue, etc.), the use of mobile
robots’ teams brings many advantages over one powerful IoRT robot. As a
matter of fact, a team of robots can accomplish tasks more efficiently, faster
and more reliable than a single robot [7], [18], [5]. To carry out coopera-
tive tasks, IoRT team members need to communicate with each other, often
via a wireless link (i.e. Wifi, Bluetooth). Maintaining communication among
multiple mobile IoRT robots is therefore a crucial issue.

Many approaches have been designed to maintain the connectivity of
multi-robot and multi-agent systems. These approaches can be classified into
two groups i.e. (i) local and (ii) global connectivity maintenance. With the
local connectivity maintenance, the initial set of edges which define the graph
connectivity must be always preserved over time. Unlike local connectivity
maintenance, global connectivity maintenance allows suppression and cre-
ation of some edges, as long as the overall connectivity of the graph is con-
served. Different examples and results related to these approaches can be
found in [14], [23], [6], [24], [15], [8].

In Multi-Robot Systems, global connectivity maintenance is often used
since the local connectivity maintenance presents some restrictions. Besides
connectivity maintenance, the major problematic in global connectivity main-
tenance approaches is how to maximize the network connectivity. Maximiz-
ing the connectivity is important to ensure reliable communication between
any pair of IoRT robots. Many works based on graph theory were proposed
in the literature to face this problematic. These works are extensively used
in multi-agent systems and are based on the maximization of the algebraic
connectivity. In this work, we try to migrate some of these ideas in IoRT
applications. Precisely, we will use the graph connectivity metric to maintain
the global connectivity of IoRT robots’ team, when they are in mobility.
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This work addresses also the coverage issue. In general, coverage issue aims
to determine how well the sensing field is monitored or tracked by sensors.
In literature, Virtual Force Algorithm (VFA) was widely used to formulate
this problem [27]. However, these methods have limitations since there are
situations that do not allow the systems to converge in a stable state [9]. We
will present a new solution to this problem later in this work.

To summarize, in this work we address two problems i.e. (i) connectivity
maintenance, and (ii) collective coverage. However, it is interesting to men-
tion that maximizing these two parameters simultaneously is difficult (if not
impossible). Maximize the collective coverage may lead poor communication
quality and conversely (i.e. a very good communication may lead poor cov-
erage). It follows that our goal is to capture the trade-off between collective
coverage and communication quality. Leveraging on the above motivations,
in this work, we propose two motion control strategies which maintain global
connectivity between IoRT robots to a desired QoS level. The first approach
is an IoT-based while the second is a distributed trained neural network con-
troller.

The main contribution of this work is the design of two approaches that
have the following properties:

• The first approach is IoT-based, IoRT robots works with a central object
which has high computation capability for network connectivity comput-
ing/monitoring and for the robot motion decision;

• Our both approaches converge to the desired communication quality level;
• Connectivity between any pair of IoRT robots is kept all along the deploy-

ment procedure;
• Our approaches use a distributed virtual force algorithm when the access

to the central object is available and a distributed trained neural network
controller otherwise. Both strategies are computed locally and based only
on the local neighborhood information.

The rest of this chapter is organized as follows. Section 2 provides some
backgrounds which include information on algebraic graph theory and neural
networks. Section 3 describes the IoT-based approach, while Section 4 de-
tails the neural network approach. Section 5 provides the simulation results.
Finally, Section 6 is dedicated to the conclusions.

2 Backgrounds

2.1 Graph representation and Eigenvalues

Multi-Robot Systems (MRS) can be represented by a graph G(V,E) where
V is the set of vertices representing each IoRT robot and E ⊆ V 2 is the set
of edges. E can be be defined as : E =

{
(i, j) ∈ V 2 | i 6= j ∧ d(i, j) ≤ R

}
,
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where d(i, j) is the euclidean distance between i-th and j-th IoRT robots and
R is the communication range. Following the above definition, let Ni be the
one-hop neighborhood of the i–th IoRT robot. Thus, Ni is the set of IoRT
robots which can exchange information with IoRT robot i. Ni can be defined
as follow :

Ni = {j ∈ V | d(i, j) ≤ R} (1)

2.1.1 Definition 1

An undireted graph G is connected if there exists a path between each pair
of vertices.

In this paper, the graph G may evolve over time due to the IoRT robots
motion but has to be always connected.

