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Abstract.
Aggregates of non-convex particles have shown to be particularly stable which makes them good candidates to
design new lightweight and reversible structures. However, few is known about the fundamental reason of their
stability. In this paper we presents a novel experimental method to investigate the local structure of piles made
of hexapod particles. This method is based on X-ray scanning and on an accurate homemade particle detection
code. It permits to get the position and orientation of each particle as well as to detect their contact points.
Measurement of the coordination numbers, statistics of the contact positions and local density evaluation for
different packing configurations show a good agreement with the previous studies carried out at the global scale
and permits to explain the main local mechanisms leading to stable structures.

1 Introduction

The use of aggregates made from non-convex particles or
particles with anisotropic contact laws is an emerging area
for both the research in physics [1–7] and the design of
functionalized materials by tuning local properties of the
grains [8–11]. This new field in granular matter science
has already shown to be extremely promising for future
lightweight and reversible architecture [12]. It permits to
design easy-to-shape and remove strong structures. In-
deed the shape of the grains [2, 13, 14] and the contact
anisotropy [8] have been recently used to help crossing
the jamming transition and to increase the stability/rigidity
of granular systems. Different particle shapes, such as
long and thin rods [15], staples [4], Z-shaped [6] and star-
shaped [2, 5] particles have been shown to bring additional
rigidity to 3D packings, compared with spherical shapes
[16].

Two of the most striking characteristics of non-convex
designed granulates, in terms of the granular system and
possible design applications are their ability to form ver-
tical structures with a 90◦ angle of repose, and to sus-
tain small tilting or loading perturbations [2]. Even if this
tremendous stability illustrated in the fig.1-A has already
been evidenced in several experiments [2, 5, 17, 18] and
if packing of such particles has been widely studied [19–
21], few is know about the fundamental reasons of why
non convex particle piles are much more stable than bead
columns [16, 22, 23].

In order to understand the origin of this rigidity, in this
paper, we investigate the local organization of columns
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made of star-shape or hexapod particles (see fig.1-A) using
X-ray CT-scan. We have performed experiments by ran-
domly pouring identical star-shape particles (2.5 to 10cm
wide) into hollow cylinders, and removing the cylinders
to get stable star columns, for different preparation con-
ditions. Then, by mean of a X-ray CT-scan and a home
made post-processing code, we have reconstructed the full
structure of the packing: (i) position, (ii) orientation and
(iii) contact points of each particles with a very good accu-
racy (0.1mm). We have analysed the coordination number
and the distributions of the contact point positions.

In a first part we present the experimental set-up to pre-
pare and scan hexapod piles. In a second part the method
to measure the position, orientation and contact points for
each particle is explained. Then, analysis tools are detailed
before presenting the results.

2 Experimental method

The cylindrical columns have been prepared in two differ-
ent ways and we used three kinds of hexapods particles
as shown in fig.1-A. These last consisted of six orthogo-
nal beams with square cross section, that tapered from a
thickness of 2mm at the center of the particle to 1mm at
the tips. The end-to-end size, L, varied between 2.5cm,
5cm and 10cm. They are made of laser-sintered white ny-
lon PA2200, which has a friction coefficient 1.0 ± 0.3. In
this paper we will only talk about 2.5cm, 5cm star pack-
ings because for 10cm stars the number of particles in the
structure is not large enough to give statistically meaning-
ful results.



Figure 1. A: Columns of 2.5cm, 5cm and 10cm wide hexapods
made of laser sintered nylon PA2200. Hexapods can form very
stable structures capable of sustaining their own weight, tilt and
external loading [2]. B: Cartoon where the non-convex particles
are dropped one-by-one from an overhead hooper in a cylinder
of diameter 15cm. The system can be vibrated by an eccentric,
driven by a DC motor which is attached to the cylinder. C: The
cylinder is then carefully and slowly removed by sliding lifting it
vertically. Hexapods form a stable pile of height ∼ 20cm.

The protocol to make particle piles consisted in fill-
ing thin-walled PVC tube with particles by dropping them
one-by-one at a steady rate from an overhead hopper as
shown in fig.1-B. The inner diameter of the PVC tube was
15cm. In some cases, during the filling process, the sys-
tem could be vibrated by an eccentric that was attached to
the outside of the tube as presented in the fig.1-B. This has
been shown to increase the pile stability [2]. We tuned the
speed of the motor to create a ∼ 1700m/s2 cyclic acceler-
ation of the 16g eccentric. As shown in fig.1-C, the tube
was then carefully and slowly removed by lifting it verti-
cally. Friction between the particles and the cylinder was
low enough not to significantly perturb particles inside the
cylinder. This protocol is similar to what has been used by
[2].

