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A. Palacios41, Maria C. Peñuela-Mora42, John J. Pipoly III43, Nigel
C. A. Pitman44, Adriana Prieto45, Carlos A. Quesada30, Hirma Ramirez-
Angulo46, Agustin Rudas45, Kalle Ruokolainen47, Rafael P. Salomão26,
Marcos Silveira48, Juliana Stropp49, Hans ter Steege50, Raquel Thomas-
Caesar51, Peter van der Hout52, Geertje M. F. van der Heijden53, Peter J. van
der Meer54, Rodolfo V. Vasquez5, Simone A. Vieira55, Emilio Vilanova56,
Vincent A. Vos57,58, Ophelia Wang59, Kenneth R. Young60, Roderick J. Zagt18

and Timothy R. Baker1

1School of Geography, University of Leeds, Leeds LS2 9JT, UK
2School of Geosciences, University of Edinburgh, 201 Crew Building, King’s Buildings, Edinburgh EH9 3FF, UK
3Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK
4Université Paul Sabatier CNRS, UMR 5174 Evolution et Diversité Biologique, bâtiment 4R1,
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Lineages tend to retain ecological characteristics of their

ancestors through time. However, for some traits, selection

during evolutionary history may have also played a role in

determining trait values. To address the relative importance

of these processes requires large-scale quantification of

traits and evolutionary relationships among species. The

Amazonian tree flora comprises a high diversity of angio-

sperm lineages and species with widely differing

life-history characteristics, providing an excellent system

to investigate the combined influences of evolutionary heri-

tage and selection in determining trait variation. We used

trait data related to the major axes of life-history variation

among tropical trees (e.g. growth and mortality rates)

from 577 inventory plots in closed-canopy forest, mapped

onto a phylogenetic hypothesis spanning more than 300

genera including all major angiosperm clades to test for

evolutionary constraints on traits. We found significant

phylogenetic signal (PS) for all traits, consistent with evolu-

tionarily related genera having more similar characteristics

than expected by chance. Although there is also evidence

for repeated evolution of pioneer and shade tolerant life-

history strategies within independent lineages, the existence

of significant PS allows clearer predictions of the links

between evolutionary diversity, ecosystem function and

the response of tropical forests to global change.
1. Introduction
Evolutionary heritage may act as a major constraint on the eco-

logical roles that species in a lineage can occupy. Even under a

random model of trait evolution where functional traits drift in

state over time (e.g. a Brownian motion model), we would

expect closely related species to have similar functional trait

values and similar ecologies due to their shared common

ancestry [1,2]. However, both divergent selection and conver-

gent evolution lead to weaker relationships between species

relatedness and their ecological similarity [1,3,4]. Hence,

although it is often assumed that close relatives are more

similar because they retain the ecological characteristics of

their ancestors, in many clades the ancestral character state

may not be conserved. Thus, rather than being simply

assumed, the tendency of closely related species to have similar

ecological characteristics needs to be tested.

The strength of the link between trait variation and phylo-

genetic relatedness has a wide range of implications for

understanding ecological and evolutionary processes and can

be measured by the magnitude of phylogenetic signal (PS)

[1,2]. For example, if a selected trait has significant PS, the

relatedness of species can help us to understand the underlying

mechanisms that drive community structure [5–7]. The

presence of significant PS also suggests that the sum of phylo-

genetic distances among species that occur within a

community (i.e. phylogenetic diversity) is a useful proxy for
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functional diversity and that, in turn, phylogenies of tree taxa

may contribute to understanding ecosystem function [8,9]. In

addition, if trait values are more similar than expected by

chance among closely related lineages, we can predict the

trait values for species where trait data are not available.

