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Fast Three-Dimensional
Quasi-Static Analysis of Helical
Gears Using the Finite Prism
Method
This paper describes a model for analyzing external and internal helical gears. The finite 
prism method is used to study the elastic behavior of the structure. Contact deformations 
are also included in the model. Load sharing, pressure distribution, meshing stiffness and 
three-dimensional tooth fillet stresses are calculated at each instant. An experimental 
validation of the numerical model is also presented.
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1 Introduction
Static-elastic analysis of the meshing of cylindrical gears i

challenging task as a number of modeling and numerical probl
must be overcome. Two groups of problems are of primary in
est. The first group is related to the computation of the con
pressure at the gear mesh. The pressures and the correspo
displacements within the contact area can be calculated by
ploying the theories of Hertz and Boussinesq. According to
actual geometry near the contact zone, either the results are g
in the form of tabulated formulas, or a discretized contact are
used at the mesh where each grid square is subject to a ce
contact pressure@1,2#. Then, geometrical conditions of nonbod
penetration allow formulation of a linear problem with cons
tency conditions@3#. Once the pressures are known, the str
fields are calculated within the contact zone@4#. When more than
one pair of teeth transmit the load, the principle used for
calculation of load distribution is based on the analysis of gen
alized multicontacts of two bodies@3,5#. Multitooth pair analyses
of different studies subject show differences perhaps origina
from the simplifying assumptions made@6–9#.

The second group of problems of gear contact analysis are
sociated with bulk resistance. Stress calculations at the tooth
are made with the help of classical methods for continuous me
While many earlier studies used the material resistance met
general equations@10# are now used directly. Consequently, th
finite element method~FEM! has been widely used in two- o
three-dimensional~3D! modeling with a refined meshing@11–13#.
Therefore, it is necessary to develop computational tools that
refine enough to capture the major aspects of contact phenom
but yet global enough to take into account the entire architec
of the gears.

The aim of this paper is to present a method for analyz
cylindrical gears in an efficient and precise manner. Paramet
analysis results using this method have been presented earlie
viously @14,15#, however, the fundamentals of this method and
experimental validation have not been published. The objec
here is to formulate a elastic model of a cylindrical gear pair
such a way that reasonably accurate computation can be m
within moderate calculation times, allowing the use of this form
lation as a potential design tool. The finite prism method~FPM! is
chosen to reduce the size of the numerical problem and accel
the calculations. This method is able to consider the exact ge
etry of the teeth as well as the global axis 3D positions of
gears altogether. With this method, the bulk deformations can
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modeled accurately as well as the stress distributions at the ro
the teeth. In the following sections, FPM formulations are p
sented and are applied to gear pair problems.

2 The Finite Prism Method
Full analysis with the FEM is costly and even unnecessary

structures with a constant shape in one direction and sim
boundary conditions. FPM can give results by using a mu
smaller number of input data@16#. FPM can be considered as
special form of FEM, based on geometrical approximations c
cerning the shape of the displacements along a given directio
standard FEM uses polynomial displacement functions in ev
direction while FPM uses simple polynomial displacements o
along two directions where the meshing is carried out and se
functions for extrusion along the third direction. Thus, the 3
problem is approximated in a two-dimensional~2D! space, pro-
viding significant savings in computing time and memory requi
ments.

The general form of the displacement function is given a
product of polynomial functions and series. Therefore, for a lin
prism where thez axis corresponds to the generating helical lin
a displacement function is written in the following form:

U5 (
m51

r

Nm~x,y!Fm~z! (1)

In this expression, the series are truncated tor terms.Nm(x,y) is
a polynomial expression including undetermined constants for
mth term.Fm(z) is a series that satisfies the boundary conditio
along thez-axis direction and also specifies the deflected shap
the structure in this direction.

The FPM used here is similar to the method proposed by K
torovich @17#, which is commonly used to reduce a partial diffe
ential equation to an ordinary differential equation. Cheung@18#
developed the theory related to finite prisms. The displacem
function U is often composed of two parts: the polynomial fun
tion Nm(x,y), ruled by the shape of the transversal function a
the seriesFm(z) satisfying the boundary conditions in thez direc-
tion. The transverse section of the prism is commonly modeled
an isoparametric eight-node element.

2.1 Choice of Displacement Functions. The global elastic
line of a gear tooth along its face width is assumed to be the cu
of a bending beam. Therefore, functionF(z) is the solution of the
spatial differential equation of a vibrating beam~see Fig. 1!. The
choice of this function is discussed by Olakorade@19#. The differ-
ential equation is given in the form



Fig. 1 Gear prism element
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where b is the length of the prism in consideration, andm is
defined in Refs.@20# and@21#. Therefore, the basic solutionF(z)
to Eq. ~2! is given in the general form

F~z!5C1 sinS m

b
zD1C2 cosS m

b
zD1C3 sinhS m

b
zD

1C4 coshS m

b
zD (3)

where coefficientsCi are determined by applying the bounda
conditions. They define the shape and amplitude of the displ
ments.

