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This paperdescribesa modelfor analyzingexternaland internal helical gears.Thefinite 69621 Villeurbanne Cedex. France

prism methodis usedto studythe elasticbehaviorof the structure.Contactdeformations
are alsoincludedin the model.Load sharing, pressuredistribution, meshingstiffnessand
three-dimensionatooth fillet stressesare calculated at each instant. An experimental
validationof the numerical model is also presented.

1 Introduction modeled accurately as well as the stress distributions at the root of
Static-elastic analysis of the meshing of cylindrical gears isthe teeth. In the following sections, FPM formulations are pre-

. . . nted and are applied to gear pair problems.
challenging task as a number of modeling and numerical problems
must be overcome. Two groups of problems are of primary inter-
est. The first group is related to the computation of the contact
pressure at the gear mesh. The pressures and the correspongingrhe Finite Prism Method
d:(s)p:ﬁceﬁgnttr"se\évrlitgénOtfhaecr?;tgﬁg aé?)is(;?r?ets)e ﬁggﬁﬁd tt)g temFuII analys_is with the FEM is cost!y and even unnecessary for
ploying INesg. 9 .@qructures with a constant shape in one direction and simple
actual geometry near the contact zone, either the results are gi

used at the mesh where each grid square 's.$UbJe°t to a Cer?d@cial form of FEM, based on geometrical approximations con-
contact pressurl,2]. Then, geometrical conditions of nonbodyte ing the shape of the displacements along a given direction. A
penetration allow formulation of a linear problem with consisgianqarg FEM uses polynomial displacement functions in every
tency conditions[3]. Once the pressures are known, the stregection while FPM uses simple polynomial displacements only
fields are calculated within the contact zddé. When more than 4150 two directions where the meshing is carried out and serial
one pair of teeth transmit the load, the principle used for thgnctions for extrusion along the third direction. Thus, the 3D
calculation of load distribution is based on the analysis of geng§roplem is approximated in a two-dimensior@D) space, pro-
alized multicontacts of two bodi¢8,5]. Multitooth pair analyses yiding significant savings in computing time and memory require-
of different studies subject show differences perhaps originatinpgents.
from the simplifying assumptions magié—9]. _ The general form of the displacement function is given as a
The second group of problems of gear contact analysis are ggoduct of polynomial functions and series. Therefore, for a linear
sociated with bulk resistance. Stress calculations at the tooth rg@lsm where thez axis corresponds to the generating helical line,
are made with the help of classical methods for continuous mediagisplacement function is written in the following form:
While many earlier studies used the material resistance method,
general equationgl0] are now used directly. Consequently, the !
finite element methodFEM) has been widely used in two- or U=, Nu(X,y)Fn(2) (1)
three-dimensionalBD) modeling with a refined meshirjg1-13. m=1
Therefore, it is necessary to develop computational tools that gfethis expression, the series are truncated terms.N(X,y) is
refine enough to capture the major aspects of contact phenomengolynomial expression including undetermined constants for the
but yet global enough to take into account the entire architectUigh term.F,,(z) is a series that satisfies the boundary conditions
of the gears. ) . along thez-axis direction and also specifies the deflected shape of
The aim of this paper is to present a method for analyzinge structure in this direction.
cylindrical gears in an efficient and precise manner. Parametricalthe FPM used here is similar to the method proposed by Kan-
analysis results using this method have been presented earlier Bfovich [17], which is commonly used to reduce a partial differ-
viously[14,15], however, the fundamentals of this method and ightial equation to an ordinary differential equation. Che[t8j]
experimental validation have not been published. The objectideveloped the theory related to finite prisms. The displacement
here is to formulate a elastic model of a cylindrical gear pair ifunction U is often composed of two parts: the polynomial func-
such a way that reasonably accurate computation can be mgga N,,(x,y), ruled by the shape of the transversal function and
within moderate calculation times, allowing the use of this formuhe series,,(z) satisfying the boundary conditions in thelirec-
lation as a potential design tool. The finite prism metkBEM)is  tion. The transverse section of the prism is commonly modeled as
chosen to reduce the size of the numerical problem and accelergteisoparametric eight-node element.
the calculations. This method is able to consider the exact geom- ) ] ) )
etry of the teeth as well as the global axis 3D positions of the 21 Choice of Displacement Functions. The global elastic

gears altogether. With this method, the bulk deformations can of a gear tooth along its face width is assumed to be the curve
of a bending beam. Therefore, functibi(z) is the solution of the

spatial differential equation of a vibrating bedsee Fig. 1). The
choice of this function is discussed by Olakorad@]. The differ-
ential equation is given in the form



