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Tilt estimator for 3D non-rigid pendulum based on a tri-axial
accelerometer and gyrometer

Mehdi Benallegue, Abdelaziz Benallegue, Yacine Chitour

Abstract— The paper presents a new observer for tilt esti-
mation of a 3-D non-rigid pendulum. The system can be seen
as a multibody robot attached to the environment with a ball
joint. There is no sensor for the joint position of the sensor. The
estimation of tilt, i.e. roll and pitch angles, is mandatory for
balance control for a humanoid robot and all tasks requiring
verticality. Our method obtains tilt estimations using encoders
on other joints and inertial measurements given by an IMU
equipped with tri-axial accelerometer and gyrometer mounted
in any body of the robot. The estimator takes profit from the
kinematic coupling resulting from the pivot constraint and uses
the entire signal of accelerometer including linear accelerations.
Almost Global Asymptotic convergence of the estimation errors
is proven together with local exponential stability. The perfor-
mance of the proposed observer is illustrated by simulations.

I. INTRODUCTION

One predominant goal of robotics is to be able to perform
versatile tasks involving the application of contact forces on
the environment. In some cases, these contact point constitute
the only link between the floating base of the robot and
the world reference frame. The most prominent example of
these tasks is legged locomotion, but it may also include
aerial or marine robots performing environment-related tasks
such as torquing, drilling or maintaining position using
an anchor fixed on the environment. Most of these tasks
require the contact point to remain at a precise position and
not to detach or slip. The observance of such a constraint
generates a kinematic coupling allowing to model the robot
as a kinematic chain attached to the environment with an
unactuated 3D spherical joint that we will call pivot. This
can be simply summarized as a pendulum with the contact as
the 3D pivot point. This model is sometimes used to control
the motion generation of the robot, such as for humanoid
locomotion [14] or reaction wheel cube that balances on
edges and corners [5].

One main issue regarding this class of systems is that
beside the unactuation, there is usually no direct measure-
ment of the configuration of this pivot. Of course, properly
estimating this configuration is of crucial importance in most
tasks. Nevertheless, several kinds of sensors are sensitive to
this configuration, and may be used to estimate it. The most
broadly used ones are tri-axial accelerometer and gyrometer.
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Fig. 1. Top figures: the robot is attached to the environment through a 3D
pivot joint. The encoders only provide the configuration in a local frame
called control frame and represented by C. Bottom figures: In the world
frame W the configuration of the real robot is rotated compared to its value
in the control frame (light wireframe robot). Only the IMU can provide data
about this rotation, Rc. We need to account for encoders in this estimation,
to distinguish local kinematics from pivot positions. For example the rotation
Rc is here identical in the right and the left lower figures with different IMU
configurations.

These sensors are usually cheap, compact and reliable. An
accelerometer provides the sum of the gravitational field
and the linear acceleration, and the gyrometer provides the
angular velocity of the sensor, both of these measurements
are expressed in the frame of the sensor. It is straightforward
to notice that this set of sensors provides invariant signals
relative to different rotations around the gravitational field
direction which is mostly vertical to the ground. This means
that this orientation, usually called yaw angle, is not observ-
able using this sensing system without additional knowledge
of the nature of the contact.

Nevertheless, in an important number of these scenarios



there is a specific need for a precise estimation of the
two other degrees of freedom, which can be referred to as
roll and pitch angles, or simply tilt. These two degrees of
freedom describe the configuration of the pivot relative to
the gravitational field. They are then essential for maintaining
balance for legged robots [17], either for point contact cases
or in presence of flexibility at the ankle (e.g. HRP-2 robot
series). They may also allow drones and submarine robots
to achieve tasks requiring precise orientation with respect to
verticality such as construction or digging [7], [4].

