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This paper reviews different statistical methods dedicated to the post-processing
of Numerical Weather Predictions and Ensemble Forecast. We focus on the
application of the post-processing to problems linked to the production of
electricity by eolian devices. The basic idea is to give a concise panorama of
the methods commonly used nowadays. We pay a particular attention to the
mathematics involved in the methods. We do not compare the methods and
do not provide some preferences.
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1 Introduction

Problematic. The renewable energy generation providers use various mathematical tools
to manage operations on the spot (daily and intraday) electricity market[1, 9, 23]. Such
tools must take into account the uncertainty of the future hourly production rates of re-
newable energy generation devices with an horizon of approximately 48 hours. For that
purpose, the quantification of the uncertainty in weather predictions has to be solidly
managed. The required forecast horizon for the spot market is called short-term in mete-
orology. For such an horizon, the future climatic conditions can be furnished by Numerical
Weather Predictions and Ensemble Forecast [7] issued by meteorological centers. Both
of these methods are mainly based on physic. Now other methods can be used to obtain
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short-term weather forecasts such as time series trained on historical data [5] or neural
networks [33]. These last two type of methods are statistical and rely on historical data.
Hence, pure statistical methods has to be actualized regularly compared to Numerical
Weather Predictions. Neural Networks had proved to be very satisfying since it perform
online correction of itself. Inclusion of physical concerns can be performed in statistical
methods. They often provide improvement and reduce the necessity of actualization. As
explained in [7], it is very difficult to determine which methods are the most effective and
must be preferred. Here we decide to only deal with numerical weather predictions and
Ensemble Forecast.
A Numerical Weather Prediction is a scenario computed with a physical model. It

contains forecast values of different weather variables at some time steps whose order is
from minutes to few hours. This scenario is purely deterministic and it is not rare that it
is completely wrong. A common manifestation of this fact is the lack of trust some people
has on weather forecast given by news channel on television. The technique of Ensemble
Forecast tries to render the variability of numerical weather predictions by producing a set
of different possible scenarios using methods numerical weather predictions. Nevertheless,
having different scenarios does not really measure the uncertainty and surely does not pro-
vides a clear quantification like a cumulative distribution function or a probability density
function do it. Hence, numerical weather predictions and Ensemble Forecast cannot be
incorporated directly into useful mathematical tools for operational management such as
optimal stochastic control problems. This means that numerical weather predictions and
Ensemble Forecast has to be post-processed.

Content. In this survey, we present a few suitable methods for the post-processing of
Numerical Weather Predictions and Ensemble Forecast with the aim of solving problems
linked to the generation of electricity using eolian devices. Some of them use simple
Numerical Weather Predictions while others use Ensemble Forecast which are an im-
provement of Numerical Weather Predictions. However all the presented methods rely
on the same fundamental idea which is to use the forecasts as hints. In other words,
the methods infer statistical quantities or functionals of the conditional distribution of a
weather variable of interest X knowing some forecasts F = (F1, . . . , FN) coming from an
Ensemble Forecast containing N scenarios or from N weather variables correlated to the
one of interest in the case of simple Numerical Weather Predictions. Among the meth-
ods, a few directly produces results from an Ensemble Forecast while most of them use
historical data containing couples of forecasts and realizations. For pretty clear reasons,
the methods for the post-processing of Numerical Weather Predictions are only of this
last type.
Some the methods presented in this survey were not designed for weather variables

directly linked to eolian devices. Since we decide to present the original article which
introduce a method, it explain the presence of estimation of statistical quantities or func-
tionals for weather variables such as sea level or temperature in spite of wind speed or wind
direction. However, we provides references of the applications or modifications of these
methods to the case of wind. At last but not least, we assume weather variables as being
in one dimension all along this survey. The extension of some methods to weather vari-
ables in high dimension would misleadingly appeared to be very straightforward. Hence,
we invite the reader to be very careful.
Two distinctive parts compose this survey. The first one exposed in §2 can be read

independently. It gives a small account on models of numerical weather predictions and
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point out some sources of uncertainty which are encountered in these model. It also
present some basic facts about Ensemble Forecast. Precisely, it details the idea behind
this method and explain the rendering of the uncertainty of numerical weather predictions
by Ensemble Forecasts. In §3, we give defined some scoring rules for the assessment of
statistical methods which are used in the sequel to measure the performances of the re-
viewed statistical methods. The second part is given in §4, §5 and §6. Precisely, we review
methods for the computation of quantiles and confidence intervals and the estimation of
cumulative distribution functions and probability density functions. We principally detail
the mathematical part of these methods and the rationales. We make few comments on
the performances of the methods, but we do not enter into details since a large number
of articles such as [36, 38] provide benchmarks and comparisons.

