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Theoretical analysis of a resonant quartz‑enhanced photoacoustic 

spectroscopy sensor

Guillaume Aoust1,2  · Raphael Levy1 · Myriam Raybaut1 · Antoine Godard1 · 

Jean‑Michel Melkonian1 · Michel Lefebvre1 

In 2002, Kosterev et  al. proposed to replace the stand-

ard microphone with a high-quality-factor resonator such 

as a commercial quartz tuning fork [4]. The latter sensing 

element is very small and cheap. Moreover, early measure-

ments showed a very promising potential, with a relatively 

good immunity to ambient noise. Similar to conventional 

PAS, this new configuration is referred as “quartz-enhanced 

photoacoustic spectroscopy” (QEPAS) when a bare quartz 

tuning fork is used, and “resonant QEPAS” if elements 

are added to benefit from an acoustic resonance. Usually, 

the acoustic resonator consists of hollow tubes, and the 

tuning fork is placed at one of the openings. These tubes 

can greatly enhance the signal to noise ratio, up to a fac-

tor of 30 in the on-beam configuration [5–7]. We recall in 

Fig.  2 some of the used configurations. For more details, 

the reader should report to a recent review of the technique 

available in [8].

In any case, the technique has been mainly experimen-

tally investigated so far, and very little analytical theoretical 

investigation has been provided. Indeed, none of the pre-

vious models developed for conventional PAS is valid. It 

is also worthwhile to note that tuning forks have also been 

used in a very similar setup called Resonant OptoThermoA-

coustic DEtection (ROTADE) [9]. Instead of the acoustic 

waves generated by the photoacoustic effect, ROTADE 

focuses on the heat diffusion thermal waves induced by the 

absorbed radiation. However, ROTADE modelling cannot 

be applied to QEPAS since the two techniques rely on a 

very different physics. The former deals with heat propaga-

tion and constraints withing the tuning fork [10] while the 

latter, as we will see in the following, consists mainly of a 

vibroacoustic problem.

A first analytical model for QEPAS has been devel-

oped by Petra et al. in the case of a bare tuning fork [11]. 

Neglecting the influence of the mechanical resonator on 

Abstract In this paper, we report the first analytical 

model for quartz-enhanced photoacoustic spectroscopy in 

combination with an acoustic resonator. A generalized fun-

damental equation is proposed to model the photoacoustic 

effect, taking into account the coupling between the tuning 

fork and the surrounding fluid. The analytical signal-to-

noise ratio is derived, yielding a direct physical insight with 

respect to the system design. Experimental behaviors are 

very well reproduced, and numerical finite elements meth-

ods are implemented to successfully confirm the relevance 

of our approach. We also provide a detailed explanation of 

the coupling dynamics between the quartz tuning fork and 

the acoustically resonant tube.

1 Introduction

Photoacoustic spectroscopy (PAS) is one of the most sen-

sitive techniques for trace gas measurements. It addresses 

a wide range of demanding applications such as environ-

mental or industrial monitoring, pollution control or medi-

cal breath analysis [1, 2]. For decades, conventional PAS 

has been employed by combining three elements: a laser 

source, an acoustic cavity and a standard microphone, as 

depicted in Fig. 1. It is now well understood and accurate 

analytical theoretical descriptions have been developed [3]. 

If the acoustic cavity is operated at one of its resonance fre-

quencies, the PAS technique is qualified as resonant.
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the pressure field created by the photoacoustic effect, 

their results reproduce well the variation of the signal 

as a function of the laser position between the prongs. 

The calculated signal-to-noise ratio shows reasonable 

agreement with experiments. However, a factor of two 

between theory and experiment is still unexplained. Fur-

thermore, their model does not take into account any pos-

sible additional acoustic resonator nearby; the modeling 

of the most sensitive QEPAS experiments thus remains 

impossible.

Fig. 1  Principle of conven-

tional photoacoustic spec-

trometry (conventional PAS). 

The molecular mix is usually 

flowing through a cell, with a 

microphone fixed on its walls. 

When the modulation frequency 

matches an eigenfrequency 

of the cell, the technique is 

referred as resonant conven-

tional PAS
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Fig. 2  Schematic of exist-

ing configurations of resonant 

QEPAS. The tuning fork is 

positioned close to an opening 

of the acoustic resonant cavities, 

which are here in the form of 

hollow tubes
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Besides, an additional physical phenomenon reported 

in the literature cannot be described by this first model. 

Indeed, experiments have shown that an anti-resonance 

phenomenon occurs for specific acoustic cavity geometries, 

leading to dramatic modifications of the tuning forks reso-

nance features [5, 12]. It is a clear indication that a vibro-

acoustic interaction does occur in this case, and thus the 

generation of the acoustic field should not be considered 

as independent from the mechanical resonator. In this con-

text, an analytical treatment has been proposed to investi-

gate the acoustic resonator optimum dimensions [13], but 

this model neglects the vibro-acoustic coupling and it only 

gives the influence of the acoustic quality factor on the 

QEPAS signal.