2.1.2 Definition 2

Let define a matrix A ∈ Rn×n. The scalar λ is an eigenvalue of A if there
exists a non-zero vector w such that

A.w = λ.w (2)

The vector w is called eigenvector of A corresponding to λ.

2.2 Laplacian matrix and algebraic connectivity

Given a undirected graph G, its Laplacian matrix L is defined as:

L(G) = Ψ(G)−A(G) (3)

where:

• A(G) is the weighted adjacency matrix of graph G whose entries Aij is
defined as in [14]:

Aij=


1 d(i, j) < Dth

e
−5(d(i,j)−Dth)

R−Dth Dth ≤ d(i, j) ≤ R

0 d(i, j) > R

(4)

• Ψ(G) is a diagonal matrix such as the components Ψi =
∑n

i=1 Aij along
the diagonal

• Dth is the desired distance between each pair of IoRT robots.
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The Laplacian matrix L(G) holds some interesting properties:

1. Let 1 be the column vector of all ones. Then, L1 = 0.
2. Let λi, i = 1, ..., n the eigenvalues of the Laplacian matrix L(G).

• The eigenvalues of L(G) can be ordered such that

0 = λ1 ≤ λ2 ≤ λ3 ≤ ... ≤ λn (5)

• λ2 > 0 if and if only the graph G is connected. The second-smallest eigen-
value λ2 is called also algebraic connectivity of the graph G. The value of
λ2 indicates how weel connected the graph is.

Further details on graph theory and proof can be found in [11].

2.3 Artificial Neural Networks

Artificial Neural Networks (ANN) were inspired by the human brain and was
designed as a computational model to solve specific problems [2]. It’s archi-
tecture is defined by (i) a basic processing element called artificial neuron,
and (ii) the way in which they are interconnected. The output value of a
neuron is given by:

output = f(
∑
i

wixi + b) = f(WTX + b) (6)

where

• xi: the inputs
• wi: connections’ weights between xi and the neuron
• W : weights’ vector
• X: inputs’ vector
• b: the bias
• f : the activation function

The basic architecture of ANN contains three neuron layers: input layer,
hidden layer and output layer. In this case, the outputs of one layer become
the inputs of next layer [2]. A typical artificial neuron and a basic ANN are
illustrated in Fig. 2.
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Fig. 2: Architecture of an artificial neuron and a multilayered neural network

A key element of an artificial neural network is its ability to learn. This
meant that ANN has to learn from a data set in order to match the inputs
to the desired output. During the learning process, weights and biases are
adjusted till the desired output will be reached. There are several learning
algorithm but in this work we will use the backpropagation algorithm [22].

2.4 Virtual Force Algoritm

Virtual Force Algorithm (VFA) is extensively used to solve the coverage prob-
lem on robots and sensors networks. The main idea is to model each robot
or sensor as a particle in the potential field. The potential field exerts forces
on the nodes nearby. The force may be either attractive or repulsive force
according whether they are close or far to each other. If two nodes are placed
closer than the desired distance Dth, repulsive forces are exerted on each
other. Otherwise, attractive forces are exerted if two nodes are farther than
Dth. The repulsive force aims to avoid a poor coverage while the attractive
force ensures that a globally uniform node placement will be achieved [27].
For any pairwise of node i and j, the mutual force Fij can be written as the
negative gradient of the potential field. So, we can build a potential function
Vij such as :

Fij = −∇Vij (7)

According to the traditional VFA, the force
−→
Fij is given as :

−→
Fij =


(wa(d(i, j)−Dth), θij), if d(i, j) > Dth

0, if d(i, j) = Dth

(wr(d(i, j)−Dth), θij + π), if d(i, j) < Dth

(8)

where :

• wa is the virtual force attractive coefficient
• wr is the virtual force repulsive coefficient
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• θij is the orientation of the line segment from nodes
• Dth is the desired distance between each pair of nodes
• d(i, j) is the euclidean distance between nodes i and j

This traditional VFA has limitations since there are situations that do not
allow the systems to converge in a stable state [9]. We will present a new
modified version of VFA in Section 3.