In the context of these tasks, tilt estimation has been
the topic of an important amount of research. But the
vast majority of these works do not take into account the
kinematic coupling provided by the contact point and these
methods resort to consider that the accelerometer provides
only in average the direction of the gravitational field. This
approximation creates a systemic discrepancy between the
measurements and the model and leads to delays and misesti-
mations when this assumption is not verified. Few works take
into account the kinematic constraint of the contact in the
estimation of the tilt, but most of them only consider the case
where the robot can be modeled as a rigid body, specifically
regarding the position and orientation of the sensor. However,
the motion of the robot modifies the relative position and
orientation of the sensor to the pivot point and modifies
the measurements provided by the sensors. This motion is
usually well-known because it is not only provided by joint
encoders but also is the outcome of a motion controller with a
known dynamics. To our best knowledge, only two developed
works deal with state estimation for non-rigid pendulum-like
structures. However, both works emphasize on the modeling
of this kinematics and resorted to the use of Kalman filtering
techniques, which only provide an optimality guarantee with
regard to the linearized dynamics around the estimated state.
Therefore, in despite of the overall good performances of
these estimators there is no real proof of the stability of the
estimation error, especially if the estimator is intended to
provide state feedback for closed loop control.

In this paper we provide a state estimator which aims to
address all these shortcomings by providing a state estimator
for the tilt of a pendulum which uses an accelerometer and
a gyrometer, (i) without neglecting the linear accelerations
compared to gravity, (ii) well suited to the case of an
articulated robot, and (iii) with a proven Lyapunov stability.
Furthermore, this estimator reaches local exponential stabil-
ity performances, which makes it particularly suitable for the
use as a state feedback for closed-loop control.

The section II presents the issue treated in this paper
together with the model of the system and the sensors. The
section III presents the development of the state estimator.
The section IV analyses the stability of the estimation
error. Section V shows the performances of the estimator
in simulation, and finally the section VI discusses the results
and the properties of this estimator.

II. PROBLEM STATEMENT

The system we address is a robot linked to the environment
through a ball joint that we call pivot. Without loss of
generality we may consider that the pivot is located at the
origin of the inertial global frame. The configuration of
the pivot is a pure 3D rotation describing a transformation
between the global frame and the local frame of the robot,
also called control frame (C). Therefore we represent this
rotation by the special orthogonal matrix Rc ∈ R3×3. For
instance, the sensor s located at position cps ∈ R3 and
orientation cRs ∈ R3×3 in the control frame (C) is actually
at ps = Rc

cps and has the orientation Rs = Rc
cRs in the

global frame (W). This problem is sketched in Figure 1.
There is no sensor providing the pivot configuration.

Instead, the robot is equipped with an IMU consisting in
an accelerometer and a gyrometer, both of them are on three
axes. The position of this IMU may be not rigidly linked to
the ball joint, and can be located in another body of the robot.
Since the robot can modify its actuated joint kinematics
the IMU may move in the control frame. Therefore, we
have to consider its position cps ∈ R3, its orientation
represented by the orthogonal matrix cRs ∈ R3×3, together
with their respective first-order time-derivatives cṗs ∈ R3

and cωs ∈ R3 such that cṘs = S(cωs)
cRs, where S is the

skew-symmetric operator, i.e.

S

 ωx
ωy
ωz

 =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 . (1)

The values of cṗs, cRTs , cṗs and cωs can be obtained
through the positions and velocities of the joint encoders and
are often the outcome of a motion controller. Therefore, these
values are considered to be perfectly known.

The accelerometer provides the sum of the gravitational
field and the linear acceleration of the sensor, expressed in
the sensor frame. In other words

ya = RTs (g0ez + p̈s) , (2)

where ya, ps, Rs, g0 and ez are the accelerometer measure-
ments, the position and the orientation of the IMU, standard
gravity constant and a unit vector along the gravitational field
respectively.

The gyrometer provides the angular velocity of the IMU,
expressed in the sensor frame. In other words

yg = RTs ωs, (3)

where ωs is the angular velocity vector of the sensor in the
global frame such that Ṙs = S(ωs)Rs.

