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Drop spreading at the impact in the Leidenfrost boiling
G. Castanet,1,2,a) O. Caballina,1,2 and F. Lemoine1,2
1LEMTA, UMR 7563, Université de Lorraine, Vandoeuvre-Lès-Nancy 54518, France
2LEMTA, UMR 7563, CNRS, Vandoeuvre-Lès-Nancy 54518, France

Although the Leidenfrost effect has been extensively studied in the past, one challenge
for the modeling of this phenomenon remains, namely, how to determine the effect
induced by the presence of a vapor film on the frictions exerted on the drop. To
address this issue, experiments are carried out on liquids with very different viscosities
including water, ethanol, and several mixtures of water and glycerol. The deformation
of droplets of a few hundred micrometers, impinging a perfectly smooth solid sur-
face heated above the Leidenfrost temperature, is observed by shadowgraphy using a
high-speed camera. Experimental results are compared to a theoretical model which
is based on an inviscid asymptotic solution for the flow inside the lamella. This model
also considers a lamella thickness which does not depend on the viscosity, the surface
tension, and thus on the Reynolds and Weber numbers. This description of the lamella
is valid if Weber and Reynolds numbers are high enough. Mass and momentum
balances applied to the rim bounding the spreading lamella yield an equation for
the rim motion which is then solved numerically. This equation accounts for the
momentum transferred to the rim by the liquid coming from the lamella, the capillary
forces, and the viscous stress at the separation between the lamella and the rim. The
comparison between the model and the experiments suggests that the liquid at the
bottom edge of the lamella is dragged by the vapor film given that the vapor velocity in
the vapor film is significantly larger than that of the liquid. This process significantly
increases the drop spreading for the low viscosity liquids. An analysis of the viscous
boundary layer which develops at the bottom edge of the lamella is found to confirm
this scenario.

I. INTRODUCTION

The impact of droplets on superheated surfaces is central to many technological processes. In
combustion engines, the impact of fuel droplets is responsible for the deposition and build-up of liquid
films in the manifold of gasoline engines1 which usually result in the inhomogeneous and incomplete
combustion of the fuel and the emission of pollutants. Drop interactions with superheated surfaces
are also encountered in the spray cooling of hot metals in the steel industry. An ideal quench would
generally process at a very fast rate to avoid the precipitation of the alloy constituents and thus pro-
duce alloys of better strength and hardness. However, quenching begins in the film boiling regime,
at wall temperatures well above the Leidenfrost temperature. An insulating film of vapor develops at
the interface between the liquid and the solid surface. The absence of direct contact between the wall
and the liquid coolant is highly detrimental to the heat transfers.2 The control and optimization of
such processes remain challenging given current incomplete knowledge of the complex flow and heat
transfers associated with the drop/wall interaction, especially in Leidenfrost conditions. The outcome
of an impact is influenced by many parameters related to the impact conditions, liquid and air prop-
erties, and the nature of the substrate and its topology. Two main dimensionless parameters are usually
used to describe the impact conditions: the Weber number We = ρU2

0 d0/σ and the Reynolds number
Re = U0d0/ν, where U0 and d0 are the impact velocity and the initial droplet diameter, respectively,

http://dx.doi.org/10.1063/1.4922066
http://dx.doi.org/10.1063/1.4922066
http://dx.doi.org/10.1063/1.4922066
http://dx.doi.org/10.1063/1.4922066
http://dx.doi.org/10.1063/1.4922066
http://dx.doi.org/10.1063/1.4922066
http://dx.doi.org/10.1063/1.4922066
http://dx.doi.org/10.1063/1.4922066
http://dx.doi.org/10.1063/1.4922066
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
mailto:guillaume.castanet@univ-lorraine.fr
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4922066&domain=pdf&date_stamp=2015-06-15


ν, ρ, and σ are, respectively, the kinematic viscosity, density, and surface tension of the liquid. The
Ohnesorge number, Oh, is also frequently introduced but this is a combination of the Reynolds and
Weber numbers (Oh = We1/2Re−1). Different evolutions have been reported in the literature depend-
ing on the impact conditions and these have included drop deposition, partial or complete rebound,
prompt splash, corona splash, and receding breakup.3 These outcomes are also influenced by whether
the collided surface is smooth, rough, and porous, dry or wetted. In the film boiling regime, the
non-wetting of the hot surface reduces the possibilities to rebound and splashing.4,5 At low Weber
numbers, drops spread radially after impact, possibly form a lamella bounded by a torus rim, reach
a maximum spreading diameter dx,max, and then recoil before bouncing without any disintegration.
At higher Weber numbers, the onset of droplet disintegration is characterized by the formation of
a small number of secondary droplets, usually one to three satellite drops (partial rebound). Above
a critical Weber number (typically We > 80 for water), the drop breaks up into numerous smaller
droplets (splashing regime). Previous works have studied the main characteristics of the dynamic of
a droplet impinging a hot wall in the Leidenfrost conditions: the spreading diameter,4,6,7 the loss of
momentum,4,8 the contact time of the drop near the wall,6,8 the spreading time,6,9 the onset of the
splashing,10 and the dynamic Leidenfrost temperature.11,12 All these characteristic properties have
been shown to be function of the Weber number, but for some, the exact nature of this function is
still a matter of debate. Unlike the impact on isothermal solid surface,13,14 the influence of the liquid
viscosity has not yet been subject of thorough investigation in the film boiling regime. Most of the data
reported in the literature concern water and ethanol,4,7 which have rather low and similar viscosities
but different surface tensions.

Basically, the spreading behavior of liquid droplets impinging on isothermal surface is affected
by the wall friction and by the forces associated with wettability. These forces are not relevant in
the Leidenfrost regime, and the drop can be intuitively expected to spread over a larger area. This
was recently confirmed by comparing the spreading diameter in the case of an impact on a super-
hydrophobic substrate and in Leidenfrost conditions.7,15 It was suggested that the vapor released in
the Leidenfrost effect could drag the liquid and thus lead to higher drop spreading. According to
Tran et al.,16 maximum spreading occurs when the shear stress at the interface with the vapor film
balances the capillary force. Based on that assumption, they were able to theoretically determine
that dx,max/d0 ∼ We3/10, but this scaling does not fully match with the experiments which instead
suggested dx,max/d0 ∼ We0.39 for We > 10.

In the past, approaches based on the balance of mechanical energies have been frequently
used to model droplet spreading. They attempted to incorporate the viscous dissipation by making
certain basic assumptions about the flow field inside the drop.17–19 Also, in most of these models,
the droplet shape is approximated by a disc of uniform thickness, even though the shape of the
drop is never similar to that of a flat disc. Usually, no liquid motion is considered at the time of
maximum spread whereas in fact there are rotational velocities in the rim that develop at the edge
of the spreading lamella. Recent studies20–23 indicate that the liquid motion inside the lamella can
be described well by an axisymmetric inviscid flow with a radial velocity ur ∼ r/t. Consequently,
viscous dissipation would not occur inside the lamella where the motion is nearly conservative but
rather in the rim where there is basically a rotational flow and at the bottom edge of the lamella
where frictions are exerted on the droplet.