An analytical solution to the complete problem is 

tricky, because it leads to a system of coupled equations. 

Moreover, it involves multiphysics phenomena which are 

difficult to handle simultaneously. For these reasons, mul-

tiphysics modeling of resonant QEPAS experiments has 

only been carried out by use of numerical simulations so 

far [14–17]. For example, Cao et  al. numerically inves-

tigated the influence of the length and inner diameter 

of two acoustic tubes used in an on-beam configuration 

[16]. Their result shows complex behaviors for which the 

influence of each parameter involved in the setup seems 

hard to determine.

In this article, we develop an original analytical model 

for resonant QEPAS taking into account the acoustic 

resonator and its coupling with the mechanical resonator. 

First, we formalize a simplified vibroacoustic problem 

using a new set of assumptions, hence leading to a sin-

gle equation generalizing the known fundamental equa-

tion for photoacoustics. We then compare the obtained 

analytical results with numerical simulations as well as 

laboratory experiments.

2  Analytical description of resonant QEPAS

Most of the time, a resonant QEPAS experiment uses two 

acoustic tubes and a quartz tuning fork, in an on-beam 

configuration, as detailed in Fig. 3. For the sake of sim-

plicity, our study will focus on this practical case, even if 

our results can be generalized to any acoustic configura-

tion and any mechanical resonator.

Fig. 3  Schematic of an on-beam configuration of QEPAS. The tun-

ing fork is inserted in the middle of a hollow tube, which hosts an 

acoustic resonance. This acoustic resonance is excited by the pho-

toacoustic effect generated along the tube by the laser beam, which 

occurs if the laser source wavelength is in coincidence with an 

absorption feature of the gas molecule in the tube. The tuning fork 

is excited by the acoustic resonance acting on the tuning fork prongs
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2.1  Problem formulation

2.1.1  Definitions and notations

We will first assume that the laser beam is centered 

between the prongs. To formalize the situation, we intro-

duce the following notations in agreement with Fig. 3:

• e, l and L are, respectively, the prongs width, thick-

ness and length.

• g is the gap between the two prongs.

• �
p
 is the volumetric mass density of the prongs.

• Ŵ is the displacement of the tuning fork in the y direc-

tion.

• v is the speed of sound in the medium and �
f
 is the

fluid volumetric mass density.

The origin of the coordinate system is chosen such that 

the inner surface of the prongs is located at y = ±g∕2, 

−l∕2 < z < l∕2 and 0 < x < L.

During a QEPAS experiment, the tuning fork is excited 

close to one of its eigenmodes angular frequencies �
n

. The displacement of each prong in the y direction can 

then be modeled as a second- order low-pass filter [18]:

In Eq. (1), F
n
, K

n
, �

n
 and M

n
 are, respectively, the resona-

tor equivalent excitation force, stiffness, damping and 

mass. Function �
n
 is the nth normalized deformation of the 

prongs, and its expression can be found in any mechanical 

textbook (e.g. [19]). The equivalent coefficients are linked 

to the tuning fork actual geometric characteristics, and 

the equivalent excitation force is linked to the pressure P̂ 

exerted on the prongs surfaces: 

We also introduced in Eq. (2c) the quality factor of the 

bare tuning fork Q (the quality factor without any acous-

tic resonator nearby), which is typically of 10
4 for com-

mercially available quartz tuning forks vibrating in air 

on their fundamental mode of vibration. If necessary, an 

analytical expression can be found in the literature, as a 

function of the tuning fork geometry and the surrounding 

fluid [18, 20]. In particular, the latter articles show that 

(1)Ŵ(x,𝜔) = ŵ(𝜔)𝜙n(x) =
Fn

[

Kn + j𝜂n𝜔 − Mn𝜔
2
]𝜙n(x)

⎧
⎪⎪⎨⎪⎪⎩

Mn = 𝜌pel ∫ L

0
𝜙2

n
(x�)dx� (2a)

Kn = 𝜔2
n
Mn (2b)

𝜂n =
𝜔nMn

Q
(2c)

Fn = ∫ L

0
∫ l∕2

−l∕2

�
P̂
�

x�,
g

2
, z,𝜔n

�
− P̂

�
x�,

g

2
+ e, z,𝜔n

��
𝜙n(x

�)dzdx� (2d)

Q can be quantitatively predicted quite accurately with a 

fully analytical formula (typically within 10%).