We can see from these equations that the measurements
are invariant regarding rotations around the gravitational field
vector ez . For instance, if we replace the pivot configuration
Rc by RzRc where Rz is a rotation around ez

Rz = I + sin θS(ez) + (1− cos θ)S2(ez), (4)

where θ is any angle in [−π, π], we obtain precisely the
same measurements ya and yg . Therefore, the orientation that



can be estimated through this sensing system is incomplete.
Nevertheless, we show here that one partial information
is observable and consists in RTc ez , the direction of the
gravitational field in the local frame of the robot. This data is
the most important variable required to control balance and
may be considered as a measure of “verticality” in general.

By replacing Rs and ps by RccRs and Rccps respectively
and performing time-derivations and identification with (3)
and (2) obtain

yg =
cRTs

cωs +
cRTs R

T
c ωc, (5)

ya = cRTs R
T
c

((
S(ω̇c) + S2(ωc)

)
Rc

cps + 2S(ωc)Rc
cṗs
)

+ cRTs
cp̈s + g0

cRTs R
T
c ez. (6)

where ωc is the angular velocity vector of the pendulum such
that Ṙc = S(ωc)Rc.

In the following section we develop the state observer for
the estimation of RTc ez .

III. STATE ESTIMATOR

A. State definition

By using properties of skew-symmetric matrices, we may
rewrite the equations (5) and (6) as

yg =
cRTs

cωs +
cRTs R

T
c ωc, (7)

ya = cRTs
((
S(RTc ω̇c) + S2(RTc ωc)

)
cps + 2S(RTc ωc)

cṗs
)

+ cRTs
cp̈s + g0

cRTs R
T
c ez. (8)

The first variable we define is the pivot angular velocity
expressed in the control frame y1 = RTc ωc. Replacing this
in (5) we have

y1 =cRs
(
yg − cRTs

cωs
)
, (9)

and since all the rightmost variables are known we may
consider y1 as known.

Let’s define also the following state variables:

x1 = S(cps)y1 − cṗs, (10)
x2 = RTc ez, (11)

with x1 ∈ R3 and x2 ∈ S2, with the set S2 ⊂ R3 is the unit
sphere centered at the origin, and defined as

S2 =
{
x ∈ R3/ ‖x‖ = 1

}
.

The variable x1 is also considered known since we know
cps , cṗs and y1. On the contrary, x2 is the state we aim at
estimating and cannot be obtained algebraically.

By left-multiplying Equation (8) by cRs and replacing the
expression of y1 of equation (9) we get

S(cps)R
T
c ω̇c + S( cṗs)y1 − cp̈s =

− S(y1) (S( cps)y1 − cṗs) + g0R
T
c ez − cRsya.

(12)

We notice that the left member of equation (12) is the
first order time-derivative of x1. This, together with the time-
differentiation of x2, provide us with the following dynamic

equations {
ẋ1 = −S(y1)x1 + g0x2 − cRsya,

ẋ2 = −S(y1)x2.
(13)

The system ((13)) is suitable for the observer synthesis.

B. State-observer and error dynamics:

In order to estimate x2 = RTc ez , we propose the following
state-observer{

˙̂x1 = −S(y1)x̂1 + g0x̂2 − cRsya + α(x1 − x̂1),
˙̂x2 = −S(y1 − βS(x̂2)(x1 − x̂1))x̂2,

(14)

where α, β are positive scalar gains which verify the condi-
tion βg0 < α2 and x̂1 and x̂2 are the estimations of x1 and
x2 respectively.

The initial value of x̂2 should be in S2. Then the dynamics
of the last equation ensures that the norm of this vector
remains constant in time. The initial value for x̂1 on its side
could be anywhere in R3.

We define the following estimation errors x̃1 = x1 − x̂1
and x̃2 = x2− x̂2, a time-differentiation of these expressions
provide us with the following error dynamics:{

˙̃x1 = −S(y1)x̃1 − αx̃1 + g0x̃2,
˙̃x2 = −S(y1)x̃2 + βS2(x̂2)x̃1.