The length of the beam corresponds to the face widthb of the
gear teeth. In the particular case of ‘‘free–free’’ boundary con
tion, the prism is free at each end of the tooth

F9~0!5F-~0!5F9~b!5F-~b!50 (4)

whereF9 andF- represent bending moment and transverse fo
terms, respectively and superscript~8! denotes differentiation with
respect toz. These conditions express the fact that the bend
moment and the transverse loads are zero at the free ends o
teeth. By substituting Eq.~4! into Eq. ~3!, four equations are ob
tained to allow the determination ofCi of Eq. ~3!

F1~z!51, F2~z!512
2

b
z, . . . , (5)

Fm~z!5sinS mm

b
zD1sinhS mm

b
zD2amFcosS mm

b
zD

1coshS mm

b
zD G (6)

where

am5
sinmm2sinhmm

cosmm2coshmm
(7)

Fig. 2 Helical prism element
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2(2m23)p (m53,4,5, . . . ), and cosmm coshmm51. In the

other case of a tooth fixed at one end and free at the other
~case of a shaft pinion!, the boundary conditions allow to write th
conditions of a ‘‘fixed-free’’ prism

F~0!5F8~0!5F9~b!5F-~b!50 (8)

These equations show that the deflection and the rotation are
at the fixed end and the bending moment and the transverse fo
are zero at the free end. The corresponding serial functions for
case become

Fm~z!5sinS mm

b
zD2sinhS mm

b
zD2amFcosS mm

b
zD

2coshS mm

b
zD G (9)

where

am5
sinmm1sinhmm

cosmm1coshmm
(10)

mm' 1
2(2m21)p (m51,2,3, . . . ), and cosmm coshmm521.

Concerning the serial part of the displacement,Fm and Fm8 are
both used in the analysis of the bidimensional elasticity proble
The equation given later is based on the assumption of sm
deviations of the beam, in which the transverse deviationu is
related to the longitudinal displacementF(z)

F~z!5A
du

dz
(11)

Fig. 3 Pipe model
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A general form of the serial function is given by

Fm
u 5Fm , Fm

v 5Fm , Fm
w5Fm8 (12)

In the case of a spur gear pair, FPM can be used directly.
helical gears, a transformation of coordinates must be applied@5#.
First, a curvilinear system (O,R,u,Z) is used as shown in Fig. 2
such that

X5R cosu, Y5R sinu, R5@X21Y2#1/2,

u5Arc tanFY

XG , Z5z (13)

with R.0 andu0<u<u f . Next, an oblique system (O,r ,s,t) is
applied in Fig. 2 as

R5r , u5s1t sinb, Z5t cosb (14)

2.2 Validation of FPM. A pipe pressurized internally con
stitutes the first validation example. The pipe is fixed rigidly e
ternally and an uniform pressure is applied inside as shown in
3. The serial function is defined along the axial direction. All t
results obtained with a prism match well with the analytical p
dictions within an error nearly 4% on average. The larger diff
ences are observed on the inner surface of the pipe.

In order to simulate the loading of the gear teeth, a clamp
prismatic solid was considered as shown in Fig. 4 and the F
results were compared with those obtained by using a classica
FEM. The main objective was to validate the results with differe
boundary conditions~fixed-free and free–free! and also to inves-
tigate the appropriate number of terms that must be considere
the series. The block is fixed rigidly iny direction for all z, the
nodes are either free on the two small sides~case free–free!, or
fixed at boundary atz50 ~case of fixed-free!. The stresses a
analyzed on the dotted lineaa8 ~see Fig. 4!close to the rigidly
fixed side. The displacements are observed on thebb8 line and the
load is applied on top of the tooth. Figures 5 and 6 show
results for the free-free boundary condition along the length of
beam. The displacements~Fig. 5! and the values of the principa
stress~Fig. 6! are given for different numbers of terms in th
series (T1 is one-term,T2 is two-term and soon!. The results a
compared to those obtained with the 3D finite element meth

Fig. 4 A prismatic solid

Fig. 5 Displacements study „x direction …
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For the meshing, hexahedron elements with 20 nodes are use
a commercially available finite elements package~two elements in
X, four elements inY, and ten elements inZ. Different meshing
conditions are also considered to analyze the effect of the mes
smoothness on the results of both between FEM and FPM.
results show that, in this example case, eight terms are neces
to achieve acceptable accuracy in displacement predictions
five terms for stress computations.