2.1.2  QEPAS vibroacoustic problem formulation

Using the Fourier domain, we introduce the wavenumber 

k
v
= �∕v. It is known that the pressure field P̂ at position 

� in 3D space is the solution to the Helmholtz equation 

with boundary conditions imposed by the surfaces nearby 

[21]: 

The first Eq. (3a) is sometimes called the fundamen-

tal equation of photoacoustics [3] and is valid within the 

fluid. The volume flow density q̂(�,𝜔) is linked to the 

heat density Ĥ deposited in the gaz. In the absence of any 

additional source of sound, for example in the “classical” 

formulation of the photoacoustic effect [3], its expression 

is given as follows using the surrounding gas heat capac-

ity ratio �:

Equation (3b) is the boundary condition at the interface 

between the fluid and any solid, with �⃗n a vector normal 

to the surface of the solid. It represents the impact of any 

moving solid on the fluid pressure. The solid can either be 

the tuning fork or the acoustic resonator. It turns out that 

the right-hand term of the equation always vanishes except 

when the solid is moving along �⃗n. The latter condition only 

happens for the tuning fork prongs, and the gradient of the 

pressure is then linked to the prongs displacement Ŵ which 

we assumed to be in the �⃗y direction. The third Eq. (3c) is 

known as the Sommerfeld radiation condition and sets the 

boundary condition far from the resonator.

The vibroacoustic interaction is taken into account in 

this system, contrary to previous models [11]. The prongs 

movement Ŵ  is generated by the pressure field P̂, which 

in turn modifies the pressure field through the boundary 

condition (3b).

⎧
⎪⎨⎪⎩

∇2P̂(�,𝜔) + k2
v
P̂(�,𝜔) = −j𝜔𝜌fq̂(�,𝜔) (3a)�

��⃗∇P̂(�,𝜔)
�

. �⃗n =
�
𝜌f𝜔

2Ŵ(�,𝜔)�⃗y
�
. �⃗n (3b)

lim���→+∞ ���
�

𝜕

𝜕��� + jkv

�
P̂(�,𝜔) = 0 (3c)

(4)q̂(�,𝜔) =
𝛾 − 1

𝜌fv
2

Ĥ(�,𝜔)
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2.2  The resonant QEPAS fundamental equation

2.2.1  The acoustic source equivalence

We now use a slightly simpler formulation for this vibroa-

coustic problem. For that purpose, we replace the bound-

ary condition (3b) imposed by the tuning fork movement 

by an equivalent acoustic source, as shown in Fig. 4.

A tuning fork can indeed be modeled as an acoustic 

longitudinal quadrupole, hence we will use four y
0
 loca-

tions to describe its acoustic emission: y
0
= ±g∕2 and 

y
0
= ±(g∕2 + e) [22]. A new contribution for each point 

has to be added to the volume flow density q̂. More 

details can be found in our previous work related to the 

acoustic emission of high- quality resonators [20].

Before writing our final system, we define an extended 

normalized deformation function valid in all 3D space 

and denoted Φ
n
(x, y, z). The idea is to use the normalized 

deformation function �
n
 in the whole space. Its values 

are �
n
(x) on the inner and outer moving surfaces of the 

prongs, and zero elsewhere. In mathematical terms, we 

can use the indicator function � and � as the Dirac func-

tion to define it:

Adding the tuning fork movement described by Eq. (1) to 

the fluid problem set of equations (3a, 3b, 3c), we obtain 

the resonant QEPAS fundamental equation, where the 

boundary condition (3b) is replaced by the equivalent quad-

rupole acoustic source: 

Keeping the terms due to the acoustic emission of 

the mechanical resonator, we assume that the acoustic 

emission induced by the tuning fork movement cannot 

be neglected. It fundamentally differs from the previ-

ous analytical work of Petra et  al. [11], which assumes 

that the presence of the tuning fork does not affect the 

acoustic field generated by the photoacoustic effect. We 

hence obtain an analytical situation very close to that 

numerically obtained with finite element simulation soft-

ware, with the tuning fork acoustic re-radiation taken into 

account [15].

(5)Φn(x, y, z) = �n(x)�
(
|z| ≤ l

2

)
�(0 ≤ x ≤ L)�(y − y0)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

∇2P̂(x, y, z,𝜔) +k2
v
P̂(x, y, z,𝜔) = −j𝜔𝜌fq̂(x, y, z,𝜔) (6a)

q̂(x, y, z,𝜔) =
𝛾−1

𝜌fv
2
Ĥ(x, y, z,𝜔) + 2j𝜔ŵ(𝜔)

�
Φn(x,

g

2
+ e, z) − Φn(x,

g

2
, z)

�
(6b)