The present study is an experimental investigation of the spreading of droplets in Leiden-
frost conditions. Shadow imaging with a high-speed camera is used to record the deformation of
obliquely impacting droplets. Some of the main drop evolution characteristics such as the maximum
spreading diameter can be determined from the image processing. Also, mixtures of water and
glycerol offer the possibility of covering a wide range of impact conditions. Measurements are
analyzed on the basis of a theoretical approach initiated by Roisman et al. to describe the spreading
of droplets in the impact on a wetting surface24,25 or in the binary collisions.26

II. EXPERIMENTAL SETUP AND MEASUREMENT TECHNIQUES

The experimental setup used to study the dynamic of the droplets in the Leidenfrost regime
is shown in Fig. 1. A piezoelectric injector is used to produce a chain of mono-sized and equally



FIG. 1. Experimental setup used for the observation of the drop impact in the conditions of Leidenfrost boiling.

spaced droplets. The droplet generation results from the breakup of a cylindrical liquid jet through a
Rayleigh-type instability. The vibrations of a piezoceramic attached to the injector body enable the
instability of the liquid jet to be triggered which eventually results in the disintegration of the jet into
a monodisperse droplet stream. In addition to the vibration frequency of the piezoceramic, the inlet
pressure as well as the diameter of the injector orifice can be changed to adjust the drop size. The
selected sizes for the orifice of the injector are 50 µm and 100 µm. This enables the production of
droplets ranging from 100 µm to 300 µm with a velocity set to a few m/s. High viscosity liquids like
glycerol are relatively difficult to inject in a stable and periodical manner, and therefore, the volume
fraction of glycerol in the water/glycerol mixtures was limited to 70%. The droplet generator is
rotated to modify the direction of the droplet stream and hence the component of the drop velocity
normal to the wall. Impacts are not normal to the wall to avoid collisions between incoming and
outgoing drops. Coalescence between consecutive drops can be sometimes observed at the wall if
the spacing between them is small. The droplet temperature at the injection is set at 23 ◦C for all the
experiments reported in this study.

The wall is a 0.5 mm thick nickel plate heated by electromagnetic induction. Although the
wall temperature was observed to have little influence on the drop dynamics in the film boiling
regime,7,12 our experiments are performed well above the Leidenfrost temperature. The Leidenfrost
temperature is known to increase with the impact velocity since the time for the formation of the
vapor film becomes shorter.11 The wall temperature is fixed at 600 ◦C, which is far beyond the
dynamic Leidenfrost temperature for all the cases considered in the experiments. Surface roughness
is also known to increase the Leidenfrost temperature and can alter droplet dynamics as the vapor
film can be extremely thin at the initial stage of the impact. Karl and Frohn4 observed that the onset
of the fragmentation is dependent on the surface roughness. The surface of the nickel sample is thus
polished like a mirror. Profile measurements of the solid surface indicate a roughness average Ra
of about 0.8 µm. It is the same roughness for each measurement as the sample is regularly polished
between the experiments.

A high-speed camera (Phantom v710, Vision Research) is used to visualize the drop defor-
mation. The droplets are illuminated from behind to get shadow images as illustrated in Fig. 2.
A zoom lens (OPTEM zoom 125C) enables us to observe the drop impacts with a high magnifi-
cation. To visualize the complete deformation process, the resolution is about 5 µm per pixel for
100 µm drops. Given the small droplet size, the contact time is in the order of 100 µs. For this
reason, time-resolved visualizations of the impacts require high acquisition rates close to 100 000



FIG. 2. Characterization of the deformation in the case of a drop made of 65% water and 35% glycerol by volume at
T0= 23 ◦C (d0= 163 µm,U0= 4.5 m/s,We= 53, and Re = 230). (a) Main parameters of the detection, (b) a typical shadow
image, (c) reconstruction of the time evolution of the drop deformation from the shadow images.

fps. This is about 10 times faster than the frequency of the droplet injection; therefore, about 10
drops can be observed at the same time in an image (Fig. 2). A very bright light source (HMI
400W) is required so we can obtain contrasted shadow images at a short exposure time (presently,
1 µs) and thus avoid any motion blur. An image processing program is developed to characterize
the most important parameters of the droplet deformation. The method used for the detection and
the tracking of the drop trajectories has been described in more detail in Castanet et al.27 The
extraction of the drop contours is adapted from the so-called Laplacian of the Gaussian (LoG)
that is a common method for blob detection in the field of computer vision. Main adaptations are
for the separation of overlapping particles and the size correction of defocused particles. Several
characteristics of the particles are calculated after the detection including the equivalent diameter
d of a spherical particle that exhibits the same sectional area, the horizontal and vertical lengths
of the particle (namely, the dimensions of its bounding box) which are denoted dx and h (Fig.
2(a)). Also, the centers of the particles are localized. When the drop is in contact with the wall, the
contact length dc is also computed. Here, the word “contact” is not well appropriate for the film
boiling regime, since a small vapor layer separates the liquid and the solid wall. In this context,
contact simply means that the distance between the liquid and the wall is below the resolution of
the visualization system (typically, 5 µm/pixel). In a second stage, the position of the particles is
used to track their trajectories. The method also described in Castanet et al.27 is based on a Multiple
Hypothesis Tracking (MHT) algorithm designed to track targets in cluttered environment.28 Tracks
are formed upon the hypothesis that there is a certain regularity of the particle motion. For each drop
(whose trajectory has been reconstructed), it is possible to plot the evolution of its characteristic
dimensions (h,dx, and dc) as a function of the time the droplet is in contact with the wall. Such a
plot is presented in Fig. 2(c). Given the periodicity of the droplet streams, temporal evolutions are
superimposed for every droplet. The curves in Fig. 2(c) correspond to the superimposition of about
200 drops. Each drop is seen about 20 times before leaving the field of view of the camera meaning
that the data are the result of 1000 images.

III. GENERAL PHENOMENA

As shown in Fig. 2(c), the deformation process can be divided into three consecutive phases:
kinematic, spreading, and recoiling. The kinematic phase is the initial stage of impact. A shock
wave is created at impact because of liquid compression.29 During this phase, the spreading lamella
is not yet visible. The bottom of the drop is stopped at impact, but the upper part of the drop
is still moving with an undisturbed velocity so the drop looks like a cut sphere (Fig. 2(c)). The
evolution of the drop shape can be easily described based on purely geometrical considerations. The



FIG. 3. Time evolution of the horizontal spreading dx for drops made of 40% water and 60% glycerol by volume at
T0= 23 ◦C. The color lines are experimental data.

dimensionless height h/d0 is given by 1 − t∗, where t∗ is the time made dimensionless by the initial
droplet size d0 and velocity U0. The approximation of a truncated sphere yields the dimensionless
contact diameter dc/d0 to be equal to 2

√
t∗, while the ratio dx/d0 remains equal to 1. These evolu-

tions are clearly visible in Figs. 3–5, where the geometrical parameters dx/d0, dc/d0, and h/d0 are
plotted as a function of the dimensionless time t∗ for different impact conditions. The drop evolution
during the kinematic phase is universal; i.e., it does not depend on the drop size or the liquid
properties. In Fig. 4, the dimensionless contact diameter dc/d0 is displayed on a semi-log scale,
which reveals that the scaling progressively shifts from t∗0.5 to a higher exponent. The kinematic
phase is limited to t∗ < 0.1, which is in line with previous observations.30

In the spreading phase, a lamella is ejected from the base of the drop and forms a thin film with
a bounding rim because of the capillary effects (Fig. 2(c)). The drop evolution in this phase is a

FIG. 4. Time evolution of the contact diameter dc for drops made of 40% water and 60% glycerol by volume at T0= 23 ◦C.
The color lines: experimental data; the black line: illustration of an evolution as t∗1/2.



FIG. 5. Time evolution of the droplet height h for different liquids: (a) water, (b) mixture of 70% glycerol/30% water by
volume at T0= 23 ◦C. The color lines: experimental data; the dotted line: 1− t∗, theoretical evolution in the kinematic phase;
the solid black line: droplet thickness based on Eq. (10) at r = 0 with η = 0.39 and τ = 0.25.

function of We as illustrated in Figs. 3–5. The maximum spreading diameter is smaller and reached
earlier for the low Weber numbers (Fig. 3).