" direction of the prism
Y
Fig. 1 Gear prism element
d*F(z) p* wm=~3(2m-3)7w (M=3,4,5, ...), and cog,coshu,=1. In the
a7 = FZ (2) other case of a tooth fixed at one end and free at the other end

(case_ _of a shaft p_inionthe bou_ndary conditions allow to write the
where b is the length of the prism in consideration, apdis conditions of a “fixed-free” prism
defined in Refs[20]and[21]. Therefore, the basic solutidt(z) F(0)=F'(0)=F"(b)=F"(b)=0 ®)

to Eq.(2) is given in the general form
These equations show that the deflection and the rotation are zero

F(7)=C. si M iC M 4 Casini X at the fixed end and the bending moment and the transverse forces
(2)=C,sin b z 2C0 b z 3sin b z are zero at the free end. The corresponding serial functions for this
case become
M
+Cy cos}‘(—z) 3) [ um o [pm um

b F(z)=sin TZ —sin TZ —ay CO TZ
where coefficientC; are determined by applying the boundary \
conditions. They define the shape and amplitude of the displace- pm
ments. —cos TZ 9)

The length of the beam corresponds to the face widdf the

gear teeth. In the particular case of “free—free” boundary condtvhere
tion, the prism is free at each end of the tooth sinpgtsinhug, (10

F"(0)=F"(0)=F"(b)=F"(b)=0 () M oS u+ COShi

whereF” andF” represent bending moment and transverse forgen,~3(2m—1)7 (m=1,2,3,...), and cogycoshu,=—1.
terms, respectively and superscriptdenotes differentiation with Concerning the serial part of the displacemest, and F;, are
respect toz. These conditions express the fact that the bendihgth used in the analysis of the bidimensional elasticity problem.
moment and the transverse loads are zero at the free ends ofthe equation given later is based on the assumption of small
teeth. By substituting Eq4) into Eqg. (3), four equations are ob- deviations of the beam, in which the transverse deviatiois

tained to allow the determination &; of Eq. (3) related to the longitudinal displacemem(z)
. F(z)=A du 11
Fi(2)=1, FZ(Z)—l—BZ, Ce (5) (2)= % (11)
(M . [ m pum
Fm(Z)—Sln(TZ) +SII’]|‘(TZ —an CO{TZ)

mm X 4 P =254.51 N/mm?

Feosh -z ©® 7, v=03

R1=10 mm

where R2 =50 mm
. . Direction of
sinuy,—sinhw, @E / L =80 mm

the prism
=
™ cosum— Ccoshuy, E = 210000 MPa
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Fig. 2 Helical prism element Fig. 3 Pipe model
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»Y dection of the prism Fig. 6 Maximum main stress study
ly
Fig. 4 A prismatic solid For the meshing, hexahedron elements with 20 nodes are used in
a commercially available finite elements packéye elements in
X, four elements irY, and ten elements iA. Different meshing
A general form of the serial function is given by conditions are also considered to analyze the effect of the meshing
" w smoothness on the results of both between FEM and FPM. The
Fn=Fm, Fn=Fm, Fn=Fp (12)  results show that, in this example case, eight terms are necessary

In the case of a spur gear pair, FPM can be used directly. - achieve acceptable accuracy in displacement predictions and

helical gears, a transformation of coordinates must be apfBipd [IV€ terms for stress computations. .
First, a curvilinear systemd,R, 6,Z) is used as shown in Fig. 2 !N summary, the FPM uses a 2D mesh on a transversal section
of an object, and an implicit approximation of the displacements

such that h ] ! X . : :
is performed along the third dimension. This method gives satis-
X=Rcosf, Y=Rsing, R=[X2+Y?]'? fying results, compared to those obtained by other conventional
methods. In addition, the calculation time is much shot&d
9=Arcta I 7=z (13) times shorter according to Olakoreffg]), and the memory space
X/’ required is much smallgnearly six times lessgompared to con-

ventional finite elements. Therefore, this method can be useful for

with R>0 and §,=< 6= 6;. Next, an oblique systemQ;r,s,t) is solving gear design problems.