ŵ(𝜔) =
∫ L

0

�
∫ l∕2

−l∕2

�
P̂
�

x,
g

2
,z,𝜔n

�
−P̂

�
x,

g

2
+e,z,𝜔n

��
𝜙n(x)dz

�
dx

[Kn+j𝜂n𝜔−Mn𝜔
2]

(6c)

0 = lim���→+∞ ���
�

𝜕

𝜕��� + jkv

�
P̂(�,𝜔) (6d)

2.2.2  The resonant QEPAS solution

Since an analytical solution is difficult to find, we make 

here an additional assumption about the pressure field. We 

assume that the excitation frequency is close to the eigen-

frequency of one of the pressure eigenmodes in the absence 

of mechanical motion. These pressure eigenmodes and their 

corresponding eigenfrequencies can be obtained by solving 

the Helmholtz equation (6a) under the assumption q̂ = 0. 

The considered boundary conditions (3b) and (3c) remain 

unchanged. It can be noted here that numerical simulations 

are generally very well suited to obtain the pressure eigen-

modes. We can now write the pressure field as follows:

Similar to the work of Miklós et  al. for classical acoustic 

cavities, we introduce �
m
 the pressure eigen-angular fre-

quency as well as Qa, the quality factor, to take into account 

the losses of the acoustic system (without any tuning fork 

movement) [3].

Using Eq. (7) in system (6a, 6b, 6c, 6d), we obtain:

(7)P̂(�,𝜔) = A
m
(𝜔)P̂

m
(�)

(8)

Am(𝜔)
[

𝜔2

m
− 𝜔2 + j𝜔𝜔mQ−1

a

]

P̂m(x, y, z) = j𝜔(𝛾 − 1)Ĥ(x, y, z,𝜔)

+2𝜔2𝜌fv
2ŵ(𝜔)

[

Φn(x,
g

2
, z) − Φn(x,

g

2
+ e, z)

]

Tuning fork section

Acoustic equivalent

longitudinal quadrupole

,− ,

− +−+
= ( , )

a

b

Fig. 4  Acoustic equivalent of a tuning fork section oscillating in a 

fluid medium. The prongs movement can be acoustically replaced by 

volume flow densities q̂, located at the faces that are perpendicular to 

the direction of movement, hence forming a longitudinal quadrupole
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The heat density Ĥ(�,𝜔) can be easily expressed if the 

vibrational–translational characteristic time �
V−T

 of the 

absorbing gas satisfies 𝜔𝜏
V−T

<< 1, in the common case of 

a modulated laser intensity at a fixed wavelength:

In Eq. (9), �
G

 denotes the gas absorption per unit length at 

the laser wavelength, P
L
 the laser power and |u(r)|2 the nor-

malized intensity distribution (its integral over the entire 

cross section of the laser beam is normalized to unity). We 

define what is called the “normalized overlap integral” by 

the following formula:

This factor represents the overlap between the laser source 

and the acoustic eigenmode, normalized to its total length 

of interaction L
t
. Length L

t
 is the adjusted length of the 

acoustic cavity along the laser propagation direction, tak-

ing into account the “end corrections” [3]. Physically, the 

end corrections take into account the mismatch between 

the one-dimensional acoustic field inside the tubes and the 

three-dimensional field outside that is radiated by the open 

ends. The value V
cell

 is the total volume of the resonant cav-

ity. Denoting F
nm

 the modal force acting on the quartz reso-

nator, it can be expressed as

We can then introduce a new coefficient called “normalized 

vibroacoustic mode coupling integral”, denoted C
nm

, and 

defined as follows:

The two latter coefficients O
m
 and C

nm
 can be used to write 

the evolution of the amplitude of the pressure, by integrat-

ing Eq. (6a) over the cavity volume:

The pressure inside the cavity is still given by Eq. (7), and 

can be substituted in the displacement expression (Eq. 1). 

We finally obtain the motion of the tuning fork, solution to 

the resonant QEPAS problem:

(9)Ĥ(�,𝜔) = 𝛼
G

P
L
|u(r)|2

(10)O
m
=

1

L
t

∫ |u(r)|2P̂
∗
m
(r)dV

1

V
cell

∫ |
|
|
P̂

m
(r)

|
|
|

2

dV

(11)

Fnm = ∫
L

0
∫

l∕2

−l∕2

[

𝜙n(x)
(

P̂m(x, d, z) − P̂m(x, d + e, z)
)]

dxdz.

(12)C
nm

=

[
1

lL

|
|Fnm

|
|

]2

1

Vcell

∫ ||
|
P̂

m
(r)

||
|

2

dV

(13)Am(�) =
j�(� − 1)

[

Kn − Mn�
2 + j��n

]

LtOm�GPL
[

�2

m
− �2 + j��mQ−1

a

][

Kn − Mn�
2 + j��n

]

V
cell

− 2�2�
f
v2l2L2Cnm

In the case of a negligible normalized vibroacoustic mode 

coupling integral (C
nm

= 0), we retrieve naturally the same 

result for the pressure as Miklós et al. [3].