2.5 Ideal deployment for full coverage

The problem of maximizing the coverge of robots and sensors network was
addressed in several works, using either virtual force algorithm [26], [27],
[13], [17] or geometrical approaches [25], [16], [3] which manage the pairwise
distance between any pair of node and locally arrange the network topology
as a triangle tessellation. In this work, we focus only on the virtual force
algorithm, since geometry-based approaches computation can only be done
when the global location information of all the nodes in the network is known.
An ideal deployment structure is show in Fig. 3. It is worth to mention that
the ideal deployment will be achieved if the proposed approach converges to
the desired distance Dth. There is no coverage hole in an ideal deployment.

Fig. 3: Ideal deployment for full coverage

3 IoT-based approach

As we saw in the previous Section, an undirected graph is connected if and
only if λ2 > 0. Therefore, any strategy which maintiens λ2 at positive values
guarantees global connectivity among multi-robot systems.

In this Section, we present an IoT-based approach which is capable of
maintaining desired wireless communication coverage among neighboring
robots.



Towards efficient deployment in Internet of Robotic Things 9

The proposed approach uses a Central Object (CO) with high computation
capability to compute and monitor the connectivity of the overall multi-
robot system. We assume that each IoRT robot knows its own position by
using GPS or other localisation system. Beacon messages are used to allow
IoRT robots exchange their positions with their one-hop neighbors. Each
IoRT robot in the system applies a modified version of VFA (as described
on formula 9) to control its movement. This computation is only based on
the local neighborhood information. In order to keep the desired distance
and hence the desired connectivity quality with its neighbor, the i− th IoRT
robot should move away from the IoRT robot j ∈ Ni if d(i, j) < Dth and
should move close if d(i, j) > Dth. Dth is the desired distance between each

pair of IoRT robots. This simple control law generates a vector position
−→
Pij

such that the i − th IoRT robot keeps the line of sight of the IoRT robot j.−→
Pij is defined as :

−→
Pij =

{
(0.1× k ×4d, θij) if d(i, j) > Dth and 4d > ε

(k ×4d, θji) if d(i, j) < Dth and 4d > ε
(9)

where :

• 4d =| d(i, j)−Dth |
• θij is the orientation of the line segment from robots i to j;
• k is the damping coefficient
• ε is a lower bound of 4d. It will be used in order to avoid useless small

movements.

In order to overcome the problem in the traditional VFA, we set the attractive
coefficient wa to one tenth of repulsive coefficient k (wa = 0.1× k).

When the i− th IoRT robot has more than one neighbor, its new position
is calculated as the summation of the position decisions with respect to all
the neighbors : −→

Pi =
∑
j∈Ni

−→
Pij (10)

After calculating their new positions, each IoRT robot sends the computed
position to the Central Object (CO). Then, CO computes the algebraic con-
nectivity λ2 of the IoRT robots network according to the formula 3. The
central object CO allows each IoRT robot to move to their new positions if
and only if λ2 > 0. This guarantees that global connectivity is always kept
all along the deployment procedure. It is important to note that IoRT robots
and CO can communicate to each other through an IoT platform.

The following algorithm summarizes our approach:
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Algorithm 1 IoT-based (runs every t units of time)
Phase I : Neighbor Discovery

MyNeighbor = FindNeighbor(RobotId)

Phase II : Compute the position
−→
Pij between two robots

Compute
−→
Pij using Formula 9

Phase III : Compute the new position
−→
Pi

Compute
−→
Pi using Formula 10

Phase IV : Compute algebraic connectivity

Compute λ2 of the dynamic Laplacian matrix L(G)

Phase V : Deployment

if λ2 > 0 then

move to
−→
Pi

else
do not move

4 ANN-based approach

As we mentioned before, the connection to the central object is not always
possible. For example, a rescue operation may be difficult after a disaster
when the access to the central node is not available. An approach which easily
adapts to any type of situation and environment is more than necessary.

To meet this need, we provide an ANN-based technique which can per-
fectly mimic the behaviors of IoT-based approach. The ANN-based approach
is completely distributed and is trained from a set of data. The data set
is obtained by using the IoT-based approach and we use backpropagation
algorithm to train ANN. The trained ANN is constituted by 2 input units
and 1 output unit. The 2 input units are d(i, j) and θij , while the output is
−→
Pij . Therefore, the trained ANN is executed locally for each IoRT robot to
control its movement according to its neighbor’s distance d(i, j) and angle