applied in Fig. 2 as
R=r, #=s+tsing, Z=tcosp (14) 3 Application of FPM to Gear Analysis

2.2 Validation of FPM. A pipe pressurized internally con- 31 pescription of the Process. A realistic geometry of the
stitutes the first validation example. The pipe is fixed rigidly exgear distinguishes three levels of definition: the architecteeh
ternally and an uniform pressure is applied inside as shown in Fighq rim), the position of the ge&misalignment, eccentricity, in-
results obtained with a prism match well with the analytical presyrface waviness, pitch, and distortion erfo@bviously, for each
dictions within an error nearly 4% on average. The larger diffefneshing position, the load is shared among the meshing teeth,
ences are observed on the inner surface of the pipe. contact pressure distribution is established and a stress field

In order to simulate the loading of the gear teeth, a clampe@reads inside the considered elements. The complete process,
prismatic solid was considered as shown in Fig. 4 and the FRMegrated in the design software called PRINEEench acronym
results were compared with those obtained by using a classical gfp- Program Interactif de Calcul d’Engrenagean be summed
FEM. The main objective was to validate the results with differenfy as follows(Fig. 7).
boundary conditionsfixed-free and free—frgeand also to inves- (1) After determining the active profiles of the teeth, tooth con-
tigate the appropriate number of terms that must be considereddgt analysig TCA) simulation without load is performed for sev-
the series. The block is fixed rigidly ip dl!’eC'[IOI’l for allz, the grg) meshing positions.
nodes are either free on the two small sidease free—free), or  (2) This preliminary TCA allows the definition of the initial
fixed at boundary az=0 (case of fixed-free). The stresses ar@ontact points and the unloaded transmission error caused, for
analyzed on the dotted linga’ (see Fig. 4)close to the rigidly example, by gear eccentricity, modified profile or undesirable pro-
fixed side. The displacements are observed omtidine and the files errors.
load is applied on top of the tooth. Figures 5 and 6 show the (3) A 2D mesh of the gear is then produced to introduce the
results for the free-free boundary condition along the length of tPM method. Influence coefficients are used to calculate load
beam. The displacemenfBig. 5) and the values of the principal
stress(Fig. 6) are given for different numbers of terms in the
series 1 is one-termT2 is two-term and soon). The results are__ _
compared to those obtained with the 3D finite element methc| 1

Manufacturing simulation -[ Tooth profile ]

Width (bb' line)

simulation Transmission ratio

Unloaded kinematics Potential contact zones J
|
L.

E3

mm
i -Lond sharing I' Instantaneous Meshing stiffness
| (TcA) -u- Priéssire distriBution Sh'-erss in t_h:_ tooth roots
A J ransmission error
Fig. 5 Displacements study (x direction ) Fig. 7 Computational process flowchart
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Fig. 8 Contact zone

ferent points, a set of bulk influence coefficients can be deduct
A model of the contact calculates the surface effects between -

: 2
3 1

sharing. A unit force is applied on the tooth contact surface ai ' y J

produces a displacement. Then, by considering unit forces at ¢ J

. Position 1

teeth. At this stage of the process, the contact pressures and

Table 1 Parameters of the example helical gear pair

Pinion Gear

Number of the teeth 20 31
Module (mm) 6 6
Pressure angléleg) 20 20
Helix angle(deg) 15 15
Face width(mm) 70 70
4 3 4 3 4 3 ,

5 { 5 4

Position 5 Position 9

static loaded transmission error are obtained. Finally, once the

load sharing is known, the FPM is used again to calculate the 3D

Fig. 10 Potential contact lines

stresses at the root of the teeth at the last step of the process.

3.2 Load Analysis. The determination of tooth load distri- 55000
bution is a problem of contacts. Once potential contact zones ¢
established, the load sharing in these areas must satisfy the ¢
ditions of displacement compatibility in every poiktin Fig. 8.