2.2.3  Signal to noise ratio

It is now well established that the ultimate noise source 

for a QEPAS experiment is the Brownian noise of the 

quartz resonator [23]. This noise is equivalent to a white 

equivalent force acting on the tuning fork in the bare QTF 

case, whose expression is given as follows:

where k
B
 is the Boltzmann constant, T the tuning fork tem-

perature and Δf  is the detection bandwidth. We assume that 

this modeling of noise is still valid in the resonant QEPAS 

case, under the condition that the quality factor used in �
n
 

coefficient (see Eq. 2c) is the one observed on the tuning 

fork behavior (which is potentially modified by the acous-

tic resonator because of the vibroacoustic coupling). The 

equivalent noise displacement of the tuning fork can hence 

be written as follows:

The signal to noise ratio can hence be simply obtained:

The signal generated by each prong is proportional to the 

displacement, according to the laws of piezoelectricity. 

The charges collected on each prongs by the electrodes are 

added constructively, and the signal generated by a tuning 

fork is hence doubled compared to that of a single prong. 

The two noises, however, only add in quadratic mean since 

they are uncorrelated. The two latter remarks explain the 

(14)Ŵ(x,𝜔) = ŵ(𝜔)𝜙n(x) =
Am(𝜔)Fnm

[

Kn − Mn𝜔
2 + j𝜔𝜂n

]𝜙n(x)

(15)Fb(�) =
√

4kBT�nΔf ,

(16)Ŵb(x,𝜔)(𝜔) =

√

4kBT𝜂nΔf
�

Kn − Mn𝜔
2 + j𝜔𝜂n

�𝜙n(x)

(17)SNR =
√

2

�
�
�
�
�

Ŵ

Ŵb

�
�
�
�
�
=
√

2

�
�
�
�
�
�

Am(𝜔)Fnm
√

4kBT𝜂nΔf

�
�
�
�
�
�

√

2 factor in Eq. (17), and is specific to the use of a tuning 

fork compared to a single prong or cantilever.
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3  Experiments on resonant QEPAS

In this section, we investigate the validity of our analyti-

cal model using a numerical simulation software as well as 

laboratory experiments. In particular, we study the influ-

ence of the acoustic tube length on the tuning fork behavior.

We consider an on-beam QEPAS setup with tuning 

fork dimensions measured as e = 0.6 mm, l = 0.34 mm, 

L = 3.75 mm and g = 0.31 mm. Our optical source is a 

commercial laser diode enabling a wavelength tuning 

range from 6487 to 6494 cm
−1. The height h of the beam 

between the prongs is located 0.6 mm below the top open-

ing (h = L − 0.6 mm).

We use a certified mixture of 2.7% CO
2
 in N

2
, and we 

add water vapor with 15% relative humidity. The presence 

of water allows a faster relaxation of carbon dioxide, and 

we assume that the relaxation rate �
V−T

 is negligible [24]. 

The density of the mixture is taken as �f = 1.2 kg m−3 while 

the sound velocity is v = 346 m s
−1. We consider the CO

2
 

absorption peak located at k
G
= 6490.05 cm−1, which dis-

plays an absorption per unit length of �
G
= 5 10−6 cm−1 

according to the HITRAN database [25].

We define the total quality factor Qt of a resonant 

QEPAS setup as the 3 dB bandwidth measured on its fre-

quency response. This definition is commonly used in 

actual experiments, because the assumed resonant behavior 

is that of a second-order linear system. This choice could, 

however, be questioned, because we showed that resonant 

QEPAS is closer to a fourth-order linear system because 

of the acoustic resonance (see Eq. 14). The resonance fre-

quency f
res

 is defined as the frequency maximizing the 

prongs displacement Ŵ. Since the displacement of the 

prongs is proportional to the electric signal generated by 

the tuning fork, any reasoning about the prongs displace-

ment is interchangeable with the signal produced by the 

tuning fork and detected in a QEPAS experiment.

3.1  Numerical experiments

We used the commercially available finite element simula-

tion software OOFELIE::Multiphysics© to obtain numeri-

cal results of our system behavior [26, 27]. We assume a 

typical laser beam radius at 1∕e
2 of w

L
= 50 μm, and we 

neglect diffraction causing the beam radius to change with 

propagation. The power of the laser is supposed to be sine 

modulated at the fundamental resonance frequency f
0
 of the 

tuning fork, with a realistic average power of P
L
= 17 mW. 

Neither fluid viscosity nor temperature effects are taken 

into account in this simulation. We choose, however, a 

quartz structural damping of Q = 10
4 to account for the 

actual damping acting on the tuning fork caused by gas 

viscosity.