2 Numerical Weather Predictions and Ensemble

In various fields of physics such as orbital mechanics, the future state of a system is
completely determined by the present state of the system. The evolution of the system
is completely governed by causal relationships, that is the laws of physics. This is the
path of determinism. In meteorology, it is globally admitted that a fully deterministic
method fails to predict future states of the atmosphere. For instance, it is often the case
that weather predictions performed are not realized or even that some events cannot be
predicted. In this section, we propose to provide some rationales behind the failure of
determinism and to present a commonly used workaround solution.

Uncertainty in Numerical Weather Predictions. As we already said above, Numerical
Weather Predictions are forecast values of different weather variables at some time steps
whose order is from minutes to few hours and whose sum is usually around 48 hours. These
forecasts are technically obtained using a numerical model which solves in silico a system
of N differential equations coming from a spatial discretization of the laws governing the
behavior of the atmosphere [20]. Such a numerical model is constructed as follows. The
physical laws representing the dynamic of the atmosphere [18] which are

• the conservation of momentum,

• the conservation of mass,

• the equation of state for ideal gases,

• the conservation of energy,

• the conservation equation for water mass.

are combined into a physical model depicting a certain interpretation of the behavior
of the atmosphere. A filtering approximations [18] is then performed to allow for the
discretization process. The current approximation in use is mainly the hydrostatic one.
It has progressively replaced the quasi-geostrophic approximation [18, 21]. Once these
two steps are performed, a mathematical model of the dynamic of the atmosphere is
obtained. In order to be solved in silico, the mathematical model is transformed into
a numerical model. This step basically consist in choosing a set of numerical methods
such as Finite Element or Finite Difference and to set consistent boundary conditions
[18]. These choices are usually made depending on the available computing resources,
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the desired computational time, etc... On balance, Numerical Weather Predictions comes
from the derivation of three nested models, each of which resulting from a sequence of
choices whose validity can always be impeached to some extent. In other words, the
capability of the numerical model to truthfully render the dynamic of the atmosphere
is actually completely uncertain. Moreover, truncation errors and numerical artefacts
intrinsic to the algorithms within the numerical methods has to be added.
Once a numerical model has been derived, then it has to be initialized in order to

obtain Numerical Weather Predictions In few words, some initial conditions derived from
an estimation of the present state of the atmosphere has to be plugged. The estimation
procedure must be performed very carefully since the system of differential equations
involved in the mathematical model is very chaotic and thus is the numerical model
too. For instance, very different results can be obtained from a numerical model while
it is simply initialized with multiple rounded estimates of the same initial conditions
[22]. In practice, meteorological centers compute the initial conditions using statistical
methods such as Kalman filtering on a combination of observations and very short-term
forecast also called first guess [18]. Such a process is usually named data assimilation
in the literature. It follows easily from the description above that the approximated
initial conditions are subject to uncertainty coming from the errors in the measurement
of observations and the error in the numerical model which is here used to provide the
first guess. The iterative use of very short-term forecast can even be seen as the initiator
of a particular propagation of the uncertainty through a sort of a loop [18, Fig. 5.1.2].
The uncertain initial conditions coupled with the amplification property of the numerical
model are actually the most important source of uncertainty in the field of Numerical
Weather Predictions [20].

Ensemble Forecast and Uncertainty Quantification. Monte Carlo methods are usu-
ally very practical to solve sets of differential equations with uncertain initial conditions.
In meteorology, this approach is unfeasible. In fact, the number D of degrees of freedom of
the numerical models used is rather too high (D ≈ 108−106) [20]. Besides, the probability
density function which is used to reflect the uncertainties in the initial conditions and to
initialize the Monte Carlo methods is itself uncertain. It also has to be approximated as
we are dealing with a problem possessing a high number of degrees of freedom.
Ensemble forecast was designed as a workaround solution in order to replace Monte

Carlo methods. It recycles the idea of using random initial conditions. In a nutshell, a
numerical model used to provide Numerical Weather Predictions is run several times using
small variations of initial conditions obtained through the procedure of data assimilation.
The computation of such small variations is performed using deterministic methods [6,
20]. Conceptually, the small variations represent the samples of the initial probability
density which can not be clearly determined. Each run thus provides samples of each
of the different weather variables at some time steps for a certain time lapse. Ensemble
forecast can also deal with the uncertainty coming from choices performed in the physical,
mathematical and numerical modeling. In fact, small variations can be plugged into
different models [21]. On average, N ≈ 20 to 50 ensemble members are produced due to
the computational cost.
An Ensemble Forecast provides raw data which accounts for the uncertainty in the fu-