In Fig. 5, the lamella thickness h at the axis r = 0 is found to behave as 1/t∗2. However, after
a certain time, the top of the lamella becomes hidden by the rim because the images are only side
views. A clear change in the slope of the blue curves can be observed in Fig. 2(c) when the top
of the lamella becomes hidden at t∗ = 1.1 and when it reappears at t∗ = 3.4. Measurements reveal
that the rim thickness is increasing at an almost constant rate. The height of the rim appears to
decrease with the Weber number. However, this does not mean that the rim is less voluminous as
the spreading radius dx increases with We (Fig. 3). After the spreading phase, the drop begins
to recede radially. The recoil is initiated by the dominating surface forces which restore the drop
shape minimizing the free surface energy. During this phase, the rim merging develops with the
formation of a vertical finger-like jet. If We is high enough, one or two small drops may detach at
the top of this liquid jet, as visible in Fig. 2(c). The reproducibility of this fragmentation process is
not high. The time for the formation of satellite drops may fluctuate during experiments. Also, the
scattering of the data was found to be more pronounced in the recoiling phase. Surface oscillations
are gradually damped after the drop leaves the wall.

IV. MODELING OF THE DROP SPREADING

The model for the drop spreading is adapted from an approach developed by Roisman et al. to
describe the spreading of drops on dry and wetting surfaces,24,25 and the binary collisions of drops26

given the similarities between these different processes. It should be noted that the definition for the
Weber and Reynolds numbers is generally different in the head-on collisions of equal drops. The



Weber and Reynolds numbers used to describe the binary collision of drops are usually based on the
relative velocity between the drops, which is the double of the “impact” velocity onto the symmetry
plane.

A. Description of the flow in the lamella

The axisymmetric spreading of a thin free liquid sheet is used as the basis for the description
of the lamella. The flow in the sheet and the evolution of the sheet thickness can be determined by
considering the mass and momentum balances in the cylindrical coordinate system (r, φ, z) fixed at
the axis of the sheet.21 In the following, the thickness of the sheet is denoted by h (r, t) while ur (r, t)
refers to the radial velocity averaged through the sheet cross section. The mass balance expresses
the change in volume of a sheet element due to the mass volume flux gradient in the radial direction,

∂ (rh)
∂t
+
∂ (rhur)

∂r
= 0. (1)

The momentum balance accounts for the capillary pressure applied to the free surface of the
sheet and the internal stresses applied to the cross section of the sheet element,

ρ
∂ (rhur)

∂t
+ ρ

∂
�
rhu2

r

�

∂r
=

∂ (rhσrr)
∂r

− hσφφ + pσr
∂h
∂r

. (2)

In this expression, σrr and σφφ are the components of the stress tensor in the radial and polar
directions, respectively, and pσ is the pressure jump which appears at the surface of the liquid sheet
due to surface tension. Given the small thickness of the liquid sheet, a good way of approximately
defining the axial component of the stress tensor is to consider that σzz = −pσ throughout a cross
section of the sheet. Assuming the liquid incompressibility (σrr + σφφ + σzz = −3p), the stress
components σrr = −p + 2µ∂ur/∂r and σφφ = −p + 2µur/r can be determined by

σrr = −pσ + 2µ
(

ur

r
+ 2

∂ur

∂r

)
, (3)

σφφ = −pσ + 2µ
(
2

ur

r
+
∂ur

∂r

)
. (4)

Using the expressions of σrr , σφφ, and mass conservation (1), momentum equation (2) can be
rewritten in the form

ρ

(
∂ ur

∂t
+ ur

∂ ur

∂r

)
= −∂pσ

∂r
+ 4µ


1
h
∂h
∂r


ur

2r
+
∂ ur

∂r


+

∂

∂r


1
r
∂ (r ur)
∂r


. (5)

For high Reynolds and Weber numbers, the spreading liquid sheet rapidly becomes thin and
smooth. The capillary pressure pσ can be neglected in Eq. (5) and bearing in mind the fact that the
gradient of the sheet thickness is small

�
h−1∂h/∂r ≪ 1

�
, further simplifications can be made in Eq.

(5),

∂ur

∂t
+ ur

∂ur

∂r
= 4ν

∂

∂r


1
r
∂ (r ur)
∂r


. (6)

This equation still takes into account some effects of the viscosity which have not been totally
eliminated. It is similar to the Navier–Stokes equation in the radial direction with 4ν being the
effective kinematic viscosity in the sheet. Equation (6) can be resolved by applying self-similar
solutions as follows:

ur =
f (ξ) r
t + τ0

, (7)

with ξ = r/

ν (t + τ0), and τ0 is a constant related to the velocity gradient at the initial time. An

ordinary differential equation satisfied by f (ξ) is obtained by substituting Eq. (7) in Eq. (6). The
general solution of this non-linear ODE is given by Eq. (4.10) in Roisman et al.26 As ξ approaches 0



(i.e., for large times and small radii), the function f (ξ) tends toward the integration constant A and
the radial velocity in the sheet can be expressed as the asymptotic solution,

ur =
A r

t + τ0
with ξ → 0. (8)

In this expression, fixing A equals 1 allows to find a velocity field identical to the inviscid
asymptotic solution formerly derived by Yarin and Weiss.20 It should be noted that the case A = 1,
in addition to correspond to the inviscid asymptotic solution, still satisfies Navier-Stokes equation
(5) with its viscous term. In principle, values of A slightly different from 1 are also possible. How-
ever, as pointed out by Roisman et al.,26 these would lead to solutions where f (ξ) rapidly diverges
from unity as ξ increases.

The distribution of the liquid film thickness h(r, t) can be specified by substituting the asymp-
totic solution for radial velocity (8) in mass balance (1). A general solution of the partial differential
equation verified by h(r, t) has the following form:

h =
τ2A

0

(t + τ0)2A
H0



rτA
0

(t + τ0)A

, (9)

where H0 is an universal function that does not depend a priori on the Reynolds and Weber num-
bers. Equation (9) predicts that the liquid thickness at r = 0 evolves as 1/t2A. As shown in Fig. 5,
there is experimental evidence that the lamella thickness at r = 0 behaves as 1/t2. Consequently, a
value of A = 1, corresponding to the inviscid asymptotic solution, is expected to effectively describe
the radial velocity inside the droplets and the evolution of the lamella thickness. In this respect, the
spreading of droplets in the Leidenfrost boiling is not so different from the impact on a wetting
surface or the binary collision of droplets, for which the lamella thickness has also been reported to
behave as 1/t2.21,31,32 Based on numerical simulations, Roisman et al.,21 proposed to approximate
the thickness distribution of the lamella using a Gaussian profile,

h∗ =
h
d0
=

η

(t∗ + τ)2 exp
(
− 6 η r∗2

(t∗ + τ)2
)
, (10)

where η = 0.39, τ = 0.25, r∗ = r/d0, and t∗ = tU0/d0. Eggers et al.22 also evaluated H0 using
numerical simulations. Their result compares very well with (10), although they did not use a
Gaussian function to approximate H0.31 According to Eq. (10), the shape of the lamella does not
depend on Reynolds and Weber numbers which is supported theoretically at high Reynolds and
Weber numbers. As the flow is mainly governed by inertia, it is understandable that the dimen-
sionless shape of the lamella should not depend on the impact conditions. The numerical results
reported by Roisman et al.21 suggested that approximation (10) is acceptable for Re > 25. Also,
they carried out this verification for drop impacting on a symmetry plane and for We > 100 and
Re > 10 whereas the Reynolds and Weber numbers are sometimes lower in the work presented in
this paper (Table I). Nevertheless, good agreements with Eq. (10) can be observed in Fig. 5 at the
central axis (r∗ = 0) beyond t∗ = 0.5. However, this validation is limited to the central region of the
lamella and to the time period when the top of the lamella is above the rim. Near the edge of the
lamella, asymptotic solution (8) and thickness profile (10) can be less reliable since ξ takes more
time to approach 0. Basically, Eqs. (8) and (10) should be considered as approximations which
remain valid for high Reynolds and Weber numbers in the limit as ξ → 0. Recently, Lastakowski
et al.33 measured the thickness profile of the lamella based light absorption technique. Since the
droplets are observed from the top in their method, the thickness profile can be observed over a large
time period compared with side-view imaging techniques. Based on the experiments, Lastakowski
et al.33 found that h∗ (r∗ = 0) ≈ 0.4/(t∗ + 0.5)2 shows good agreement with their measurements of
the central thickness of the lamella. However, this fitted expression was established for relatively
large times t∗ > 1.5 and yields a central thickness significantly smaller than in our measurements.