We show in Fig. 5 a typical simulation using tubes with 

a length of L
mR

= 6.7 mm, an inner radius of R
I
= 0.46 

mm, an outer radius of R
O
= 0.64 mm and a distance of 

d
mR

= 20 μm from the tuning fork prongs. The latter nota-

tions have already been illustrated in Fig. 3. The excitation 

frequency is chosen close to the tuning fork fundamental 

eigenfrequency.

The simulation clearly confirms the resonant nature 

of the acoustic field. The presence of the acoustic eigen-

mode is almost exclusively limited to the inner volume of 

the tubes and the space between the two prongs. We can 

also see that the acoustic eigenmode has no dependence 

along the tube radius, which is consistent with the acous-

tic wavelength �
v
≈ 10.6 mm being much greater than the 

Fig. 5  Amplitude of the pressure field for two observation planes 

y = 0 (left) and x = h (right, seen from above the tuning fork), for 

a tube length of L
mR

= 6.7 mm and inner radius R
I
= 0.46 mm. The 

linear color scale is normalized, ranging from blue to red. An inde-

pendent color scale is also applied to the tuning fork to visualize the 

displacement
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tube inner radius R
I
. Keeping exactly the same tube posi-

tioning with respect to the tuning fork and only varying its 

length, we obtain the results shown in Fig. 6. For each tube 

length, a simulation is used to describe the resonance of 

the system, by sweeping the modulation frequency of the 

laser across the resonance (which is always close the tuning 

fork resonance frequency in the absence of acoustic tubes). 

Results are refined if the obtained curve is not sufficiently 

sampled. At the end of this process, we precisely know the 

resonance frequency of the system, the maximum displace-

ment of the prongs as well as the total quality factor of the 

system by measuring the 3 dB bandwidth.

The tuning fork behavior strongly depends on the tube’s 

length according to this simulation. The latter result is very 

similar to that obtained by Cao et al. [16], who used COM-

SOL multiphysics commercial software. The electrical 

signal generated by the tuning fork, which is proportional 

to the prongs displacements Ŵ reported in Fig.  6, pre-

sents what is called an antiresonance for a specific length 

(L
mR

= 4.3 mm in our case). This antiresonance is attrib-

uted to the exact superposition of the resonance frequencies 

of the tuning fork on the one hand and of the acoustic reso-

nant mode on the other hand.

The acoustic quality factor of the cavity Qa, represent-

ing the amount of losses of the acoustic resonant cavity, is 

only determined by the radiations at the tubes opening in 

this numerical model. Indeed, our simulation neglects vis-

cous and thermal effects that occur, even if these effects 

can have a major impact in an actual experiment [28]. We 

will discuss this point in further details in the experimental 

Sect. 3.3, but we stress here that the quality factor Qa com-

puted by the current simulation can hence vary with the 

length of the tubes. Its average value is found to be Qa = 30 

when the tube lengths vary from 2 to 7 mm, determined 

using a numerical simulation with a fully clamped tuning 

fork.

3.2  Analytical model prediction

3.2.1  Parameters adjustments

Before applying our results obtained in the theoretical 

Sect. 2, we need more information about the acoustic field. 

The previous results in Fig. 5 confirmed the resonant nature 

of the acoustic field, which is an important assumption we 

made in the analytical model. To compare the numerical 

results with our analytical expression, we need an expres-

sion of the acoustic distribution P̂
m
 to compute the two 

overlap factors O
m
 and C

nm
. It could be done using the 

numerical simulation results since the exact distribution is 

complex to describe analytically. We nevertheless choose 

to make additional assumptions preserving the physical 

insight to obtain an analytical expression.

We call the “resonant cavity” the set composed 

of the inner space between the prongs as well as the 

inner volume of the tubes. Its total length is hence 

L
t
= 2

(

L
mR

+ ΔL
mR

+ d
mR

+ l∕2
)

, and its volume is 

V
cell

= 2�R2

I
(Lt − l) + gLl. The quantity ΔL

mR
 is the 

“end correction”, and is generally approximated by 

ΔL
mR

≈ 0.6R
I
 for a tube termination opening in a semi-

infinite space [3]. We also assume that the amplitude of the 

pressure is negligible outside of the resonant cavity. The 

motion of the resonator is hence only due to the action of 

the acoustic eigenmode pressure forces on its inner sur-

faces. The distance between the two prongs g as well as the 

inner radius of the tubes R
I
 is very small compared to the 

acoustic wavelength (�
v
= 10.6 mm in our case), the reso-

nant cavity can hence be seen as a one-dimensional reso-

nator and the acoustic distribution does not depend on the 

y and x variables. In addition, the thickness l is also small 

compared to �
v
, and we will hence consider the pressure 

as a constant between the prongs. The Helmholtz equation 

(6a) now only depends on the z variable, and the solution 

can be written as follows:

In the previous expression, the acoustic angular eigenfre-

quency �
m
 considered is the one closest to �

n
, that is for 

m = 2 and reads:

In addition, we introduced in our formalism the quality fac-

tor Qa of the resonant cavity (Eq. 8). It is known that this 

value depends on the acoustic radiation losses of the cavity, 

as well as the viscosity and thermal properties of the fluid 

(18)P̂m(z) = sin

[
𝜔m

v

(
Lt

2
− |z|

)]

(19)�
2
= 2�

v

L
t

Fig. 6  Influence of the length L
mR

 of the acoustic tubes, obtained 

with the numerical simulation software OOFELIE. The inner 

diameter of the tubes is R
I
= 0.46  mm while the outer diameter is 

R
O
= 0.64 mm
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[29]. We will consider the same quality factor as the one 

computed with the previous numerical simulations, that is 

Qa = 30. Since we use the approximate expression (Eq. 18) 

for the pressure distribution, we allow an adjustment on the 

critical C
nm

 coefficient. We will decrease its original value 

of 5 10−3 (Eq. 12) down to 2 10
−4, a value chosen to match 

the overall quality factor drop observed in the numeri-

cal simulation. We remind that this parameter remains the 

same for any length L
mR

 and does not affect the shape of the 

curves.

3.2.2  Results and discussion

Analytical results obtained with the adjusted C
nm

 coeffi-

cient are shown in Fig. 7.

The agreement between the finite element numeri-

cal simulation and the analytical model is remarkable. 

Every aspect of the resonance is correctly reproduced by 

the model, namely the varying resonance frequency, the 

drop shape of the overall quality factor Qt and the singu-

lar antiresonant shape of the signal curve. The value of 

the tube length L
mR

 that maximizes the quality factor drop 

is slightly different (4.5 mm here versus 4.2 mm with the 

finite element modeling), which can be explained by the 

use of an approximate expression for the eigen-angular fre-

quency (19). This discrepancy is usually addressed with 

the use of the end corrections, but, in our case, we would 

need an additional end correction representing the radiation 

losses occurring where the tuning fork is inserted.

According to the analytical prediction, the amplitude of 

the prongs displacement is halved compared to the numeri-

cal prediction. The discrepancy can be attributed to the 

simplicity of the model used for the pressure eigenmode 

spatial distribution.

The drop in the quality factor of the resonant QEPAS has 

already been reported in the literature [12]. We will also 

confirm that observation in our experimental section. This 

drop is the characteristic of the vibroacoustic coupling, and 

we notice that the maximum displacement does not occur 

at the minimum quality factor, but somewhere during the 

drop, where the observed quality factor has already been 

halved compared to the situation without any acoustic tube.

We can now propose an explanation for this effect in 

the light of our new model. When the two resonances are 

superimposed, the amplitude of the acoustic emission orig-

inating from the tuning fork motion becomes comparable 

with the resonant cavity eigenmode amplitude excited by 

the photoacoustic effect. Since those two acoustic sources 

are not in phase, an interference occurs and decreases the 

total pressure amplitude within the resonant cavity.

However, we stress that a reduced displacement does 

not necessarily mean that the resonant tuning fork is less 

suited for the QEPAS application. Indeed, the noise is also 

theoretically reduced when the quality factor of the whole 

system drops at the antiresonance (Eq. 15). Despite the fact 

that the signal (proportional to the displacement) drops, 

the signal to noise ratio does not display any antiresonance 

behavior, as shown in Fig. 8 (the analytical formula (15) is 

used in both cases for noise).

Actually, it may be more convenient to operate the reso-

nant QEPAS technique at the antiresonance length of the 

tubes, because the signal to noise ratio is optimal while the 

quality factor and hence the response time is minimized. In 

Fig. 8, we can see that the numerical model (respectively, 

Fig. 7  Influence of the tube length L
mR

 for our on-beam QEPAS 

experiment, computed using our analytical model. The inner diam-

eter of the tubes is R
I
= 0.46  mm while the outer diameter is 

R
O
= 0.64 mm

Fig. 8  Influence of the tube length L
mR

 on the SNR gain provided 

by the addition of acoustic tubes. The displayed values are SNR val-

ues extracted from the resonant QEPAS modeling, normalized with 

the same SNR values that would be observed in the absence of tubes 

(bare tuning fork case). For the two models, we use equation (15) for 

the noise
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the analytical model) predicts an enhancement by a factor 

of 40 (resp. 30) with tubes of inner radius R
I
= 0.46 mm, 

in agreement with the optimal gain of 30 experimentally 

reported with slightly reduced inner radius of R
I
= 0.3 mm 

[5]. We also remind that the height h of the beam between 

the prongs is located 0.6  mm below the top opening in 

this paper. This parameter has, of course, an influence on 

the signal to noise ratio. In our analytical modelling, its 

dependency is hidden in the normalized overlap integral 

O
m

, since the electric field distribution u(r) depends on h in 

a 3D space.