θij . When the position
−→
Pij is estimated, the new position

−→
Pi of the IoRT

robot is computed by using the formula 10. Then, the collective movement of
all IoRT robots will allow our trained ANN converge to the desired distance
Dth. The global connectivity will also keep if our ANN is well trained (i.e.
if training error equals zero or near to zero). The algorithm below illustrates
our ANN-based approach:
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Algorithm 2 ANN approach (runs every t units of time)
Phase I: Neighbor Discovery

MyNeighbor = FindNeighbor(RobotId)

Phase II: Estimate the position
−→
Pij between two robots

−→
Pij = trained ann(d(i, j), θij)

Phase III: Compute the new position
−→
Pi

Compute
−→
Pi using Formula 10

Phase IV: Deployment

move to
−→
Pi

5 EVALUATION & DISCUSSION OF THE RESULTS

In this Section we first describe the simulation parameters and then provide
the simulation results of our approaches. We are interested in studying how
our approaches converge to the desired distanceDth between any pair of IoRT
robot (hence to the desired communication quality matching Dth). We will
see also how the density of IoRT robots influences the traveled distance of a
robot. The importance of taking into account the algebraic connectivity be-
fore taking a movement decision will be also highlighted. Our approaches will
be compared to the approach described in [17] called hereafter EVFA (Ex-
tended Virtual Force-Based Approach). EVFA was designed by its authors to
overcome the connectivity maintenance and nodes stacking problems in the
traditional Virtual Force Algorithm (VFA). Unlike our approaches, EVFA
is based only on the orientation force and the judgment of distance force
between node and its one-hop neighbors.

We assess our techniques w.r.t. (i) the algebraic connectivity, (ii) the robot
traveled distance, (iii) the average distance, and (iv) the QoS level expressed
in terms of RSSI (Received Signal Strength Indicator). Simulations have
beeen carried out for a variable number of robots (i.e. from 5 to 50 robots)
in an area of 3x3 km.

5.1 Simulation parameters

All the algorithms in this paper were implemented in version 2.29 of Network
Simulator with patch from [12] that reflect a realistic channel propagation and
error model. The patch is used in order to provide the effect of interference
and different thermal noises to compute the signal to noise plus interference
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ratio (SINR) and accounting for different bit error rate (BER) to SINR curves
for the various codings employed [19]. Table 1 summarizes the parameters
used in the simulations.

Physical

Propagation model Two ray ground
Error model Real

Antennas gain Gt = Gr = 1
Antennas height ht = hr = 1 m
Communication range 250 m

Statistics Number of samples 100
Simulation time 3000s

Confidence Interval 95%

Computation of the new position see formula (8)
Mobility Damping coefficient k 0.5

Dth 212 m

Layer number 4

Input number 2
Output number 1

ANN Neuron’s number in hidden layers 15
Desired Error 0.00001

Max epochs 10000
Activation function sigmoid symmetric
Learning rate 0.2

Training algorithm backpropagation

Topology Topology width 3000 m
Topology height 3000 m

Table 1: Simulation parameters

5.2 Simulation results

All of the following results are the average of 100 times simulations and
we assume that the topology is totally connected at the beginning of the
simulation.

We can observe in the Figures [5-8](a) that IoT-based approach always
kept the global connectivity since it always take account the algebraic con-
nectivity constraint. Unlike IoT-based, EVFA has a connectivity problem
when the robots density is low and this can explain why EVFA traveled a
lot when the number of robot is less than 15 (see Fig. 4(a)). The goodness
of connectivity is observed in EVFA when the robots density is higher (i.e.
greater than 15 robots). However, as we mentioned before our goal is not to
maximize the algebraic connectivity but just to keep it always greater than
zero. This condition is enough to keep the global connectivity.

Figures [5-8](c) and [5-8](d) illustrate the convergence of our algorithms to
the desired distance and the desired communication quality (RSSI) through-
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out the simulation. We can notice that our approaches converge quickly to
the aforementioned parameters which is not always the case for EVFA. We
can see also that ANN mimics perfectly the behaviours of the IoT-based ap-
proach. This is due to the fact that our neural network has been well trained.

Figures [5-8](b) depict the distance traveled by a robot during the sim-
ulation time. By considering the relationship between energy and traveled
distance, we can say that our approaches are energy efficient as compared to
EVFA. However, it is observed that ANN consumes a bit more than Iot-based
approach. This is because ANN has made a bit more step1 to converge (see
Fig. 4).