The hexapod column was then set inside a X-ray mi-
croCT scanner Nikon XT-H225 and scan with a X-ray
source of 185kV and 235µA. Raw data were then post-
processed using Nikon’s Feldkamp [24] cone based CT
algorithm to get 2000 density slices of size 2000 × 2000,
with a spacial resolution of 0.1mm and a 16bits digital res-
olution. A slice in the middle of the column is shown in
fig.2-A.

3 Data post-processing

Collecting the density slices we then formed a full 3D den-
sity matrix M0 (see cartoon for two particles in fig.2-B)
which we post-processed with a homemade Python algo-
rithm to extract the position x, y, z and the orientation θ1,
θ2, θ3 of each particle. Because of the large dimension of
the density matrix we first resize it to M a 400× 400× 400
binarized matrix choosing a 60% density threshold (100%
is the highest density, 0% the lowest). A virtual smaller
binary matrix m(θ1, θ2, θ3) is then formed. As presented in
fig.2-C this matrix is null everywhere except for the pat-
tern of an hexapod centered in the middle of the matrix
and oriented along three axis: θ1, θ2, θ3.

Figure 2. A: Slice of a density matrix in the middle of the hexa-
pod pile. Blue is for low density (surrounding air) while red is for
high density (particle nylon). B: Cartoon of a density matrix with
only 2 hexapods. Matrices are 16bits 2000 × 2000 × 2000 vox-
els. C: Cartoon of the convolution density matrix. This matrix
is used for hexapod detection by convolving it with the density
matrix (B) for particle with a certain orientation: θ1, θ2, θ3. D:
Synthesized convolved matrix. Blue high value islands show po-
sition and give orientation of the particles in the density matrix
(B). See text for details. E: Cartoon of two neighbour particles.
The red segment show the shortest distance between the two blue
hexapod arms.

Taking advantages of the particle symmetry, for all the
possible families of direction with θi going from 0◦ to 90◦

with 2◦ steps (91125 families), we convoluted the bina-
rized density matrix M with m(θ1, θ2, θ3) to get a convo-
lution matrix C(θ1, θ2, θ3) of the same size as M. This
computation took 80h parallelized on a 60 nodes cluster.
Then, a maxima matrix D of the same size as M is formed.
For each coordinate i, j,k it took the maximum convolution
value Ci, j,k(θ1, θ2, θ3) over the 91125 possible orientations
and keep the record of the corresponding (θ1, θ2, θ3) fam-
ily. As presented in the cartoon fig.2-D, this matrix shows
high convolution values 3D islands at the position of the
hexapod center. Using this property, a 3D local maxima
research algorithm applied on the matrix D gave the po-
sition of each hexapod xi, yi, zi and the record of their
orientation gave θ1i, θ2i, θ3i.

However, this measurement is not accurate enough
since it has been done on a density matrix whose size has
been divided by 5 (0.5mm accuracy on the particle center
position) and orientation is only 2◦ accurate. To improve
the measurement, for each detected particle center a sub-
matrix of the full density matrix M0 is extracted and bina-
rized. A larger virtual binary matrix is made and a Powell
optimization algorithm was implemented to improve the
match between both matrices and give more accurate po-
sition (0.1mm accuracy) and orientation (0.5◦ accuracy)
values. This part of the algorithm is reminiscent of the
method used by [25].



Figure 3. A: Full reconstruction of an hexapod packing from
the X-ray scan of a non vibrated column of 2.5cm stars. The
drawing has been generated using Vapory, the Pov-Ray wrap-
per in Python, knowing the hexapod geometry, and the measured
position and orientation. Red spheres show the position of the
contacts. B: Zoom in the specified area presented of A. A com-
plete movie of the reconstruction for each particle size is given
here: https://www.youtube.com/watch?v=2HUUAPet2rs.

Contact between the hexapods arms were finally de-
tected from the particle position and orientation, and the
density matrix M. As presented in fig.2-E, for each arm
of each particle, the distance between the segment formed
by the arm and the the segment formed by each arm of the
neighbour particles was computed. If this distance were
lower than 4.5mm, a 10×10×10 submatrix (corresponding
to 1mm3) centred around the hypothetical point of contact
was extracted from the density matrix M. This submatrix
was binarized as previously and the number of connected
domains computed. If 2 distinct domains were observed
there was no contact. If there was only one large domain
the two arms were in contact. This method gives contacts
with a 0.1mm threshold accuracy. Further investigations
are currently carried out to shows that this threshold is
small enough not to detect too much fake contacts. A re-
construction of the 3D packing as well as the position of
the contact is presented in fig.3.