3.3  Experiments using a commercial tuning fork

To study the influence of the tube length on the system, we 

selected commercially available hypodermic needles with a 

radius of R
I
= 0.46 mm and outer diameter R

O
= 0.64 mm. 

The needles have been chopped to various lengths ranging 

from 3 to 6 mm.

The setup is identical to that described in the previous 

section; however, we chose a wavelength modulation tech-

nique instead of modulating the output power. A direct cur-

rent of I
DC

= 300 mA is applied to the diode laser, while 

a small sinusoidal modulation (amplitude I
AC

= 15 mA) is 

added at frequency f
0
∕2 to modulate the wavelength across 

the central absorption peak of CO
2
 at 6490.05 cm−1. The 

measured average power entering the tubes is P
L
= 23 mW, 

and the power loss after the system is negligible.

An amplification circuit is used to enhance the signal orig-

inating from the tuning fork, and an SR530 lock-in amplifier 

is used to extract the component of the signal at frequency 

f
0
. We choose a detection bandwidth of Δf = 0.063 Hz, and 

we made sure that the Brownian motion of the tuning fork is 

the fundamental noise source of our system. The results are 

shown in Fig. 9.

In Fig. 9, the parameters of the analytical model (C
nm

, �
m

, 

Qa and O
m
) have been adjusted to obtain the best qualitative 

fit. Those parameters are of course the same for every tube 

lengths. The agreement is qualitatively good, and the model 

reproduces well the observed tendencies. Both the numeri-

cal and the analytical models are hence able to explain this 

experimental behavior, with the quality factor drop and the 

frequency shift when the two resonances are equal. The 

antiresonance is not clearly observed, even if it was predicted 

both analytically and numerically in the previous sections.

The optimal length of the tubes is found to be L
mR

= 4.3 

mm (optimal SNR), even if the maximal signal is obtained 

for L
mR

= 4.5 mm (optimal signal). This result is consistent 

with the value of L
mR

= 4.4  mm reported in the literature 

[5]. At the optimum length, the quality factor is three times 

smaller than the one in the absence of tubes. The correspond-

ing noise spectral density is measured at 250 μVrms.Hz
−1∕2 

in our setup. The signal to noise ratio is hence SNR = 50 

(1�), corresponding to the following normalized noise equiv-

alent absorption (NNEA):

This value is three times higher than the opti-

mum NNEA values reported for a similar system of 

3.3 10
−9

W cm
−1

Hz
−1∕2. The difference is due to the inner 

diameter of the tube, which is of 0.93  mm in our case 

whereas the optimal reported diameter is around 0.6 mm.

(20)

NNEA =
5 10−6 × 23 10−3

50 × 0.063
= 9.2 10

−9
W cm

−1
Hz

−1∕2

Fig. 9  Experimental influence of the tube length L
mR

 on the tuning fork behavior. The parameters of the analytical model (C
nm

, �
m
, Qa and O

m
)

have been adjusted to obtain the best qualitative fit with the experimental data
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4  Conclusion

In this article, we have derived a new analytical model to 

describe the behavior of a resonant QEPAS setup. Tak-

ing into account the acoustic emission of the mechanical 

resonator, we have obtained a generalized fundamental 

equation for photoacoustic able to describe the possible 

coupling with an acoustic resonance. The model repro-

duces accurately every tendencies obtained with numeri-

cal simulations using a finite element commercial software, 

including the change in the resonance frequency, the anti-

resonance behavior and the drop of the quality factor. The 

model is then used to fit experimental data, which con-

firmed the pertinence of our approach. The model can be 

adapted to any configuration, since an expression for the 

acoustic eigenmode can always be obtained using finite ele-

ment simulations. We also believe that the acoustic emis-

sion of the tuning fork together with the resonant nature of 

the acoustic field could be responsible for the discrepancy 

previously reported for the bare QEPAS theory [11]. The 

experiments were twice more sensitive than the theoretical 

result, which could be explained by a weak acoustic reso-

nance appearing between the two prongs and enhancing the 

pressure forces. Similar to our new analytical description 

of resonant QEPAS, the assumption of an acoustic field 

unaffected by the presence of the tuning fork must now 

be considered with caution. The use of resonant acoustic 

description can now be used to better understand resonant 

QEPAS systems, towards quantitative optimization of reso-

nant QEPAS designs.
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