In summary, the FPM uses a 2D mesh on a transversal sec
of an object, and an implicit approximation of the displaceme
is performed along the third dimension. This method gives sa
fying results, compared to those obtained by other conventio
methods. In addition, the calculation time is much shorter~80
times shorter according to Olakorede@5#!, and the memory space
required is much smaller~nearly six times less!compared to con-
ventional finite elements. Therefore, this method can be useful
solving gear design problems.

3 Application of FPM to Gear Analysis

3.1 Description of the Process. A realistic geometry of the
gear distinguishes three levels of definition: the architecture~web
and rim!, the position of the gear~misalignment, eccentricity, in-
stantaneous meshing position!, and the teeth~profile, crowning,
surface waviness, pitch, and distortion errors!. Obviously, for each
meshing position, the load is shared among the meshing te
contact pressure distribution is established and a stress
spreads inside the considered elements. The complete pro
integrated in the design software called PRINCE~French acronym
for: Program Interactif de Calcul d’Engrenage!, can be summed
up as follows~Fig. 7!.

~1! After determining the active profiles of the teeth, tooth co
tact analysis~TCA! simulation without load is performed for sev
eral meshing positions.

~2! This preliminary TCA allows the definition of the initia
contact points and the unloaded transmission error caused
example, by gear eccentricity, modified profile or undesirable p
files errors.

~3! A 2D mesh of the gear is then produced to introduce t
FPM method. Influence coefficients are used to calculate lo

Fig. 6 Maximum main stress study

Fig. 7 Computational process flowchart
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sharing. A unit force is applied on the tooth contact surface
produces a displacement. Then, by considering unit forces at
ferent points, a set of bulk influence coefficients can be dedu
A model of the contact calculates the surface effects between
teeth. At this stage of the process, the contact pressures an
static loaded transmission error are obtained. Finally, once
load sharing is known, the FPM is used again to calculate the
stresses at the root of the teeth at the last step of the proces

3.2 Load Analysis. The determination of tooth load distri
bution is a problem of contacts. Once potential contact zones
established, the load sharing in these areas must satisfy the
ditions of displacement compatibility in every pointk in Fig. 8.
Inside the contact zone

W1k1W2k1ek2a50 and Pk>0, (15)

and outside the contact zone

W1k1W2k1ek2a>0 and Pk50 (16)

W1k andW2k are the normal displacements of bodies 1 and 2
point k, respectively,Pk is the contact pressure at pointk, ek is the
normal initial deviation at pointk ~computed in the unloaded
TCA!, and a is the global adjustment between the gear bod
~transmission error expressed on the line of action!.

The normal displacement of bodyi at pointk can be written as

Wik5(
j 51

N

Ck j
i Pj (17)

For two bodies,Cik5Ck j
1 1Ck j

2 and Eq.~17! yields

(
i 51

N

CikPk1ek5a, (18)

(
k51

N

PkSk5F (19)

inside the contact zone. The fixed-point algorithm is used to so
the system of equations. CoefficientsCik are the influence coeffi-
cients obtained with a uniform pressurePk applied on a small
surfaceSk around pointk of the contact zone of bodyi.

Fig. 8 Contact zone

Fig. 9 Local meshing
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Two terms defineCik , Cik5Cik
f 1Cik

s . Term with superscriptsf
and s represents the bulk deformations and the surface defor
tions, respectively.Cik

f is calculated using the FPM method an
Cik

s is found by using the wellknown Boussinesq theory@22#. In
order to implement these calculations, a local square mesh is
duced in the tangent plane of the contact zone as shown in Fig
The influence coefficients are obtained by applying unit loads
each node that are likely to be loaded. Two types of result
obtained:~i! load sharing and~ii! contact pressure distribution
Load sharing refers to the sharing of the torque among mesh
tooth pairs. The contact pressure distribution is found along
face width for the different teeth in contact.

Fig. 10 Potential contact lines

Fig. 11 Tooth load sharing

Fig. 12 Contact pressure for the kinematics position 1

Table 1 Parameters of the example helical gear pair

Pinion Gear

Number of the teeth 20 31
Module ~mm! 6 6
Pressure angle~deg! 20 20
Helix angle~deg! 15 15
Face width~mm! 70 70
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3.3 Model Results. In this section, results for an exampl
helical gear pair are presented. The design parameters of the
lical gear pair as listed in Table 1. The input torque is 2000 N
and the involute gear tooth profiles are not modified. Figure
presents potential contact lines on the teeth of the driving pin
for three different kinematic positions. For position 1, only teeth
and 3 are in contact. For an intermediate position~position 5!,
three pairs of teeth are in contact~teeth 2, 3, and 4!. For tooth 3
the contact line on tooth 3 extent is along the entire tooth wid
Tooth 2 experiences only a contact at the tip of tooth. At the l
kinematic position, tooth 2 is not in contact while tooth numbe
enters the mesh.