ture weather condition. Hence, functionals representing the repartition of the uncertainty
such as a cumulative or a probability density function has to be recovered. As multiple
outputs from a numerical model, the data produced by an Ensemble Forecast are simply
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values that can be possibly taken by a weather variable at regularly spaced consecutive
times for the next 24 or 48 hours. These data are usually separated into Ensemble mem-
bers, that is a sequence of values indexed by the time or a path coming from a particular
run for each variable. Actually, the most common practice is to infer functionals of the
marginal distribution of a weather variable (distribution at a given time step), that is to
manipulate probability distributions on Rd where d ∈ N. Rarely, the law of the whole path
are examined. In other word, statistical methods dealing with probability distribution on
some space of functions or sequences are not really in the actual trend. Among the meth-
ods for the inference of marginal distributions, some use only the predicted paths of the
variable of interest while others add the paths from other weather variables to account
for potential correlation. However, almost all of them rely on the same idea of using the
paths of Ensemble Forecast as predictors of weather variables. Basically, the common
tactic is to infer the conditional marginal distribution of the weather variables knowing
the samples coming from Ensemble Forecast. Every methods presented below used this
tactic. As an illustration of this principle, the method detailed in §6 all aims at estimating
the conditional density f(x|F) of X knowing the N Ensemble members (Fj)1≤j≤N .

3 Measures of Performance.

In this section, we define the Rank-histogram which is tools designed to examine the
qualities of an Ensemble Forecast. Indeed, even with the most advanced post-processing,
the quantification of uncertainty can not be well done from an Ensemble Forecast if it is
utterly biased or under-dispersive [14]. Then we provide the definition of the two most
used scoring rules for the assessment of statistical post-processing. We do not go into
detail. Some references are provided for more informations and interpretations of these
two scoring rules.

Rank-Based Histogram. In [15], the author define Rank-Histograms and use it as
a tool in order to assess the presence of some required probabilistic properties in an
Ensemble Forecast. Rank-Histograms are very easy to derive from the data. Let N be
the number of members of an Ensemble Forecast and (Fj, Rj)1≤j≤M be M historical pairs
of forecast/realization where, for each j = 1, . . . ,M , Fj = (F1, . . . , Fn) is the vector
formed with the Ensemble members. For each j = 1, . . . ,M , incorporate Rj to the vector
Rj to form a new vector F̂

j
of dimension N + 1. Then sort the elements of F̂

j
in the

ascending order and capture the rank of Rj. Repeat the procedure M times and form
histogram using the relative frequency of apparition of each rank. According to [15], the
closest the Histogram is to the one of a uniformly distributed random variable, the better
the Ensemble Forecast is. Indeed, a rather high under-dispersitivity or a too large bias
would directly overcharge some ranks/beans.

The Brier Score. For binary variables, the Brier Score (BS) is a practical equivalent of
the squared errors [37]. It is defined as

BS =
M∑
j=1

(pj − oj)2

where, for each j = 1, . . . ,M , pj is the forecast probability of a boolean event whose
realizations are oj. In the literature, this score is sometimes called the half-Brier score
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[37] by some authors. The original Brier score together with an extension to categorical
variables is given in [12].
The Brier Score is the most common score in use to measure the accuracy of the

estimation of the quantiles of a predictive distribution. Basically, let q be the estimation
of the θ-quantile qθ of a variable X where θ ∈ [0, 1] using the method M , then the Brier
score of M is

BSM =
M∑
j=1

(p− 1(RJ ≤ qθ))
2

where RJ are observations of X. The lesser the Brier score of M is, the better M is.

The Continuous Ranked Probability Score. The Continuous Ranked Probability
Score (CRPS) is defined as

CRPS(F,R) = −
∫

R
(F (y)− 1(y ≥ R))2 dy

where F is the cumulative probability function of the distribution used to forecast and R
is a realisation [12]. By looking at the definition of BSM above, one clearly see that the
CRPS correspond to the integral of the Brier score extended to continuous random vari-
able. Due to the difficulty to obtain a closed form for the CRPS, it is mostly numerically
computed using the formula

CRPS(F,R) =
1

2
E[|X −X ′|]− E[|X −R|]

where X and X ′ are independent random variables distributed according to the predictive
distribution. Indeed, a numerical approximation using a Monte Carlo method can easily
be obtain with such a formula.
The Continuous Ranked Probability Score offers the advantage of generalizing the abso-

lute error [12]. Hence, the average of the CRPS of different pairs of forecasts/observations
can be compared to the absolute error of a deterministic forecast. For more details on
this last point, we refer to [16] which provides a clear presentation of the CRPS and its
links with the Brier score and the absolute error.