TABLE I. Overview of the experimental conditions under investigation.

d0 (µm) U0 (m/s) We Re Oh

Water 101–163 1.57–6.10 4–52 175–810 9.85 × 10−3

Ethanol 109–139 0.84–3.10 3–40 71–256 2.5 × 10−2

Water 65%–glycerol 35% 160–164 1.3–5 4–66 65–225 3.16 × 10−2

Water 56%–glycerol 44% 145–154 1–4.5 3–50 34–140 5.02 × 10−2

Water 50%–glycerol 50% 114–129 2–6.7 9–88 38–111 8.22 × 10−2

Water 40%–glycerol 60% 170–200 1–5 3–86 15–78 1.19 × 10−1

Water 35%–glycerol 65% 98–159 3–7.7 15–152 17–67 1.93 × 10−1

Water 30%–glycerol 70% 230–297 1.8–5.5 14–160 17–63 2.16 × 10−1

B. Propagation of the rim

The dynamics of the rim is inferred from the mass balance of the rim and the momentum
equation applied to the rim.25,26 The momentum balance accounts for the capillary force Fσ at the
free surfaces, the inertia of the liquid entering the rim Filr , and the viscous stress Fv at the interface
between the lamella and the rim (i.e., between the light grey and dark grey regions in Fig. 6),

ρWRR̈R = Filr − Fv − Fσ at r = RR, (11)

where RR and WR are, respectively, the rim radius and the rim volume. The inertia of the liquid
entering the control volume in dark grey corresponding to the rim in Fig. 6 can be expressed as

Filr = ρ
�
ṘR − urim

�2SlR, (12)

where urim corresponds to the averaged radial velocity at r = RR given by Eq. (8) and SlR =
2πRRh (RR) is the separation surface between the lamella and the rim. The capillary force Fσ can be
determined by

Fσ = SlR σ

(
2
h

)
= 4πRR σ. (13)

Neglecting Fv and R̈R in Eq. (11), the balance between the forces of inertia and surface tension
leads to ρh

�
ṘR − ur

�2
= 2σ, which is a reminiscent of the Culick’s law for the receding velocity of a

liquid film.34

The force Fv in Eq. (11) originates from the viscous stresses at the separation surface between
the lamella and the rim. Obviously, viscous dissipation is predominant within the rim, but the
viscous forces arising from the liquid motion inside the rim do not affect the motion of the rim, as
they correspond to internal forces. Also, in the model, it is considered that no force is exerted by
the vapor film directly on the rim surface. The vapor film exclusively acts upon the lamella because
of the large contact area between both of them (much larger than the contact area with the rim). In
the following, the lamella is first assumed to slide perfectly over the vapor film. This assumption
considerably simplifies the problem, since no boundary layer would develop at the bottom edge of
the spreading lamella, meaning that radial velocity (8) and thickness profile (10) can be applied
without any restriction other than those already mentioned in Sec. IV A (high Re and We). If

FIG. 6. Schematic view of the droplet geometry considered in the modeling: a torus of circular section (dotted lines) featuring
the rim (dark grey region) bounded by a Gaussian-shape lamella (light grey region).



frictions are exerted on the lower side of the droplet, the shear stress over the lamella will produce
a boundary layer in the lamella which needs to be taken into account by modifying the inertia of
the liquid entering the rim. This scenario will be further discussed in Secs. VI and VII. Substituting
radial velocity (8) with A = 1 in Eq. (3), the stress tensor component σrr becomes

σrr = 6µ/ (t + τ0) . (14)

In this expression, the capillary pressure pσ is neglected as it is very small for the spreading of a thin
lamella at high Weber number. From Eq. (14), the viscous force Fv can be expressed as

Fv = SlR σrr . (15)

It is interesting to note that viscous stresses are not totally eliminated even though the inviscid
flow solution (A = 1) is used in the model and no friction is acting on the lower side of the droplet
(assumption of perfect sliding over the vapor layer).

Momentum equation parameters (11) are made dimensionless using the droplet diameter d0 and
the impact velocity U0. This yields the following expression:

W ∗
R

2πR∗R h∗L
R̈∗R =

�
u∗rim − Ṙ∗R

�2 − 6
Re (t∗ + τ) −

2
We h∗L

, (16)

with h∗L = h∗
�
R∗R

�
and u∗rim = R∗R/ (t∗ + τ). Momentum equation (16) is supplemented by the conser-

vation of the liquid volume. The non-dimensional volume of the rim W ∗
R is determined from lamella

thickness (10),

W ∗
R =

π

6
−
 R∗

R

0
2π h∗dr =

ρ

6
exp


−

6 η R∗ 2
R

(t∗ + τ)2

. (17)

Equations (16) and (17) form a set of equations which need to be solved to describe the dynamics of
the drop spreading. A parallel can be drawn with the head-on collision of identical drops, for which
there is also a perfect sliding condition at the symmetry plane where the two drops enter in collision.
In Roisman et al.,26 equations describing the head-on collisions are basically the same except that
the capillary term in Eq. (16) is replaced by 1/

�
We h∗L

�
, and W ∗

R is multiplied by two. Eggers et al.22

and Lastakowski et al.,33 derived an equation similar to Eq. (16) to describe the rim propagation,
but they neglect the viscous force Fv in their analyses. In Eggers et al.,22 the inertia of the liquid
entering the rim is also corrected for the boundary layer that develops in the lamella. In this study
dealing with drop impacts on hydrophobic substrates, frictions appear due to the no-slip condition at
the wall on which the droplet is deposited.

Ordinary differential equation (16) is solved using the Runge-Kutta method. For the resolution,
the initial conditions for R∗R and Ṙ∗R are fixed at t∗i = 0.5 since thickness profile (10) is relevant at
that time, at least close to the central axis (Fig. 5). Generally, setting the initial conditions at t∗ = 0.5
can be a problem. But, in our case, the initial conditions can be obtained from the experimental
profiles of the spreading diameter dx. The initial values of RR and ṘR are adjusted so that dx has
the same value and rate of expansion in the simulations and in the measurements at t∗ = 0.5. Finally,
assuming that the rim is a torus with a circular section of radius a (Fig. 6),

WR = (2πRR) πa2. (18)

The spreading diameter dx is obtained by

dx = 2 (RR + a) . (19)

Simulations are stopped when RR = a which corresponds to the merging of the inner edge of the
rim in the receding phase.