The load sharing characteristics are presented in Fig. 11
result of computation of the elastic behavior. Tooth 1 is not load
for this range of kinematic positions. Tooth 4 enters in the cont
at position 2 and tooth 5 at position 8 while tooth 2 leaves
contact at position 6. The contact pressure distribution along
flanks of teeth 2 and 3 is presented in Fig. 12 for the kinema
position 1. Peaks of pressure on the edge of the teeth can be n
Similarly, Fig. 13 presents the field of contact pressure on
square grid defined around the contact zone for several kinem
positions, from the beginning of a tooth meshing, to the exit of
tooth from the contact zone. The transmission error and the g
mesh stiffness are also predicted. An example of stiffness
shown in Fig. 14 as a function of the angular position of t
driving pinion. The stiffness is calculated with the ratio of th
input load to the transmission error~a!. The stresses in the tooth
roots are computed by using the distribution of the load. Figure
presents the maximal principal stresses in four consecutive r
at kinematic position 5. Roots 2 and 3, located between loa
teeth experience compressive stresses.

Fig. 13 Contact pressure during meshing on one helical tooth

Fig. 14 Meshing stiffness variation
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4 Experimental Validation
Any numerical tool must be validated experimentally before

can be used in confidence as a design and analysis tool.
section aims at validating the gear analysis model presente
earlier sections experimentally.

Tests were performed on an existing back-to-back type fatig
test machine shown in Fig. 16. Table 2 specifies the paramete
the helical gears used in the experimental test. The gear manu
turing quality is ISO4 and tooth profiles are not modified. Th
schematic layout of the machine is shown in Fig. 17. The sha

Fig. 15 Principal stresses in tooth roots „kinematic position 5 …

Fig. 16 Picture of the test machine

Fig. 17 Layout of the test machine

Table 2 Geometrical characteristics of the gears

Pinion
~driving and driven!

Gear
~driving and driven!

Number of teeth 159 32
Working module~mm! 3.56 3.56
Width ~mm! 86 80
Pitch diameter~mm! 566.039 113.92
Helix angle~deg! 19.967 19.967
Helix hand Left Right
Working pressure angle~deg! 25.347 25.347
Tip diameter~mm! 572.1 121.2
Root diameter~mm! 556.1 105.1
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were mounted on high-capacity tapered roller bearings. A rota
hydraulic torque device applies different torque values on the
ner test loop and the system is driven by an electric motor.

During the tests, the angular rotation of the pinions is kept v
low ~5 rpm! so that a comparison with the quasi-static model
possible with no dynamic effects. The gears were instrumen
with strain gages. A total of six gauges were mounted on e
gear, as shown in Fig. 18 at a 120 deg tooth fillet position and
locations along the tooth fillet width. The gauges are located n
the peak bending stress location. An optical encoder was also
to mark the angular position as gears rotate. The tests were
formed for one rotation of the larger gears that corresponded

Fig. 18 Location of the gauges

Fig. 19 Meshing and boundary conditions

Fig. 20 Stresses for the driven pinion, face width position 1
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nearly five rotations of the pinion, so that the strain-stress va
tions could be monitored for each strain gage. When the st
gauged tooth fillet entered the meshing zone, the signal va
from positive to negative values~see Fig. 20!. The results give
for the circular positions 1, 18 or 19 are also plotted in Fig. 20.

The tested gear was modeled numerically. Figure 19 shows
FPM of the test gears and the boundary conditions used. The
thickness is greater than 3.5 times the module, a five-tooth
ment is sufficient to perform a reasonably good numerical sim
lation. The input torque value was set at 600 N m. In Fig. 2
example predictions and the corresponding stresses during m
ing are compared. The measurements for the three gauges sit
at an angular distance of 120 deg agree very well with the sim
lation results~solid line in Fig. 20!. Differences between the nu
merical and measured results can be explained by secondar
fects such as pitch error, shaft misalignments, and helix an
errors@23#.

5 Conclusions
The present paper describes a numerical tool that aids the

sign of cylindrical gears. The elastic behavior of gear contact w
studied with the finite prism method. This method has been sho
to correlate to the results of conventional FEM well. It was sho
that the numbers of terms in the series functions influence of
accuracy of the predictions. The integration of this method
calculate the gear bending coefficients and the application
Boussinesq theory allows to computation of the load sharing
the tooth root stresses. The FPM gives results in three dimens
with significantly less computational demand. An experimen
test results were also shown to match the predictions of this m
well.
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