4 Computation of Quantiles and Confident Intervals.

Let X be a random variable. In the context of the post-processing of Numerical Weather
Predictions or Ensemble Forecast, X is either a weather variable subject to uncertainty
or the error between a forecast and a realization considered as a noise. The θ-quantiles of
the distribution of X where θ ∈ [0, 1] is defined as the value x such that

P{X ≤ x} = θ.

Quantile forecasts of weather variables related to wind are used in various operational
problems on the electricity market such as the quantification of the cost of a suboptimal
decision [24]. In fact, optimal decision always relates on quantiles with a given coverage
rate [11]. On the other side, quantiles of the error between forecasts and observations help
to provide confidence intervals around some predicted values and thus assess the reliability
of the forecast weather condition. Low and stable wind speed are very important for
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maintenance of the production devices, while very high wind speed has to be taken into
account since the devices stop in order not to break.
Numerous methods were developed to obtain quantile forecasts. Here we decide to

focus on direct methods, that is those who do not involve cumulative or probability
density functions. In fact, some weather variables cannot be handled using standard
parametric distributions. For example, the distribution of the error in the case of the
wind power is not Gaussian [25]. Two very different works are detailed here, one on
classical quantiles, the other on confidence intervals. Each of these work presents minimal
assumptions. Direct applications are also given in the paper where they were introduced.
At last, both of these methods deal with wind power which can be naturally considered
has a weather variable since the production rate of an eolian device mainly relates wind
speed and direction, temperature and humidity.

Quantiles Estimation using Local Regression. In [2], the author proposes to estimate
the θ-quantile qθ(F) of the wind power Ep produces by eolian devices knowing the numer-
ical weather predictions F = (F1, . . . , FK) of K weather variables which are relevant to
predict wind power and thus serve as predictors. The author decides to use the local linear
quantile regression [39] which approximate qθ(F) by a linear functional of the predictors
F ∈ RK , that is

qθ(F) = α0 + αT F,
where the regression parameters α0 ∈ R and α ∈ MKR, the space of square matrices of
size K, are the solutions of the minimization problem

arg min
(b0,b)

M∑
i=1

ρ(ep,i − (b0 + bT (Fi − F)))w

(
‖Fi − F‖2
hλ(F)

)
,

coming from an empirical version of

qθ(x) = argmin
a∈R

E[ρθ(Ep − a)|X = x]

using a local linear kernel weighted version of E[ρθ(Ep − a)|X = x] [30, 35]. Here Fi and
ep,i i = 1, . . . ,M are respectively M historical values of the predictors F and the wind
power Ep, ρθ and w are respectively the "check" function and the tricube weight function
given by

ρθ(u) =

{
uθ, u ≥ 0,

u(θ − 1), otherwise,
and w(u) =

{
(1− u3)3, u ∈ [0, 1],

0, otherwise,

‖ · ‖2 is the Euclidian norm and and hλ is the distance of F to λM -nearest predictor value
[30] where λ ∈ (0, 1] and λM ∈ N.
The above estimation procedure of θ-quantiles is implemented by the author using nu-

merical weather predictions given by Hirlam10. Numerical experiments are performed to
show the importance of the selection of predictors. However, the author does not provide a
comparison with an alternative method for the numerical computation of quantiles. Such
a work is actually performed in an other article by the same author [3] where the local
linear quantile regression is compared to a local Gaussian model and to the Nadaraya-
Watson estimator for cumulative distribution function. Overall, the benchmark does not
really discriminate any of the method. We can retain that the local linear quantile re-
gression is a serious direct non-parametric method compared to other two which required
the derivation of quantiles from the cumulative distribution function and has parametric
assumptions.
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Confident Intervals using Resampling. In [25], the authors propose a method to com-
pute confidence intervals of wind power forecasts. One of the strength of this method is
the possibility to perform On-line update of the confidence intervals. This property is of
very high value for decision problems [24]. In this method, numerical weather predictions
from an Ensemble Forecast are transformed into wind power forecasts which serve as pre-
dictors and can be considered as a set of scenario for wind power. This transformation
is performed by plugging the relevant weather variables into a power curve of an eolian
devices. To compute the confidence intervals, the authors estimate the quantiles of the
distribution of the prediction errors

et+k,t = Rt+k − Ft+k,t

where Ft+k,t is the wind power forecast for the look-ahead time issued at time t and Rt+k