As a conclusion, it is worth to say that the global connectivity is reached
with ANN approach since it was well trained and inherited the characteristics
of IoT-based approach.

It should be noted that the coverage rate strongly depends on the initial
network topology. If initially the robots are very close to each other, the
convergence to the desired distance enlarges the collective coverage. Else, if
the distances between robots are initially bigger than the desired distance,
the coverage rate will decrease but the communication quality will improved.
This has been proven but we omit it in this paper for lack of space.
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Fig. 4: Traveled distance and robot step according to the robots number

1 Each robot increments its counter when it decides to move. In this paper, robot step is
defined as the average of the maximum counter value achieved by one robot during the

simulation.
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Fig. 5: Simulation results obtained with 5 robots moving in 3x3 km area
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Fig. 6: Simulation results obtained with 10 robots moving in 3x3 km area



Towards efficient deployment in Internet of Robotic Things 15

 0

 2

 4

 6

 8

 10

 0  500  1000  1500  2000  2500  3000
 A

lg
eb

ra
ic

 c
on

ne
ct

iv
ity

 
Simulation time [s]

EVFA
IoT-based

(a) Algebraic connectivity

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  500  1000  1500  2000  2500  3000

T
ra

ve
le

d 
di

st
an

ce
 [m

] 

Simulation time [s]

EVFA
IoT-based

ANN-based

(b) Traveled distance

 0

 50

 100

 150

 200

 250

 0  500  1000  1500  2000  2500  3000

A
ve

ra
ge

 d
is

ta
nc

e 
[m

] 

Simulation time [s]

EVFA
IoT-based

ANN-based

(c) Position

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

R
S

S
I [

pw
] 

Simulation time [s]

EVFA
IoT-based

ANN-based

(d) RSSI

Fig. 7: Simulation results obtained with 25 robots moving in 3x3 km area
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Fig. 8: Simulation results obtained with 50 robots moving in 3x3 km area
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6 Conclusions

In this paper, we implemented a IoT-based and an ANN control scheme
to maintain global connectivity among multiple IoRT robots. The proposed
approaches tried to capture the trade-off between network coverage and com-
munication quality expressed as RSSI level. The proposed algorithms allow
the whole IoRT robot network converges to the desired distance, and hence
the desired communication quality. Through extensive simulation we showed
that our approaches outperform the EVFA approach proposed in [17], in
terms of traveled distance and convergence time. Moreover, our proposed
methods always maintain the global connectivity throughout the simulation.

Acknowledgment

This work was partially supported by a grant from CPER Nord-Pas-de-
Calais/FEDER Campus Intelligence Ambiante.

References

[1] ABI Research. Internet of robotic things. https:

//www.abiresearch.com/market-research/product/

1019712-the-internet-of-robotic-things. Accessed November 2,
2015.

[2] Abraham Ajith. Artificial neural networks. handbook of measuring sys-
tem design, 2005.

[3] Akkaya Kemal, Guneydas Ismail, and Bicak Ali. Autonomous actor
positioning in wireless sensor and actor networks using stable-matching.
International Journal of Parallel, Emergent and Distributed Systems, 25
(6):439–464, 2010.

[4] Aloi Gianluca, Bedogni Luca, Di Felice Marco, Loscri Valeria, Molinaro
Antonella, Natalizio Enrico, Pace Pasquale, Ruggei Giuseppe, Trotta
Angelo, and Zema Nicola Roberto. Stemnet: an evolutionary network
architecture for smart and sustainable cities. Transactions on Emerging
Telecommunications Technologies, 25(1):21–40, 2012.

[5] Arai Tamio, Pagello Enrico, and Parker Lynne E. Editorial: Advances
in multi-robot systems. IEEE Transactions on robotics and automation,
18(5):655–661, 2002.

[6] Bouraqadi Noury, Stinckwich Serge, Moraru Victor, Doniec Arnaud, and
others . Making networked robots connectivity-aware. In Robotics and
Automation, 2009. ICRA’09. IEEE International Conference on, pages
3502–3507. IEEE, 2009.



Towards efficient deployment in Internet of Robotic Things 17

[7] Cao Y Uny, Fukunaga Alex S, and Kahng Andrew. Cooperative mobile
robotics: Antecedents and directions. Autonomous robots, 4(1):7–27,
1997.