Inside the contact zone

W1k+W2k+ ek—a:O and PKZO, (15)
and outside the contact zone
Wi+ Wy +6,—a=0 and P =0 (16)

Wy, andW,, are the normal displacements of bodies 1 and 2 ¢ sp00
pointk, respectivelyP, is the contact pressure at polgte, is the

normal initial deviation at poink (computed in the unloaded :
TCA), and « is the global adjustment between the gear bodie i 3 5 7 9

(transmission error expressed on the line of agtion

The normal displacement of bodat pointk can be written as

N
Wik=21 CiiP; (17)
=
For two bodiesC; = Cg;+C7; and Eq.(17) yields
N
2 CikPk+ Ex=a, (18)
i=1
N
> P S=F (19)
k=1

inside the contact zone. The fixed-point algorithm is used to S0ly@ad sharing refers to the sharing of the torque among meshing
the system of equations. Coefficierdig are the influence coeffi- tooth pairs. The contact pressure distribution is found along the

Load (N)

20000

- =-Tooth2
—— Tooth 3
— .. Tooth 4

15000

10000 _|

-
!
t

Kinematics position

Fig. 11 Tooth load sharing

Two terms defineS;, C=Cl,+ C5, . Term with superscripts

ands represents the bulk deformations and the surface deforma-
tions, respectiverCifk is calculated using the FPM method and

Ci is found by using the wellknown Boussinesq the@2g]. In

order to implement these calculations, a local square mesh is pro-
duced in the tangent plane of the contact zone as shown in Fig. 9.
The influence coefficients are obtained by applying unit loads at
each node that are likely to be loaded. Two types of result are

obtained: (i) load sharing andii) contact pressure distribution.

cients obtained with a uniform pressuRy applied on a small f5ce width for the different teeth in contact.

surfaceS, around pointk of the contact zone of body

Instantaneous
contact line

Tooth active flank

Fig. 9 Local meshing

Tooth 2 Tooth 3

Contact pressure Contact pressure

(MPa)

Toothface width
position

Contact width
position

Contact width
position

Toothface width
position

Fig. 12 Contact pressure for the kinematics position 1
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Fig. 13 Contact pressure during meshing on one helical tooth

Width contact

3.3 Model Results. In this section, results for an example Root3 oA
helical gear pair are presented. The design parameters of the,l_q 15 Principal st in tooth root ki ti ition 5
lical gear pair as listed in Table 1. The input torque is 2000 N mS' fincipal stresses in tooth roots  (kinematic position 5 )
and the involute gear tooth profiles are not modified. Figure 10
presents potential contact lines on the teeth of the driving pinieh Experimental Validation
for three different kinematic positions. For position 1, only teeth 2 Any numerical tool must be validated experimentally before it

and 3 are in contact. For an intermediate positiposition 5), can be used in confidence as a design and analysis tool. This

three pairs of teeth are in contaégeth 2, 3, and 4). For tooth 3 . ; S . :
. - P ’ ! section aims at validating the gear analysis model presented in
the contact line on tooth 3 extent is along the entire tooth Wldtﬁ?r”er sections experimentally.

T-O oth 2.exper.iefnces only a contact at the tip (.)f tooth. At the laS Tests were performed on an existing back-to-back type fatigue
kinematic position, tooth 2 is not in contact while tooth number ?est machine shown in Fig. 16. Table 2 specifies the parameters of

enters the mesh. he helical gears used in the experimental test. The gear manufac-
The load sharing characteristics are presented in Fig. 11 aiagl g P : 9

result of computation of the elastic behavior. Tooth 1 is not load r']ng q,l[J.a“Ity IS tls?,::] and tc;lc_)th _prof'|1les are E.Ot T?dﬁ'ﬁ d. Ehg
for this range of kinematic positions. Tooth 4 enters in the contagy 'ematic fayout of the machine 1s shown in F1g. 7. The shats
at position 2 and tooth 5 at position 8 while tooth 2 leaves the