is the measured wind power at time t + k. The first step of the estimation is to collect
the predictions errors made by the model in the past using a sliding windows defined on
the index t. The resulting stack of errors is then sorted using fuzzy sets. In a nutshell,
the range of values taken by the variable of interest is divided into sets and the errors
coming from the previous forecast are kept only if the forecasts belong to the same set as
the current one. Two types of sets are defined here. The first concerns the wind speed
whose range is divided into two zones depending on the cut-off level, that is the threshold
value of wind power where the eolian device stops in order no to break. The second one
concerns the range of the wind power which is divided into three zones in order to capture
the amplification of the error caused by the power curve. The author choose a particular
slicing detailed in [25, pp. 122]. The second step of the method is a resampling procedure
which must be performed multiple times. Basically, N values in the stack of errors are
drawn randomly with replacement where N is the size of the stack. Then the values
are sorted in the ascending order and the λ percent lowest and (1 − λ) percent biggest
values where λ represents the percentiles of interest are picked and recorded. Once the
resampling step is performed a large number of times, the percentiles are simply given by
the averages of the respectively lowest and biggest recorded values.
The method described above is tested by the authors on data coming from Irish wind

farms. They provide measures of confidence on the computed intervals [25, Table II, pp.
130] which actually speak from themselves and provide a clear assessment of the method.
In [26], they more deeply investigate the performance of the method. More precisely,
they construct a measuring tool for the assessment of methods which aims at computing
quantile forecasts and confidence intervals. They apply it to the present method. Now
in [25], the authors also construct a method to narrow their confidence intervals. They
introduce a so-called meteo-risk index which measures the spread of the forecasts. They
use it to define a scale factor which allows to reduce confidence intervals in case of stable
weather conditions. Overall, it is the great simplicity of this method which is very seducing
compared the previous one we presented. We do no perform a benchmark to compared
the methods, but it is clearly an interesting idea for a future work.

5 Cumulative Distribution Functions and Thresholds

The estimation of cumulative distribution functions is an essential step to numerically
solve decision problem such as the Two-Price Market [24]. This functional is also a corner-
stone to evaluate the probability of given threshold values, that is P{X ≤ x}, P{X > x}
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or P{x1 ≤ X ≤ x2} where X denotes a weather variable. Two very interesting threshold
for the electricity production is the minimum required wind speed for an eolian device
to work and the maximum wind speed before the cut-off of the device. Moreover, the
cumulative distribution function can be used to compute the quantiles through inversion.
This can be performed numerically with classical algorithm such as the Newton-Raphson
methods. We would not present examples of such a process nor assessing any performance
of this method versus the direct computation of quantiles.
Here we propose to review two different methods for the computation of cumulative

distribution functions. The first one is deterministic while the second one is statistical.
Both of them rely on very classical technology. Albeit, the choice of certain parameters or
forms of the involved functional was performed carefully by the authors in order to deal
with the characteristics of weather variables.

Direct Model Output. We present here one of the first method historically introduced
to post-process Ensemble Forecast. It is thus worth to take a look at it. Moreover,
it is a very simple method which can be implemented directly after the reading of this
paragraph. The bad point is that this method is based on a plotting formula which is
controversial since the validity and the reliability is not clearly assess mathematically.
Direct model output tries to estimate the quantities P{X ≤ x} using a formula called

the Tukey Plotting Position [37, (3.18) pp. 40 and Table 3.2 pp. 41]. The advantage of
this formula which derive from the classical democratic voting method is that it correct
deficiencies such as the assignment of zero probability to very small quantiles. It arises,
for example, when the classical Gumbel formula is used [37, pp. 285].
Let us now explain the Direct model output. The N Ensemble members are regrouped

with the value of the x-quantile which is here estimated empirically from the Ensemble
members using any classical estimators. Then P{X ≤ x} is simply estimated using the
formula

P{X ≤ x} =
Rank(x)− 1

3

(N + 1) + 1
3

where Rank(x) is the position of x in the context of the Ensemble members.
The problem with such an estimator is that it does not correct any of the issues such

as under dispersion. It basically leads to inaccurate and overconfident results without a
very large ensemble [37].

Estimation using Logistic Regression. Among the first methods for the estimation
of P{X ≤ x} where X denotes as usual a weather variable, regression-based methods
were very popular [37]. One of the most successful of such methods is certainly Logistic
Regression [38]. Basically, when a weather variableX is measured, we either have {X ≤ x}
or {X > x}. In other words, we have the realization of a Bernoulli law. The estimation
of P{X ≤ x} thus simply become an approximation of the parameter p of this Bernoulli
law. The idea behind the Logistic Regression is to estimate the logit of p with a linear
functional of the predictors F = (F1, . . . , FN) which are the values of the N Ensemble
members. It follows

Logit(p) = log

(
p

1− p

)
= b0 + b1F1 + · · ·+ bNFN

where the bi’s are the regression’s parameters to estimates and the Fi’s are the aforemen-
tioned predictors. In practice, the estimation of the bi’s is performed using the maximum
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likelihood estimator with