V. MAXIMUM SPREADING DIAMETER: SCALING ANALYSIS

The liquids used in the experiments are water, ethanol, and several mixtures made of water
and glycerol. The main properties of these liquids are summarized in Table II. Two temperatures



TABLE II. Physical properties of the liquids studied. For the water/glycerol solutions, proportions of the mixtures are
indicated in volume fractions and the physical properties are extrapolated from “Physical properties of glycerine and its
solutions.”35

23 ◦C 100 ◦C

ρ
�
kg ·m−3� µ (mPa · s) σ

�
mN ·m−1� ρ

�
kg ·m−3� µ (mPa · s) σ

�
mN ·m−1�

Water 997.6 0.94 72.3 958 0.28 60.5
Ethanol 789.7 1.14 22.0 738.8a 0.41a 17.3a

Glycerol 1259.8 924.00 63.1 1209.3 14.8 58.6
Water 65%–glycerol 35% 1099.1 3.51 69.2 1053.3 0.7 60.1
Water 56%–glycerol 44% 1124.1 5.42 68.4 1076.8 0.91 60.0
Water 50%–glycerol 50% 1140.5 7.92 67.9 1092.7 1.12 60
Water 40%–glycerol 60% 1166.9 14.05 66.9 1118.1 1.56 59.7
Water 35%–glycerol 65% 1179.6 20.16 66.4 1130.4 1.94 59.5
Water 30%–glycerol 70% 1192.0 30.39 65.9 1142.2 2.39 59.3

aAt the boiling temperature of ethanol (78 ◦C).

are considered in this table: the injection temperature T0 = 23 ◦C and the saturation temperature Tsat.
The properties of pure glycerol are also added for comparison. Ethanol has a viscosity close to
that of water, but a much lower surface tension. For glycerol/water mixtures, the surface tension
is moderately affected by the composition while the viscosity is heavily dependent on the mixture
fraction. Glycerol and water do not have the same volatility which is a source of difficulty regarding
to evaluate conditions at the drop surface (temperature and composition). Given the short duration
of the drop/wall interaction, the variations of the bulk properties (ρ, µ) can be assumed to be limited.
This idea is backed up by recent measurements which show that drop heating is limited to a few
◦C during a rebound.36–38 In the following, liquid properties are taken at the injection temperature
T0 = 23 ◦C to calculate We and Re. The experimental conditions are summarized in Table I and
cover the rebound regime including partial rebounds (Fig. 2).

Figure 7 displays the maximum spreading factor βmax = dx,max/d0 as a function of the Weber
number for the different investigated liquids. A clear dependence on We can be noted for all the
liquids including the most viscous mixtures of water and glycerol, which indicates that kinetic
energy is not completely dissipated during the spreading phase. The spreading factor is found to
be larger for the less viscous liquids. Further analysis reveals that βmax varies roughly as Re1/5 for

FIG. 7. Dependence of the maximum spreading factor βmax= dx,max/d0 on the Weber number. Points: experimental data.



FIG. 8. Variation of (βmax−1)/Re1/5 as a function of We. Squares: experimental data; the solid line: best fitting with
We1/2.

the high viscous liquids. This trend is illustrated in Fig. 8 where the parameter (βmax − 1) /Re1/5

is plotted as a function of We. Measurement points are almost superimposed for all the liquids
with the exception of water and ethanol. For the high viscous liquids (water/glycerol mixtures), the
spreading factor can be determined by βmax ≈ 1 + 7.7 · 10−2Re1/5We1/2. For water and ethanol, the
Reynolds number seems to have a more limited influence on spreading. Data from Tran et al.7 and
Chaves et al.,39 are added in Fig. 9 to extend the range of Reynolds numbers. These correspond
to millimetric drops with a Reynolds number about 4 times higher than that in the experiments
described in this paper. The maximum spreading factor βmax appears to correlate with We1/2 in Fig.
9. This scaling is different from We0.39 which was proposed by Tran et al.7 based on the same data.
The difference is due to the subtraction of 1 to βmax in the plot of Fig. 9. This subtraction is justified
by the fact that βmax tends to 1 at small We.

A scaling of βmax as We1/2 is classically interpreted as being the result of a pure transfer of
kinetic energy (of the order of ρd3

0U
2
0 ) into surface energy. Neglecting the surface area of the drop

edge, the energy conservation is ρd3
0U

2
0 ∼ σd2

x,max which yields βmax ∼ We1/2. This application of
the principle of conservation of mechanical energy assumes a zero velocity of the flow at the time
of the maximum spreading. However, the flow velocity never totally vanishes inside the droplet. The
maximum spreading diameter is reached when ṘR ≈ 0. During the spreading phase, the velocity
of the rim ṘR is smaller than the velocity of the liquid in the lamella, which then leads to the rim
growth. The velocity in the lamella decreases as 1/t, and hence, the inertia of the liquid entering
the rim becomes eventually unable to counteract the capillary force and the friction. This eventually
causes the rim to recede in accordance with Eq. (16) of the mechanistic model.

The power 1/5 of the Reynolds number is known to scale the spreading factor of viscous
droplets which impact on wetting surfaces. In the limit of liquids of high viscosity, the kinetic
energy of the drop is completely dissipated during the spreading phase. The dissipation of en-
ergy scales as µ (U0/hd) d3

x,max, hd being the thickness of the drop at the maximum spreading.
Together with volume conservation

�
hdd2

x,max ∼ d3
0

�
, this yields dx,max ∼ d0Re1/5.17,29 However, the

scaling argument does not hold here as Re1/5 is multiplied by We1/2 in the correlation obtained
for βmax.



FIG. 9. Dependence of βmax−1 on the Weber number for water and ethanol droplets. Filled symbols: data from experiments
concerning droplets with a diameter of about 100 µm; hollow symbols: data from experimental studies of droplets sizing a
few millimeters; the dotted line: best fitting with We1/2.

VI. APPLICATION OF THE THEORETICAL MODEL

The model of the rim dynamics presented in Sec. IV is compared to the experimental defor-
mations. Figure 10 gives the results for several impacts corresponding to water, and two mixtures
made of water and glycerol. In this figure, the solid lines correspond to experimental data while

FIG. 10. Time evolution of the spreading factor β = dx/d0 for several Weber numbers and three liquids: (a) water, (b) mixture
of 44% glycerol/56% water, (c) mixture of 70% glycerol/30% water. Solid lines: experimental data; dotted lines: solutions of
Eq. (16) assuming the inviscid flow solution (Eq. (8) with A= 1) to calculate the velocity of the liquid entering the rim.



the dotted lines represent our simulations. The theoretical model with A = 1 in Eq. (8) appears to
systematically underestimate the amplitude of the deformation and the difference with experimental
results is greatest for water, the least viscous liquid. This result seems rather counterintuitive. If not
comparable to the measurements, the deformation was expected to overestimate the experimental
spreading especially for the more viscous liquids assuming inviscid flow solution (8) and a perfect
sliding over the vapor layer. The influence of the temperature on the liquid properties (ρ, µ,σ) is
also tested to determine whether the heat transfers accompanying the drop deformation might play
a role. Figure 11 shows that the temperature used to calculate the liquid properties turns out to only
have a marginal effect on the amplitude of drop spreading.

Figures 10 and 11 show that the acceleration of the rim is not high enough in the model
predictions. Also, the fact that the differences vanish for the high viscous liquids supports the idea
that there is an additional force which pulls the liquid in the lamella along the radial direction. The
assumption that the vapor released by the drop could cause a shear stress at the liquid surface, ease
the liquid slip and thus lead to higher spreading has already been proposed.16,40 Due to the small
thickness of the vapor layer between the wall and the droplet (measured at a few micrometers by van
der Veen et al.41), it is understandable that the vapor flow can reach relatively high velocities and
transfer some momentum to the liquid inside the drop. Tran et al.16 carried out a scaling analysis to
estimate the maximum spreading by balancing the shear stress at the liquid/vapor interface and the
capillary force. This yields βmax ∼ We0.3. However, this scaling does not provide a perfect match
with the experimental observations. In the following, the radial velocity urim of the liquid entering
the rim is replaced by

u∗rim =
(1 + α) r∗

t∗ + τ
at r∗ = R∗R, (20)

where α is a factor corresponding to the increase in velocity of the flow entering the rim. Fixing
α > 0 is expected to compensate for the lack of momentum transferred to the rim. The introduction
of this parameter requires certain modifications to the forces acting on the rim,

F∗ilR =
(
Ṙ∗R −

(1 + α) R∗R
t∗ + τ

)2

and F∗v =
6 (1 + α)

Re (t∗ + τ) . (21)

For the rest of Sec. VI, we adjust the value of the parameter α to obtain the best match between
the model and the experiments. Besides the fact that α allows the initial model described in Sec. IV

FIG. 11. Time evolution of the spreading factor β = dx/d0 of water drops. Predictions of the model assuming two
temperatures of the liquid: (a) T = 23 ◦C and (b) T = 100 ◦C. The solid lines: experimental data from the same cases as
in Fig. 10(a); the dotted lines: solutions of Eq. (16) assuming the inviscid flow solution (Eq. (8) with A= 1) to calculate the
velocity of the liquid entering the rim.



to be corrected, the question arises as to the physical meaning of this parameter. This question will
be addressed in more detail in Sec. VII, where it will be established that this parameter can be
related to the main features of the entrainment boundary layer that develops at the bottom edge of
the lamella due to the action of the vapor flow.