contact at position 6. The contact pressure distribution along t;
flanks of teeth 2 and 3 is presented in Fig. 12 for the kinemai
position 1. Peaks of pressure on the edge of the teeth can be no
Similarly, Fig. 13 presents the field of contact pressure on tt
square grid defined around the contact zone for several kinemé
positions, from the beginning of a tooth meshing, to the exit of tt
tooth from the contact zone. The transmission error and the gt
mesh stiffness are also predicted. An example of stiffness |*
shown in Fig. 14 as a function of the angular position of th<
driving pinion. The stiffness is calculated with the ratio of the
input load to the transmission err@w). The stresses in the tooth
roots are computed by using the distribution of the load. Figure 15

presents the maximal principal stresses in four consecutive roots  tapje 2 Geometrical characteristics of the gears
at kinematic position 5. Roots 2 and 3, located between loaded

teeth experience compressive stresses. Pinion Gear
(driving and driven) (driving and driven)

MNominal speed: 1610 tr/mn
Allowed torque: 200 to 600 daNm
Maximal dissipative power: 100KW

Fig. 16 Picture of the test machine

Number of teeth 159 32
a A Working module(mm 3.56 3.56
Meshing stiffness (10% N/mm) WidtP: (?nm) ule(mm) 86 80
1.6 Pitch diametefmm) 566.039 113.92
: Helix angle(deg) 19.967 19.967
Helix hand Left Right
Working pressure anglaleg) 25.347 25.347
Tip diameter(mm) 572.1 121.2
Root diametefmm) 556.1 105.1
1.51
optical encoder drwi:gﬂnmn driven pinion
——ee FOST =g POS3 s T s torque
a
motor
1.4+
a=340mm
driv;g_gear T _d.rivm gear
13, ~ .

315 335 335 3.45 i - e )

Pinion angular position

Fig. 14 Meshing stiffness variation Fig. 17 Layout of the test machine



nearly five rotations of the pinion, so that the strain-stress varia-
Y tions could be monitored for each strain gage. When the strain
p ~ POS/Z‘/Z 50 gauged tooth fillet entered the meshing zone, the signal varied
TT2l2l2
1-1-1"

{120 TN , from positive to negative valugsee Fig. 20). The results given
Py e PO% p g Ct 9. 20) g
‘2%&\ 12 1-2 J | & 20 mm
8-b

\

for the circular positions 1,"lor 1" are also plotted in Fig. 20.
The tested gear was modeled numerically. Figure 19 shows the

18- 18- FPM of the test gears and the boundary conditions used. The rim
thickness is greater than 3.5 times the module, a five-tooth seg-
Fig. 18 Location of the gauges ment is sufficient to perform a reasonably good numerical simu-

lation. The input torque value was set at 600 Nm. In Fig. 20,
example predictions and the corresponding stresses during mesh-
Ii&g are compared. The measurements for the three gauges situated
t an angular distance of 120 deg agree very well with the simu-
ation results(solid line in Fig. 20. Differences between the nu-
erical and measured results can be explained by secondary ef-
@cts such as pitch error, shaft misalignments, and helix angle

were mounted on high-capacity tapered roller bearings. A rotati

hydraulic torque device applies different torque values on the i

ner test loop and the system is driven by an electric motor.
During the tests, the angular rotation of the pinions is kept ve

low (5 rpm) so that a comparison with the quasi-static model i

possible with no dynamic effects. The gears were instrumentggors[zs]'

with strain gages. A total of six gauges were mounted on each

gear, as shown in Fig. 18 at a 120 deg tooth fillet position and tviio Conclusions

locations along the tooth fillet width. The gauges are located nearr,g present paper describes a numerical tool that aids the de-

the peak bending stress location. An optical encoder was also uggdh of cylindrical gears. The elastic behavior of gear contact was
to mark the angular position as gears rotate. The tests were p&fjgied with the finite prism method. This method has been shown
formed for one rotation of the larger gears that corresponded {p¢qrrelate to the results of conventional FEM well. It was shown

that the numbers of terms in the series functions influence of the
accuracy of the predictions. The integration of this method to
calculate the gear bending coefficients and the application of
Boussinesq theory allows to computation of the load sharing and
the tooth root stresses. The FPM gives results in three dimensions
with significantly less computational demand. An experimental
test results were also shown to match the predictions of this model
well.
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