Λ(F1, . . . , FN) =
M∏
i=1

1(Ri ≤ q) exp(b0 + b1F
i
1 + · · ·+ bNF

i
N) + (1− 1(Ri ≤ q))

1 + exp(b0 + b1F i
1 + · · ·+ bNF i

N)

where the (Ri)1≤i≤M are observed outcomes of X and (F i
j )1≤i≤M, 1≤j≤N are historical

Ensemble members. Here Λ(b1, . . . , bN) is the joint likelihood function for the multiple
occurrence of the Bernoulli experiments with p is replaced using the Logit formula by

exp(b0 + b1F1 + · · ·+ bNFN)

1 + exp(b0 + b1F1 + · · ·+ bNFN)

In [38], the authors propose a two-predictors logistic regression applied to daily temper-
ature, medium-range temperature and precipitation forecasts. They choose to take the
Ensemble’s mean F̄ and the Ensemble standard deviation S̄ as predictors. With such a
setting,

P{X ≤ x} =
exp(α0(x) + α1(x)F̄ + α2(x)F̄ S̄)

1 + exp(α0(x) + α1(x)F̄ + α2(x)F̄ S̄)

where α0(x), α1(x) and α2(x) are the parameters that must be estimated for each desired
x. The authors called this method LR(2) and compared it to a logistic regression with a
single predictor as well as other methods such as Nonhomogeneous Gaussian Regression
[13]. However, we do not know the algorithm used to performed the Maximum Likelihood
Estimation. The experiments can therefore not be reproduce exactly. The comparison
shows that LR(2) performed quite well particularly in terms of rank probability score
[38, Fig. 1 and 2] and Brier score [38, Fig. 3]. It also points out that LR(2) is a
serious challenger to the Nonhomogeneous Gaussian Regression. Overall, the authors
acknowledge that their method must be tested on the different weather variables before
drawing completely reliable conclusions.
For the electricity market, the method we presented here is very relevant but actually

not for direct weather variables. In fact, it was assessed to be a very powerful method
for two categorical variables involved in the analysis of the impact of renewable energy
generation on electricity markets and which depends on weather forecasts [24].

6 Estimations of Probability Density Functions

Probability density functions are certainly the most well-known probabilistic functionals.
It provides the complete repartition of the mass of a random variable and provide thus
more information than quantiles or cumulative distribution functions. Moreover, it has
a strong physical meaning. Indeed, as we explain above when we describe the models of
numerical weather prediction, a probability density function is the natural output of a
Monte Carlo methods designed to numerically solve a model.
For the electricity marker, the probability density functions are of major interest since

they are involved in the design of optimal offering strategies or in the optimal quantifica-
tion of reserve requirements [24]. The problem of the two-price market can also be solved
using probability density functions and the problem of the one-price market requires it.
Here we present a few methods of statistical post-processing of an Ensemble Forecast

which provide a probability density function as an output.
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Gaussian Kernel Dressing. In [38], the authors compare their method to compute
cumulative distribution function to the integration of a density estimated using a kernel
estimator combined with Gaussian ensemble dressing [29, 34]. The latter method is often
called Gaussian kernel dressing [4]. In few words, this method estimate the conditional
density fσ(x|F) of E[X|F] where X is a weather variable and F = (F1, . . . , FN) is an
Ensemble forecast of X with N members using [30, Chap. 2.4]

fσ(x|F) :=
1

σN

N∑
i=1

G

(
x− Fi
σ

)
where G denotes a Gaussian and σ is a bandwidth estimator determined by a method of
Gaussian ensemble dressing. The density fσ(v|X) is basically estimated by a sequence of
bumps, each of which is centered at Xi and has a length proportional to σ.
Originally, the methods of Gaussian ensemble dressing were designed to cheaply extend

the number of members in an Ensemble Forecast and also remove the bias/errors in the
members using historical pairs of forecasts-validations [29]. Here we examine the method
of Gaussian ensemble dressing developed in [34] and combined with kernel dressing in
[38]. In [34], the authors use the second moment to dress the Ensemble Forecast. This
choice is made to priorly treat the problem of underdispersivity of Ensemble Forecast.
It also overcomes some of the limitations of the dressing method developed in [29]. In a
nutshell, the authors assume each ensemble members to be of the form

Fi = F̄i + F ′i

where F̄i denotes the mean of X and F ′i follows the recentered distribution of V . Hence,
they consider that a dressed ensemble member has to be