(15)

To run the analysis of errors, we set zi = Rcx̃i. We notice
also that Ṙc = RcS(R

T
c ωc) = RcS(y1) and Rc(x̃2 + x̂2) =

ez , we obtain this new error dynamics{
ż1 = −αz1 + g0z2,

ż2 = βS2(ez − z2)z1.
(16)

The nice property of this new dynamics is that it
is autonomous and defines a time-invariant ordinary dif-
ferential equation (ODE) which simplifies drastically the
stability analysis. In fact, if one define the state ξ :=
(z1, z2) and the state space Υ := R3 × Sez with Sez ={
z ∈ R3| (ez − z) ∈ S2

}
, one can write (16) as ξ̇ = F (ξ)

where F gathers the right-hand side of (16) and defines a
smooth vector field on Υ .

IV. STABILITY ANALYSIS

A. Asymptotic stability

Define G0 = βg0
α2 and consider the following positive-

definite differentiable function V : Υ → R+

V =
‖αz1 − g0z2‖2

2
+ g20

‖z2‖2

2
, (17)

which is radially unbounded over Υ .
Theorem 1: The time-invariant ODE defined by (16) ver-

ifies the following
1) It admits two equilibrium points namely the origin

(0, 0) and ( 2g0α ez, 2ez).
2) All trajectories of (16) converge to one of the equilib-

rium points defined in item 1.



3) The equilibrium (0, 0) is locally asymptotically stable
with a domain of attraction containing the set

Vc :=
{
ξ = (z1, z2) ∈ Υ | V (ξ) < 2g20

}
. (18)

4) The system (16) is almost globally stable with respect
to the origin in the following sense: there exists an
open dense subset Υ0 ⊂ Υ such that, for every
initial condition ξ0 ∈ Υ , the corresponding trajectory
converges asymptotically to (0, 0).

Proof: Let’s prove the four items of the theorem
1) The equilibria are calculated by solving the equation

F (ξ) = 0, where F is the nonlinear function describ-
ing (16), we get the following{

0 = −αz1 + g0z2,

0 = βS2(ez − z2)z1.
(19)

The trivial solution is (0, 0) and the second solution is
calculated if we consider that (z1, z2) 6= (0, 0), so we
can write

RTc ωc, z1 =
g0
α
z2, (20)

0 = β
g0
α
S(ez − z2)S(ez)z2. (21)

We know that z2 ∈ Sez , so the only solution of (21)
is z2 = 2ez , which gives from (20) that z1 = 2g0

α ez .
This complete the proof of item 1.

2) The time derivative of (17) in view of (16) yields

V̇ =− α (1−G0) ‖αz1 − g0z2‖2

+ αg20G0z
T
2 S

2(ez)z2

− αG0

(
(αz1 − g0z2)T (ez − z2)

)2
. (22)

One easily verifies that V̇ < 0 if (z1, z2) is not
an equilibrium. Since (16) is autonomous and V is
radially unbounded, one can use Lasalle’s invariance
theorem. Therefore, every trajectory converges to a
trajectory along which V̇ ≡ 0.

3) Since V is non-increasing, V (ξ) < 2g20 at t = 0,
implies that ‖z2(t)‖ < 2 for every t ≥ 0. Since
the trajectory converges to one of the two equilibrium
points, it must be (0, 0) because this is the only one
contained in Vc.

4) The linearized system around the equilibrium
( 2g0α ez, 2ez) is given by the following dynamics

Ẋ = AX, (23)

with X =
( (

z1 − 2g0
α ez

)T
(z2 − 2ez)

T
)T

and A
is a constant matrix having the form

A =

 −αI g0I

βS2(ez) −2αG0S
2(ez)

 (24)

The characteristic polynomial of the matrix matrix A is given
by

P (λ) = λ (λ+ α)
(
λ2 + α (1− 2G0)λ− g0β

)2
. (25)

We find that this polynomial has two real positive roots,
which are given by

λ = α

√
(1 + 4G2

0)− (1− 2G0)

2
> 0, (26)

which means that the equilibrium ( 2g0α ez, 2ez) is unstable.
This completes the proof of the theorem.