In the following calculations, the thickness of the lamella is still evaluated with Eq. (10). How-
ever, if the liquid is dragged by the vapor film, the lamella thickness will change in consequence. An
entrainment boundary layer grows over time and eventually compares with the lamella thickness.
An estimate of this boundary layer thickness will be given in Sec. VII. At the initial stage of the
spreading, it is a good approximation to consider the lamella thickness at r = RR to be roughly
equal to Eq. (10).

Figure 12 gives the predictions of the theoretical model with the adjustment of α for the cases
already presented in Fig. 10. The adjustment of the correction factor α provides a rather good match
between the model and experimental data. The model seemingly properly captures both the spread-
ing amplitude and the time of maximum spreading tx,max. In Fig. 13, tx,max appears to be about the
same in both the experiments and calculations. In this figure, tx,max and tc (the contact time) are
normalized by the free oscillations period of the drop tosc = π/4

�
ρd3

0/σ
�1/2, since the contact time

is known to be of the same order as tosc.5 The spreading time tx,max behaves approximately as tosc/3
with little difference between the liquids. At We < 10, the spreading phase lasts proportionally
longer than tosc/3 and this trend is also reproduced by the model.

Figure 14 shows the results of tests on several values of α which were run to determine the level
of confidence in the estimate of α. This figure shows for different impact conditions that the factor
α can be estimated with uncertainty of the order of 0.05 when it is adjusted to obtain the best match
between the experimental data and the theoretical model. This level of uncertainty is slightly greater
for the low Weber numbers.

FIG. 12. Time evolution of the spreading factor β = dx/d0 for several Weber numbers and three liquids: (a) water,
(b) mixture of 44% glycerol/56% water, (c) mixture of 70% glycerol/30% water. The impact conditions are the same as
in Fig. 10. Solid lines: experimental data; dotted lines: solutions of Eq. (16) while adjusting the factor α in Eq. (20).



FIG. 13. Dependence of the contact time tc and the spreading time tx,max on the Weber number. Times are normalized by
the free oscillation period tosc. Squares: measurements of tx,max; hollow circles: values of tx,max calculated from the model
while adjusting the factor α in Eq. (20); triangles: measurements of tc.

The adjusted values of α obtained for the full set of impact conditions tested in the experiments
are presented in Fig. 15. For a given liquid, the parameter α decreases with the Weber number
and eventually reaches a plateau which means that the factor α does not depend on the impact
conditions for sufficiently high Weber and Reynolds numbers. The value of α at the plateau only
depends on the nature of the liquids, the largest value being obtained for the least viscous liquid.
This value is about 0.1 for the most viscous mixtures of water and glycerol, while it equals about
0.47 for water.

Outside the plateau (i.e., for the low Weber and Reynolds numbers), α is found to be clearly
dependent on the impact conditions as its value rapidly decreases with We. Any effect of liquid vis-
cosity can be hardly pointed out in this domain. The adjusted values of α are all distributed around

FIG. 14. Sensitivity of the model to the value of the factor α in Eq. (20). Case of water drops and three different Weber
numbers. Solid lines: experimental data; dotted and dashed lines: model predictions.



FIG. 15. The influence of the Weber number on the adjusted value of α in Eq. (20). Points: adjustments of α based on
the experimental results; the solid line: fitted curve corresponding to droplets weakly deformed at the impact; dotted lines:
estimated values of α at high Weber and Reynolds numbers.

the black curve plotted in Fig. 15. For these droplets impacting at low Re and We, the deformation
is rather weak and the theoretical model is not used within its range of validity. Equations (8) and
(10), which provide the flow field inside the lamella and the thickness distribution of the lamella,
are valid at high Reynolds and Weber numbers. If these numbers are too small, the simplifications
used to infer Eqs. (8) and (10) do not hold, meaning that the deformation of the drop is governed
by the viscous stresses and surface tension alongside the inertial forces. The conditions for Eqs. (8)
and (10) have been discussed in more detail by Roisman et al.21 A comparison between the two
thicknesses can be found in Figs. 13 and 14 in Roisman et al.21 which clearly show that the droplet
height for the low Re is always higher than approximation (10), especially near the edge of the
droplet. Therefore, one explanation for the high values of α observed at low We in Fig. 15 may be
that α is also increased to compensate for the insufficient thickness given by Eq. (10). When We
(and also Re since Oh is almost a constant for a given liquid within the sets of measurements) is in-
creased, approximations (8) and (10) become valid as the plateau is reached. Roisman et al.21 found
that the flow inside the lamella and the shape evolution of the lamella do not depend on the impact
conditions provided sufficiently high Re and We. Hence, it seems that the factor α becomes inde-
pendent of impact conditions when the lamella evolution (velocity field and shape) does likewise.

Figure 16 displays the variation of βmax predicted by the theoretical model as Re varies over
four orders of magnitude while α retains its value at the plateau. In Fig. 16, α is set equal to 0.47
which corresponds to the case of water drops. βmax can be observed to not vary a great deal with
the Reynolds number provided that Re > 100. Hence, the model predicts that two water droplets
with different diameters (respectively, 100 µm and 2 mm) and the same We will have the same
maximum spreading factor βmax (Fig. 16). This prediction perfectly matches with the experimental
observations shown in Fig. 9 whereby the droplet size has no influence on βmax as droplets vary in
size from about 100 µm to a few millimeters.

Again for α = 0.47, the model is used to simulate the spreading of 2 mm-size water drops as
We varies from 15 to 240. To perform these simulations, the initial conditions are fixed at t∗i =
0.5 as R∗R

�
t∗i
�
= 0.7 and Ṙ∗R

�
t∗i
�
= 0.7. Reminding that RR ≈ dc/2, these values are very close to

R∗R
�
t∗i
�
= 2


t∗i and Ṙ∗R

�
t∗i
�
= R∗R

�
t∗i
�
/
�
2t∗i

�
which are known features of the kinematic phase. They

also prove to be well adapted to the simulation of our experiments. Figure 17 shows a perfect agree-
ment with the experimental data obtained by Tran et al.7 up to Weber numbers on the order of 200.
Hence, a unique value of α (presently 0.47) can be successful in describing the spreading of water
drops with a diameter of a few millimeters for Weber numbers ranging from 7 to 200. This range of



FIG. 16. Influence of the Reynolds number on the maximum spreading factor βmax evaluated from the theoretical model
when α is equal to 0.47. Indicated values of d0 are given assuming a water droplet.

We is a little larger than for the droplets with a diameter of about 100 µm (Fig. 15) which is probably
due to the fact that the high Re approximation is easier to satisfy for the large droplets at low We.