Ψi = F̄i + F ′i + ε

where ε is Gaussian independent of (Fi)1≤i≤N . As a matter of fact, Ψ ∼ N (F̄ , σ) with a
σ which is computed using the second moment constraint. According to the computation
performed in appendix of [34] and aggregated in the formula (9a),

σ =
M∑
k=1

(F̄ k −Rk)
2 − (1 +

1

M
)
M∑
k=1

σk

where M denotes the number of pairs of available historical data belonging to the same
season, (Rk)1≤k≤M are the observed outcomes and F̄ k

1≤k≤M and σk1≤k≤M are respectively
the empirical means and variance of the historical Ensemble Forecasts.
Part of the experiments on this methods were already commented right above. The

weather variables use in those test are still daily temperature, medium-range temperature
and precipitation. In term of results, the Brier scores of the Gaussian kernel dressing is
given in [38, Fig. 6]. The most interesting part is certainly the good rank probability
scores on a short training period obtained by Gaussian kernel dressing [38, Table 1].
Overall, it appears to be a very appealing methods in the case of a lack of historical data.
A method based on Gaussian kernel dressing were also developed in [27] to forecast the

wind power using an Ensemble Forecast. The authors of this article model the variance of
the gaussian with a Logistic function. The two parameters of the function are assumed to
be the same for every kernels. For the estimation of the parameters, the authors build an
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adaptative estimation using a recursive maximum likehood estimation and the logit of the
parameters. The authors compare forecasts produced with their method to raw Ensemble
Forecast. Clearly, their Gaussian kernel dressing provide tighter and sharper forecast.
However, a comparison of their method to [38] would have been very interesting. Now
this work shows that Gaussian kernel dressing can be used on wind power with success.
This is not the case for the different methods to compute densities presented above.

The Screening Regression Procedure. The procedure of multiple linear regression
provides an estimate of a weather variableX by relating it to a set of N outputs F1, . . . , Fn
of a model of numerical weather predictions. As an equation,

X = a0 + a1F1 + · · ·+ aNFN ,

where the parameters a0, . . . , aN minimize the sum of the squares of the estimation errors
on the historical data, that is

(a0, . . . , aN) = arg min
(b0,...,bN )

M∑
j=1

(Rj − b0 + b1F
j
1 + · · ·+ bNF

j
N)2.

Here Rj
1≤j≤M and (F j

k )1≤j≤M, k=1,...,N represent the historical data of respectively the true
realization of X and the outputs F1, . . . , FN .
The main problem with multiple linear regression is the selection of the predictors.

Indeed, too few or to many of them can provide an estimation which performed poorly.
In [10], the authors choose a method of selection called the screening procedure. First, the
variable which is the most highly correlated to V is captured. Then, the others predictors
are selected iteratively regarding their contribution to the variance reduction, that is their
ability to minimize

1
n

∑M
j=1(R

j − R̄)2 − 1
n

∑M
j=1(R

j − F̄ j)2

1
n

∑M
j=1(R

j − R̄)2
(1)

where R̄ is the empirical mean of the true realizations Rj
1≤j≤M ofX and F̄j are the estimate

of X using the procedure of multiple linear regression with the predictors F1, . . . , FN and
the historical predictions F j

1 , . . . , F
j
N , j = 1, . . . ,M .

The multiple linear regression with the screening procedure was experimented in [10] on
various weather variables such as surface wind, maximum temperature or cloud amount.
The point of the tests is to prove the efficiency of the post-processing of numerical weather
predictions. For the probability of precipitation, the authors provides a comparison of the
Brier scores of their method versus basic forecasts at local station [10, Fig. 2]. On aver-
age, the multiple linear regression performed better. This fact is confirmed on maximum
temperature when the method is compared to the so-called Klein-Lewis [10, Fig. 4]. Fi-
nally, we present this method in order to provide one which deals with Numerical Weather
Predictions only, not Ensemble Forecast. In addition, the article which introduced this
method provide good guidance on the selection of variables for weather predictions.

Nonhomogeneous Regression Techniques. Nonhomogeneous Regression Methods has
received several attention as a method to post-process Ensemble Forecasts. Multiple vari-
ants of the basic concepts exposed in [13] and called EMOS were developed [19]. The
classical regression method where a weather variable X is approximated by

X = a+ b1F1 + · · ·+ bNFN + ε
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where ε is assumed to be Gaussian and F1, . . . , FN are the predictors, suggests to take has
predictive probability density function a Gaussian whose mean and variance respectively
equal the regression estimate and the mean of the square prediction errors. This is a basic
estimation by the maximum likelihood estimator of the regression coefficients. In [13],
the authors modify the above regression equation by assuming

Var(ε) = c+ dS2

where S is the empirical variance of the Ensemble Forecast and c and d has to be com-
puted. They also decide to replace the classical estimation of the coefficients a, b1, . . . , bN , c
and d by the maximum likelihood estimator. They choose to use take the parameters
a, b1, . . . , bN , c and d which minimize the CRPS which can be here computed analytically,
that is

(a, b1, . . . , bN , c, d) = arg min
(A,B1,...,BN ,C,D)

1

M

M∑
k=1

(C+DS2
k)

1
2

{
Zk[2Φ(Zk)− 1] + 2φ(Zk)−

1√
π

}
where

Zk =
Rk − (A+B1F

k
1 + · · ·+BNF

k
N)

(C +DS2
k)

1
2

.