B. Local exponential convergence

From equation (22) we can write the following

V̇ ≤ −α (1−G0) ‖αz1 − g0z2‖2 + αg20G0z
T
2 S

2(ez)z2
(27)

In order to find the conditions of exponential convergence,
let’s observe the following relations

zT2 S
2(ez)z2 = −‖z2‖2 +

1

4

(
‖z2‖2

)2
(28)

V̇ ≤ −α (1−G0) ‖αz1 − g0z2‖2 (29)

− αg20G0

(
1− 1

4
‖z2‖2

)
‖z2‖2

In the case of ‖V (ξ)‖ < 2g20 at t = 0, we can say it
exists a fixed ε > 0 such that 1− 1

4 ‖z2(t)‖
2
> ε, since the

equilibrium which correspond to ‖z2‖ = 2 is non attractive,
so we can write the following

V̇ ≤ −α (1−G0) ‖αz1 − g0z2‖2 − αg20G0ε ‖z2‖2 (30)

V̇ ≤ −min((1−G0, G0ε)α
(
‖αz1 − g0z2‖2 + g20 ‖z2‖

2
)

(31)
which can be written as

V̇ ≤ −2min (1−G0, G0ε)αV (32)

which gives the following inequality

V (t) ≤ V (0)e−2min(1−G0,G0ε)αt (33)

This leads to the local exponential convergence of the
errors to the equilibrium (0, 0).

V. SIMULATIONS

In this section, we present simulation results showing
the effectiveness of the proposed estimator. We generated
the signal cωs with trigonometric functions and generated
the trajectory of cRs by integration. Figure 2 shows time
plot of cRs represented by roll, pitch and yaw angles. We
generated the trajectory of cps by integrating the signal cṗs
which is the sum of filtered noise and a linear feedback
loop to maintain cps around the value (0, 0, 1.3). Finally
we generated ω̇c signals using trigonometric functions and
obtained ωc and Rc trajectories by integration. Afterwards
we generated the measurement signals ya for accelerometer
and yg for gyrometer using equations (5) and (6).

We have considered for the simulations the initial con-
ditions for the estimator which correspond to the initial
errors x̃1(0) = 0 and x̃2(0) =

(
−1.87 0.28 0.39

)T
.

The parameters of the estimator have been chosen as α =



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

-30

-20

-10

0

10

20

30

40

50

60

70

d
e

g

Euler angles in the Control frame (C)

Fig. 2. Plot showing the values of the orientation of the IMU in the control
frame (C) expressed using Euler angles (blue: roll, red: pitch, orange: yaw)

19.8 and β = 10, so the condition (G0 = g0β
α2 < 1) is

verified. We performed two simulation tests, one without
considering noise and one with white centered Gaussian
noise with standard deviation of 0.04 (normalized) added
to the three elements of vector measurements yg and with
standard deviation of 0.2 (normalized) added to the three
elements of vector measurements ya.

Figure 3 on top and bottom shows the evolution of the
estimation errors x̃1 without noise and with noise, respec-
tively. Figure 4 and Figure 5 show the estimation tracking
of the variable x2 and the estimation errors x̃2 with respect
to time, without and with noise respectively. We can see that
the estimation error converges to zero in about one second.
For the noisy case, even if the estimation error x̃1 shows
some sensitivity, we see that the error x̃2 filters this noise in
a relatively efficient way.

VI. DISCUSSION AND CONCLUSION

The estimation of tilt and attitude in general is a topic of
active research, especially when IMU signals are used. Ac-
celerometers are at the core of this problem mainly because
their signal contains the value of the gravitational field in
the frame of the sensor. In static cases, this property allows
for an algebraically accessible tilt measurement. However,
in the dynamic cases, this measurement is mixed with the
linear acceleration in an algebraically indistinguishable way.
In many works the acceleration is considered negligible
compared to gravity field [18], and is therefore considered as
a noise. Filtering approaches are commonly used to remove
this signal [8].

Accelerometers are also commonly used together with
gyrometers. Gyrometers provide rotation velocities in the
local reference frame. Their signals are commonly merged
with accelerometers using Kalman Filtering [9], but are often
exploited to correct the filtered accelerometer signals using
complementary filtering [10].