Figure 18 shows that the values of α obtained at high We correlate well with the kinematic
viscosity of the liquid ν. The parameter α appears to be a function of the liquid kinematic viscosity
without directly being a function of the Reynolds number. In fact, the viscous effects highlighted in
Fig. 8 for the maximum spreading diameter are essentially included in the adjustment of α. It should
be noted that ν−1/5 is also an acceptable (and in fact even better) scaling for the maximum spreading
factor in Fig. 8. As a partial conclusion, the previous observations concerning the correction factor
α do not contradict the idea that the lamella could be pulled radially by the vapor flow below the
droplet. As expected for an entrainment by an external flow, the value of α is found to be positive
and to decrease mainly with the liquid viscosity. It tends to 0 at high liquid viscosity. Also, the

FIG. 17. Evolution of the maximum spreading factor βmax as a function of the Weber number in the case of water droplets.
Comparison between the measurements by Tran et al.7 and the model based on Eq. (16). Solid line: predictions of the model
fixing α = 0.47 and d0= 2 mm; the dotted line: fitted curve 0.23We1/2 introduced in Fig. 9; points: experimental data of
Tran et al.7 corresponding to water drops sizing about 2 mm.



FIG. 18. Influence of the liquid viscosity on the adjusted value of α at high Weber and Reynolds numbers. Each point
corresponds to one of the liquids tested in the experiments. Solid line: fitted curve.

factor α is not influenced by the impact conditions provided We and Re are sufficiently large.
Still, it remains to establish a more direct link between the correction factor α and the entrainment
boundary layer that develops at the bottom edge of the lamella (Fig. 19).

VII. MODELING OF THE LAMELLA ENTRAINMENT BY THE VAPOR FLOW

In this section, we consider the action of the vapor film upon the lamella. Modeling of the
vapor film and its action upon the spreading of the impacting drop is a problem which remains
to be solved. Certain simplifying assumptions are required to be made. The approach described
below is adapted from existing analyses of the sessile drop evaporation in Leidenfrost boiling.42–44

In particular, it is based on the lubrication approximation applied to the vapor film, the thickness of
which is assumed to be uniform but to vary in time. It is critical for such modeling to account for the
continuity of the shear stress at the liquid/vapor interface (Fig. 19) to evaluate the capability of the
vapor to pull the lamella along the radial direction.

In the drop impact in the Leidenfrost conditions, the vapor film below the droplet is dramat-
ically squeezed because of the impact pressure. The impact pressure exceeds by far the static
pressure related to the weight of the liquid puddle on the top of it. At the very beginning of the
impact, the impact pressure is the strongest below the truncated sphere already mentioned in the

FIG. 19. Development of an entrainment boundary layer at the bottom edge of the lamella. Given that the vapor has a radial
velocity much higher than that of the liquid in the lamella, the vapor flow exerts a shear stress on the liquid interface and
induces the formation of an entrainment boundary layer in the lamella.



description of the kinematic phase of the drop spreading. The pressure rapidly decreases with time
as shown by Roisman et al.21 who numerically found an exponential decay at the axis of symmetry
(r = 0). As a consequence of the high pressure exerted by the drop at the impact, the vapor layer is
much thinner than in the case of a gently deposited sessile drop. The vapor film thickness typically
differs by two orders of magnitude between the two situations.40 Recent measurements by van der
Veen et al.,41 found that the thickness of the vapor film under a water drop of a few millimeters at
a low Weber number (We = 3.5) can be as small as 3 µm but these measurements were taken just
after the beginning of the impact (when the thickness is near its minimum). Drop impacts involve a
thinner layer of vapor which promotes a higher evaporation rate and a larger velocity of the vapor
flow. Also, an impacting drop spreads over a larger surface which contributes to a higher velocity
being reached in the vapor film. Obviously, another major difference with a sessile droplet is that the
droplet deformation is strongly influenced by inertia and transient effects as previously described in
Sec. IV.

If we assume the vapor flux under the bottom edge of the droplet to be uniform, then the mean
radial velocity uv (r, t) in the vapor layer can be determined by

uv (r, t) = ṁ′′v r
2ρvδv

, (22)

where ρv is the vapor density and ṁ′′v = 4ṁv/π β
2d2

0 is the mass flow rate of vapor per unit of
surface. In addition to the mass flux ṁ′′v , the thickness δv of the vapor film is also supposed to
be uniform under the drop. Equation (22) is derived from the application of mass conservation to
the vapor between radial distances of 0 and r . As the parameters β, δv, and ṁ′′v are time varying,
Eq. (22) should be regarded as a quasi-steady approximation which is clearly valid for a sessile
drop but a little more disputable in the case of an impact. However, it is likely that quasi-stationary
conditions are rapidly established in the vapor film. After an initial phase of rapid change, the
thickness of the vapor film varies very slowly in comparison with the vapor residence time under
the drop.45 Also, it should be emphasized that the velocities of the vapor (22) and the liquid in the
lamella (8) are both proportional to the radial distance r .

Given the very small thickness of the vapor layer, heat is predominantly transferred from the
hot wall to the drop through heat conduction. The corresponding heat flux can be expressed as

ϕ = λv (Tw − Tsat) /δv, (23)

where λv is the thermal conductivity of the vapor and Tsat denotes the saturation temperature of the
liquid. The heat transferred from the wall to the droplet is used both to heat the liquid and for its
vaporization at the droplet surface. A sessile drop remains a sufficient time close to the wall with the
result that the whole liquid volume reaches Tsat. As a result, ϕ ≈ Lvṁ′′v , where Lv is the latent heat of
vaporization of the liquid. In the case of a drop impact, the transient heating of the droplet cannot be
ignored given that the sensible heat flux entering the droplet usually compares with the heat flux of
vaporization as shown in recent experiments by Dunand et al.38

The geometry of the vapor film (a thin and long slot) naturally sets the conditions for the
lubrication approximation meaning that the vapor escapes radially with a Poiseuille flow. Assum-
ing a no-slip condition at the solid and liquid interfaces (the smallness of the slip velocity at the
vapor/liquid interface in comparison with the mean vapor velocity can be checked afterwards), the
viscous stress at the interface can be evaluated as τv = 6µvuv/δv which yields

τv (r) = 3ṁ′′v νvr/δ
2
v, (24)

where νv = µv/ρv is the kinematic viscosity of the vapor.
In the spreading liquid film, a boundary layer develops at the bottom edge of the droplet

(Fig. 19). It is possible to account for this boundary layer by introducing a scaled stream function
g (ξ) and the self-similar variable ξ = z/

√
νt,

ur = g′ (ξ) r
t
, uz = −2 g (ξ)ν/t . (25)



The stream function g needs to satisfy the momentum balance equation in the radial direction for an
axisymmetric flow in the absence of pressure gradient and body forces,

∂ur

∂t
+ ur

∂ur

∂r
+ uz

∂ur

∂z
= ν


∂

∂r


1
r
∂ (r ur)
∂r


+
∂2ur

∂z2


. (26)

Substituting Eq. (25) into (26), the following ordinary differential equation can be obtained:24

g′′′ + 2gg′′ +
1
2
ξg′′ + g′ − g′2 = 0, (27)

with the associated boundary conditions: g = 0 and g′ = g′ (0) at ξ = 0 and g′ = 1 at ξ → ∞. Based
on Eq. (25), the viscous stress at the liquid/vapor interface can be determined by

τl = g′′(0)√νρrt−3/2. (28)

Considering the continuity of the shear stress at the liquid-vapor interface (τv = τl), Eqs. (24) and
(28) yield

g′′ (0) = 3ṁ′′v νv
ρ
√
νδ2

v

t3/2. (29)

Equation (27) has to be solved numerically. The value of g′ (0) is a priori unknown. It is determined
iteratively by using a standard shooting method to satisfy the condition g′ (ξ) = 1 at ξ → ∞. This
means the slip velocity of the liquid/vapor interface can then be found using Eq. (25).