Here Φ and φ respectively denote the cumulative distribution function and the probability
density function of a standard Gaussian, (F k, F k

1 , . . . , F
k
N , S

k), k = 1, ...,M stand for the
historical data of realizations, Ensemble members and empirical variance of the Ensemble
members. . The estimation of the parameters is performed numerically by the authors
using the Broyden–Fletcher–Goldfarb–Shanno algorithm which is implemented in the R
language.
The method is tested using the University of Washington ensemble over the Pacific

Northwest to forecast the sea level and the surface temperature. The basic scoring rules
such as the Brier score and the CRPS are used to assess the performance of the method.
The author also compare forecasts to raw ensemble, de-biased ensemble and climatolog-
ical forecasts. The regression method provided by the authors clearly outperformed the
climatological forecast. It more lightly beats the bias-corrected Ensemble Forecast [13,
Table 4]. Some comparisons with other statistical methods are given in [38] using the rank
probability score and the Brier score. In term of applications, this method was proven
to be very relevant to forecast low and high wind regime when the kernel is respectively
replaced by a truncated Gaussian kernel and a so-called GEV distribution [19]. Nonho-
mogeneous Regression can be easily combined with regime-switching. Hence, multiple
wind regimes can be thus treated with the right kernel. This is clearly a great strength
and thus a good encouragement to use this method on wind farm locate on places with
irregular wind regimes.

Estimation using Bayesian Model Averaging. In [28], the authors propose to estimate
the conditional density E[X|F] using a simplification of Bayesian model averaging. As
usual, X and F = (F1, . . . , FN) respectively denotes a weather variable and a vector of N
Ensemble members [17]. The method can be seen as an improved kernel dressing. Boiled
down to its essence, the idea is to estimate the conditional density f(x|F) as a mixture,
that is

f(v|F) =
N∑
k=1

wk gk(x|Fk)
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Here, for each k = 1, ...N , gk(x|Fk) is a conditional density which represents the informa-
tion provided by Fk and wk is a weight of the contribution of Fk. The weights w1, . . . , wn
can be understood as the probability that Fk is the member of the ensemble which pro-
vides the most accurate forecast. In classical Bayesian model averaging, wk is replaced by
P(gk(x|Fk)|XD) where XD represents the historical data, that is the posterior probability
of the estimation of X using the kernel gk(x|Fk). For the estimation of temperature and
sea level, the authors choose to take E[X|Fk] ∼ N (ak + bkFk, σ

2). They directly estimates
ak and bk where k = 1, . . . , N using linear regression with paired historical data of true
realizations and Ensemble Forecasts. It can be considered as a bias-correction process.
The parameter σ and the weight are, on the other side, estimated using the maximum
likelihood estimator and the same pairs of historical data. It has actually become usual to
replace classical Bayesian estimation procedures by the maximum likelihood estimator in
Bayesian model averaging to avoid expensive computations. In some instances, it provides
a justified large-sample approximation [8].
The authors performed various benchmarks of their method where the EM algorithm

is use to estimate the maximum likelihood. They compare their method to various raw
Ensemble Forecasts using different measurement tools such as the CRPS or the RMSE.
Overall, it is showed that the method performed very well [28, Table 4 to 6 and 8 to
12]. The authors also investigated the possibility to reduce the number of ensemble
members by disqualifying those with a poor weight [28, Table 7]. Due to its performance,
the present method was adapted to the prediction of wind speed [31]. In this article,
several modification were performed since the kernels are chosen to be Gamma distributed.
Different techniques of the estimation of the maximum likelihood were tried. However,
it appears that the different methods perform similarly [31, Figure 4]. Some benchmarks
which compared the method to basic Ensemble Forecast and climatology are also provided.
The result are similar [31, Table 2] to those obtained in [28].
Bayesian Model Averaging is actually one of the leading method for the post-processing

of Ensemble Forecast. It really takes into account the model uncertainty arising in En-
semble Forecast. However, several non-trivial improvements has to be performed in order
to used this method to treat problems linked to the electricity market [32].
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