Several other works rely on the presence of additional data
to reconstruct the attitude. For instance, magnetometers [12]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

(r
a

d
/s

)

Estimation error of x
1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(r
a

d
/s

)

Estimation error of x
1

Fig. 3. Plot showing the estimation error for x1. On the top, the case
where there is no noise, and on the bottom the noisy case. The colors blue,
red, orange represent the three components of this vector respectively.

or vision [11] can be used to retrieve redundant attitude
signals allowing to reduce the effect of accelerometer errors.
Finally, a fusion with external measurements such as GPS [3]
or landmark relative position [16] allow to better distinguish
the linear acceleration from gravitational field measurements
and allows to observe the linear part of the kinematics.

We see through this brief summary that the translational
component of the motion of the IMU is commonly con-
sidered either as a noise that requires to be deleted or
as an independent dynamics which needs to be observed.
However, in the specific case of the pendulum, this linear
part of the kinematics is coupled with the angular motion
which explains the presence of the angular velocity and event
angular acceleration in the signals of the accelerometer (see
Equation (6)). This enables us to use this signal without
any need of filtering and to still be able to reconstruct
tilt despite a high level noise level. The translation-rotation
coupling is entirely due to the presence of the anchor point
of pivot. However, in several works addressing cases similar
to pivot link position estimation are still resorting to classical
methods where the IMU is considered as an unconstrained
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showing a comparison between respective components of x2 in red and its
estimation x̂2 in blue. On the bottom we see the evolution of the estimation
error. The colors blue, red, orange represent the three components of this
vector respectively.

floating object, even if the reconstructed attitude are merged
with encoder data afterwards [6]. It is worth to note that in
addition to orientation, the orientation estimation a pendulum
provides also data on the position of the limbs of the robot,
because of the pivot constraint. This relationship allows also
to design position controllers on the base of attitude esti-
mators, similarly to hand position compensation presented
in [1].

Only few works dealt with attitude estimation taking into
account the pivot constraints. One example is the tilt esti-
mation for rigid pendulum around the pivot using multiple
accelerometers [15]. This observer was used especially for
balancing the reaction wheel cube on edges and corners [5].
In addition to the requirement of multiple accelerometers at
different locations is only limited to rigid pendulum cases.
Another work from legged robotics community considers
also contact information [2]. This estimator considers the
case of multiple contacts and uses an extended Kalman Filter.
The contact information is introduced in the model kinemat-
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Fig. 5. Estimation of x2 in the noisy case. On the top, three plots showing
a comparison between respective components of x2 in red and its estimation
x̂2 in blue. On the bottom we see the evolution of the estimation error x̃2.
The colors blue, red, orange represent the three components of this vector
respectively.

ics but only at the prediction step rather than as a constraint.
Their model is intended to take into account the cases of
contact slippage, but this variable is not observable using
inertial sensors. Another work uses also extended Kalman
Filtering for a humanoid robot having flexible contacts with
the environment [1]. The contact information was introduced
as pseudo measurements in order to allow the pivot constraint
to be slightly violated. This observer was extended to take
into account the dynamical model of the flexibility [13].
However the use of extended Kalman filtering only provides
the guarantee of optimality around the linearized dynamics
around the predicted state and gives no proof of convergence.

To our best knowledge, our estimator is the only one
providing almost globally convergent estimation of tilt for
the case of non-rigid pendulum system. The only orientation
data missing in the estimator is the orientation around the
gravitational field direction, or yaw angle. This orientation
is proven to be out of reach of this measurement system.
Therefore, the addition of other sensors such as magnetome-



ters are necessary to obtain this estimate. The introduction
of this kind of sensors is the topic of a possible improvement
of the presented method.

Finally, the introduction of a model for the dynamics of
the pivot could also increase the quality of the observation,
specifically by creating coupling between the measurement
data of the IMU and other values which are non-observable
otherwise. These values include yaw angle without needing
additional data, but may go to the estimation of contact forces
with the environment [13]. This is also the topic of next
developments regarding this kind of systems.
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