4 Results

A coordination number (average number of contact per
grain) of 6.58 have been measured for non vibrated 2.5cm
particles. This value is larger than the theoretical coordi-
nation 6 at the limit of stability, so this explain the stability
of such a system. When particles are vibrated, as empha-
sized by [2], we expect to have a more stable structure. In-
deed, we measure a coordination number of 7.13 for such
a configuration. For particle with longer arms (5cm) we
expect something even more stable [2] which corresponds
with the coordination number we measured: 9.18. Hence,
this explain the increase is stability for vibrated system and
large particle observed by [2] but also quantify this stabil-
ity by giving the hyperstaticity of the different configura-
tions.

In fig.4-A, we present the probability density function
(PDF) of the contact position along a particle arm. For
each system configuration, 2.5cm, 5cm particles, vibrated

Figure 4. A: Probability density function of the position of a
contact along a particle arm for the different system configura-
tions: 2.5cm, 5cm particles, vibrated and non-vibrated. x-axis is
rescaled to compare 2.5cm and 5cm stars. Vibration has no effect
on the average contact position but the longer the arms, the closer
the contact points are from the particle center. B: Probability den-
sity function of the particle local density. For each configuration
the probability density function of the rescaled Voronoi volume
around each star is plotted. The larger the particles or the more
vibrated the system, the wider the statistical repartition. C: Aver-
aged scaled Voronoi volume along the radial (horizontal plot) and
height (vertical plot) directions for the 3 different packings. The
particle density just slightly increases radially. Vertical error-bars
give the 95% confidence intervals of the measurements.

and non-vibrated, for each arm of each particle, the dis-
tance of the contacts to the particle center has been mea-
sured. Then the PDF of this distance rescaled with the arm
length L has been computed. We see that in the case of
large particles, contacts are homogeneously spread along
the whole arm, with an over-representation close to the
particle center. On the contrary, for shorter particles the
contacts are more concentrated at the arm tip. This explain
the more important stability of large particle piles since



hexapods are more intricated so more difficult to destabi-
lize.

Fig.4-B present the PDF of the local packing fractions.
For each system configuration, from the position coordi-
nate of the particles, we have computed the 3D Voronoi
tesselation. The volume of each tile is measured and
rescaled with the an effective hexapod volume L3. The
PDF of this quantity is then plotted. For each case it van-
ishes before 10%, then presents a sharp peak and vanishes
more progressively for larger volumes. We remarks that
the vibration does not seems to have any significant ef-
fect on the statistical repartition of the local particle densi-
ties.However, the PDF peaks correspond to a larger scaled
volume for 2.5cm particles than for 5cm ones. Indeed, for
larger hexapods, the harm aspect ratio is thinner so parti-
cle can entangle deeper. It is remarkable to notice that this
property corresponds with a more stable system configu-
ration.

Fig.4-A shows the evolution of the average local den-
sity measured as the volume of the Voronoi tiles scaled
with an effective hexapod volume L3. This quantity has
been averaged vertically and circularly to give the radial
evolution of the local particle density for each packing
configuration. We see that the pile is slightly denser in the
inside and for larger particles but constant for 5cm ones.
Averaging along the vertical dimension, we get the vertical
evolution of the density. Surprisingly, within the error-bar,
there is no variation of the density as a function of the pile
height.

5 Conclusions

We presented an experimental method to investigate the
local structure of aggregates made from non-convex par-
ticles. This method is based on X-ray scanning and on
an efficient and 0.1mm accurate homemade particle de-
tection code using parallelized matrix convolutions. This
permits to measure the position and orientation of different
sized hexapods forming large piles in vibrated and non-
vibrated configurations. This local scale information is in
good agreement with the macroscopic stability measure-
ment made by [2]. Moreover, contact position statistics
and local packing fraction variability provided interesting
information about the effect of the pile preparation. How-
ever, these experimental results do not permit to detect the
exact nature of the contact (point, line or plane) nor to
measure the force. Hence, to test the accuracy of our ex-
perimental measurement as well as to improve the contact
analysis, numerical simulations will be carried out.
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