Reminding that ur = r/(t + τ0) corresponds to the inviscid flow solution outside the boundary
layer, the cross sectional average velocity urim of the liquid entering the rim can be approximated
by

urim ≈
RR

t + τ0
+

δ2

h (RR) ·
g′ (0) RR

t + τ0
. (30)

In this expression, δ2 corresponds to the momentum thickness of the boundary layer. By definition,
δ2 = γ

√
νt with γ =

 1
0 g′ (ξ) [1 − g′ (ξ)] dξ. Equation (30) implies that the boundary layer is much

thinner than the lamella (h ≫ δ2). Otherwise, the condition g′(ξ) = 1 may not be satisfied at the free
surface on the top of the lamella, which would invalidate the boundary-layer analysis which was
carried out. By comparing Eqs. (20) and (30), an expression for the correction factor α introduced in
Sec. VI can be obtained as

α =
δ2

h (RR)g
′ (0) . (31)

Equation (31) can be used to successfully estimate the value of α despite certain assump-
tions. However, the major concern with the application of Eq. (31) is that it requires perfect
knowledge of the vapor layer thickness, and determining this remains a challenging task in the
case of a drop impact. To the best of our knowledge, approaches in the literature mainly involve
scaling analyses which only provide rough estimates of the vapor film thickness. Also as these
analyses generally deal with sessile drops, they miss some of the transient aspects which are
critical in drop impacts. These include particularly the transient impact pressure between the
droplet and the transient heating of the liquid which may have a considerable effect on the thick-
ness of the vapor layer. In the absence of a theoretical model for the vapor thickness below the
droplet, Eq. (31) will be assessed using the results provided by the direct numerical simulation
of Dawi et al.45 whose calculations concerned water droplets sizing 1 mm which impact onto a
surface heated at Tw = 350 ◦C. Dawi et al.45 obtained numerical results in good agreement with
the experiments run by Tran et al.7 Their simulated evolution of the spreading factor β = dx/d0 at
We = 20 is reproduced well by the present model of drop spreading (with α = 0.47) as displayed
in Fig. 12. Also, Fig. 20 shows a good agreement for the droplet shape at different times of the
spreading.

The evaporation rate ṁv, the vapor thickness δv, and the spreading factor β are provided by
the numerical simulation of Dawi et al.45 At t∗ = 1, the simulation gives ṁv = 2.9 · 10−7 kg/s,



FIG. 20. Evolution of the droplet shape during the spreading phase. Comparison between the theoretical model (solid
lines) and Direct Numerical Simulation (DNS) by Dawi et al.45 (dotted lines) at different times. Case of a water drop
(d0= 1 mm, We = 20). α is fixed at 0.47 in the calculations.

δv ≈ 15 µm, and β ≈ 1.89. Using Eq. (22), this leads to the following estimates of the cross
sectional velocity: uv[m/s] ≈ 8200 r[m]. It should be noted that δv remains roughly uniform and
about equal to 15 µm in the simulation during most of the spreading phase beyond t∗ = 0.5.
This argues in favor of the validity of the quasi-steady approximation upon which Eq. (22) is
based. The shear stresses at the liquid/vapor interface can be determined using Eqs. (24) and (29):
τv [N ·m−2] = 59 789 r[m] and g′′ (0) = 3.11. For these calculations, the physical properties of
the vapor are evaluated at the film temperature Tw+Tsat

2 = 225 ◦C. For the liquid phase, the prop-
erties of water are taken at the boiling temperature (ρ = 958 kg · m−3, ν = 2.94 · 10−7 m2 · s−1,
ρv = 0.42 kg ·m−3, and µv = 18.3 · 10−6 Pa · s). A Runge-Kutta scheme is used to solve Eq. (27)
with the constraint that g(0) = 0 and g′′ (0) = 3.11. The value of the slip velocity g′ (0) is found to
be equal to 2.45 to satisfy the condition g′ (ξ) = 1 at ξ → ∞. Based on the solution obtained for
g(ξ), the momentum thickness of the boundary layer δ2 = γ

√
νt can be estimated. At t∗ = 1, values

of γ = 0.93 and δ2 = 15 µm are obtained. This thickness needs to be compared with the height
of the lamella. The model of drop spreading (16) predicts a rim position RR = 0.825 mm while
h (RR) = 90 µm using thickness profile (10). Hence, the ratio δ2/h(RR) is small and Eq. (30) can be
considered an acceptable approximation for the velocity urim of the liquid entering the rim. Finally,
the application of Eq. (31) leads to α = 0.41, which is not far from the figure of 0.47 obtained
from the experimental data in Sec. VI. Running the same calculations on another time during the
spreading phase yield relatively different values of α (about 0.31 and 0.57 for t∗ = 0.7 and t∗ = 1.2,
respectively). The factor α increases over time during the spreading, as the entrainment boundary
layer develops and the thickness of the lamella decreases. These estimates of α confirm the impor-
tance of the action of the vapor upon the sliding velocity of the liquid interface and the spreading
of the drop despite approximations and assumptions made in the evaluation of α. For example, in
Fig. 20, the drop thickness appears to be slightly larger near the edge of the lamella in the numerical
simulation by Dawi et al.,45 about 120 µm against 90 µm at t∗ = 1. Using this value of the lamella
thickness in Eq. (31) would yield α = 0.31. Here also, the vapor flow still significantly increases the
slip velocity of the liquid/vapor interface which leads to a larger spreading of the droplet.

VIII. CONCLUSION

Most advanced models concerning drop spreading consider a non-dissipative flow in the inside
of the lamella, provided that Reynolds and Weber numbers are sufficiently high (typically more than
a few tens). The consequence of this description is that viscous dissipation would not occur in the
inside of the lamella but instead at the bottom edge of the lamella where frictions are exerted on
the spreading droplet. With Leidenfrost boiling, the question of liquid viscosity influence on the
spreading process arises because the kinematic condition at the interface between the liquid and
the vapor film is not well defined. The assumption of perfect sliding at the liquid/vapor interface
has the advantage of being easy to formulate. Mass and momentum balances applied to the rim



bounding the lamella provide an ordinary differential equation for the rim motion which can be
solved numerically. The model accounts for the forces acting on the rim: the momentum transferred
by the liquid entering the rim, the surface forces, and the viscous stress at the surface separation
between the rim and the lamella. Although the flow retained in the model for the lamella corre-
sponds to the inviscid flow of the remote asymptotic solution, the model predictions systematically
underestimate droplet deformation and are not capable of capturing the experimental dependence
of the maximum spreading factor on the liquid viscosity. However, measurements of the lamella
thickness near the center of the droplet match well with the inverse square law with time implied by
this flow solution. Combining these facts leads to the assumption that the liquid motion inside the
lamella is accelerated radially by the vapor flow. The small thickness of the vapor layer means that
the vapor flow under the droplet can reach relatively high velocity and induce significant shear stress
on the liquid surface. The thickness of the resulting boundary layer remains negligible compared to
the lamella in the central region of the droplet but can reach about the same thickness near the edge
of the lamella leading to an increase of mass and momentum transferred to the rim. If the velocity
of the liquid entering the rim is artificially increased in the model, remarkable agreements can be
obtained between the experiments and the simulations. In the case of water, the increase is about
50% which reflects the significance of the liquid drag-out. For more viscous liquids, the increase
is more limited and asymptotically tends to 0 with the liquid viscosity. Finally, the assumption that
the liquid motion is accelerated by the vapor film has been assessed based on a modeling of the
entrainment boundary layer under lubrication approximation applied to the vapor flow. Numerical
applications rely on the results of a direct numerical simulation of the drop spreading at the impact
in the Leidenfrost boiling. The shear stress at the liquid/vapor interface, and thus the thickness of
the boundary layer at the bottom edge of the lamella, is evaluated from these numerical simulations.
The results confirm that there is a substantial increase in liquid velocity at the rim entrance.
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