[8] Casteigts Arnaud, Albert Jérémie, Chaumette Serge, Nayak Amiya, and
Stojmenovic Ivan. Biconnecting a network of mobile robots using virtual
angular forces. Computer Communications, 35(9):1038–1046, 2012.

[9] Chen Jiming, Li Shijian, and Sun Youxian. Novel deployment schemes
for mobile sensor networks. Sensors, 7(11):2907–2919, 2007.

[10] Council . Internet of things council. http://www.

theinternetofthings.eu. Accessed November 18, 2015.
[11] Fiedler Miroslav. Algebraic connectivity of graphs. Czechoslovak math-

ematical journal, 23(2):298–305, 1973.
[12] Fiore Marco. Ns-2.29 wireless update patch. http://perso.citi.

insa-lyon.fr/mfiore/research.html. Accessed November 19, 2015.
[13] Garetto Michele, Gribaudo Marco, Chiasserini Carla-Fabiana, and

Leonardi Emilio. A distributed sensor relocatlon scheme for environ-
mental control. In 2007 IEEE International Conference on Mobile Adhoc
and Sensor Systems, pages 1–10. IEEE, 2007.

[14] Gennaro Maria Carmela De and Jadbabaie Ali. Decentralized control
of connectivity for multi-agent systems. In Decision and Control, 2006
45th IEEE Conference on, pages 3628–3633. Citeseer, 2006.

[15] Hsieh M Ani, Cowley Anthony, Kumar R Vijay, and Taylor Camillo J.
Maintaining network connectivity and performance in robot teams. 2008.

[16] Lee Geunho and Chong Nak Young. A geometric approach to deploying
robot swarms. Annals of Mathematics and Artificial Intelligence, 52
(2-4):257–280, 2008.

[17] Li Jun, Zhang Baihai, Cui Lingguo, and Chai Senchun. An extended
virtual force-based approach to distributed self-deployment in mobile
sensor networks. International Journal of Distributed Sensor Networks,
2012, 2012.

[18] Parker Lynne E. Multiple mobile robot systems. In Springer Handbook
of Robotics, pages 921–941. Springer, 2008.

[19] Pavon Javier Del Prado and Choi Sunghyun. Link adaptation strategy
for ieee 802.11 wlan via received signal strength measurement. 2:1108–
1113, 2003.

[20] Petrolo Riccardo, Loscri Valeria, and Mitton Nathalie. Towards a smart
city based on cloud of thoings. In Proceedings of the 2014 ACM inter-
national workshop on Wireless and mobile technologies for smart cities,
WiMobCity, pages 61–66. ACM, 2014.

[21] Qinghai Ou, Yan Zhen, Xianghen Li, Yiying Zhang, and Lingkang Zeng.
Application of internet of things in smart grid power transmission. In
INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications. IEEE Societies, volume 2, pages 1293–
1303. IEEE, 2003.



18 Towards efficient deployment in Internet of Robotic Things

[22] Riedmiller Martin. Advanced supervised learning in multi-layer percep-
tronsfrom backpropagation to adaptive learning algorithms. Computer
Standards & Interfaces, 16(3):265–278, 1994.

[23] Sabattini Lorenzo, Secchi Cristian, Chopra Nikhil, and Gasparri An-
drea. Distributed control of multirobot systems with global connectivity
maintenance. Robotics, IEEE Transactions on, 29(5):1326–1332, 2013.

[24] Stump Ethan, Jadbabaie Ali, and Kumar Vijay. Connectivity manage-
ment in mobile robot teams. In Robotics and Automation, 2008. ICRA
2008. IEEE International Conference on, pages 1525–1530. IEEE, 2008.

[25] Wang Guiling, Cao Guohong, and La Porta Thomas F. Movement-
assisted sensor deployment. IEEE Transactions on Mobile Computing,
5(6):640–652, 2006.

[26] Yoon Seokhoon, Soysal Onur, Demirbas Murat, and Qiao Chunming.
Coordinated locomotion and monitoring using autonomous mobile sen-
sor nodes. IEEE Transactions on Parallel and Distributed Systems, 22
(10):1742–1756, 2011.

[27] Zou Yao and Chakrabarty Krishnendu. Sensor deployment and target
localization based on virtual forces. In INFOCOM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications.
IEEE Societies, volume 2, pages 1293–1303. IEEE, 2003.