Understanding the relative importance of evolutionary

heritage versus selection in determining trait variation requires

large-scale quantification of traits and evolutionary relation-

ships among species. The Amazonian tree flora comprises a

high diversity of angiosperm lineages and species with

widely differing life-history characteristics, providing an excel-

lent system to investigate these processes. Previous studies of

the degree of PS among traits of tropical trees, such as seed

mass, leaf structure and chemistry, trunk characteristics

and range size, have shown variable results [6,7,10–13]. For

example, some studies show significant PS [6,7,13], while for

the same traits other studies have failed to detect any PS,

with closely related species exhibiting rather different trait

values [10,11]. A key limitation of many of these studies is

the limited spatial and phylogenetic scale of study, as well as

the resolution of the phylogeny that they have used [14].

Here, we explore patterns of PS at large spatial and phylo-

genetic scales using a sequence-based phylogeny to test

whether there are significant levels of PS for four key traits

related to the major axes of life-history variation among tropi-

cal trees: tree growth and mortality rates, wood density and

potential tree size. These traits are related to resource acqui-

sition and allocation, defence and dispersal ability [15,16]

and represent important axes of functional variation which

drive variation in plant performance and function in many

ecosystems [17]. Moreover, those traits are strongly related to

differences in carbon fluxes and storage among species [18].

As a result, understanding PS in these traits may help to under-

stand and model ecosystem processes in such highly diverse

tropical forests such as Amazonia, which may harbour more

than 16 000 tree species [19].

Studying PS at large spatial scales is important because the

scale of study affects the strength of PS. At small scales,

patterns of PS can be obscured because co-occurring species

represent just a small fraction of the species richness of clades

[20,21]. Small spatial scales encompass limited environmental

variation, so the species pool is limited to representatives of

different lineages that may have similar ecological traits and

environmental requirements: this pattern results in a smaller

range in traits and low PS. The strength of this effect depends

on how environmental variability changes with spatial scale,

on the degree of habitat specialization by species and the pro-

portion of clades that are sampled in small-scale studies [6,7].

However, in general, larger spatial scales incorporate greater

environmental heterogeneity and encompass a larger number

of lineages with a wider range of trait values. Inferring patterns

of PS that are more representative of evolutionary trends there-

fore typically requires measurement across large spatial scales,

including a wide range of environmental conditions and taxa

from a broad array of clades [22].

The patterns of PS also depend on traits under investi-

gation and their specific evolutionary history. Some traits

may exhibit phylogenetic conservatism where traits in

specific lineages are constrained to certain trait values. For

example, complex traits, such as growth and mortality, may

depend in complex ways on multiple, interacting gene

loci [23,24] which impose strong constraints on trait vari-

ation. Alternatively, traits may show no PS because they
are under strong selective pressure and/or because they

show phenotypic plasticity in response to environmental

conditions [20,25].

Here, we use a large dataset of several hundred perma-

nent forest plots that occur across a wide range of the

environmental conditions from all nine Amazonian countries

[26], to quantify key demographic traits of more than 300

lineages of tropical trees and explore the PS of these traits

using recently published molecular genus- [13] and species-

level phylogenies ([27], KG Dexter & RT Pennington 2013,

unpublished data). By exploring how traits are correlated

and the strength of PS, our goal is to address the fundamental

question of whether repeated convergent and divergent evol-

ution of life-history strategies has erased PS for life-history-

related traits in tropical trees, or whether phylogenetic infor-

mation can be used to understand ecosystem function in the

world’s most diverse and ecologically important forest.
2. Material and methods
(a) Plot data
This study used inventory data from all trees and palms greater

than or equal to 10 cm diameter (DBH) in 577 forest plots from

the RAINFOR forest plot network (figure 1; electronic sup-

plementary material, S1) across lowland closed-canopy South

American tropical forests. This network is centred on Amazonia

and includes plots in forests on the Guiana Shield, in the Choco

and northern South America; however, hereafter for simplicity

we refer to this sampling region as ‘Amazonia’. Plots are located

in old growth, unlogged forests and range in size from 0.04 to

25 ha (most being 1 ha). They span a precipitation gradient

from 1300 to 7436 mm yr21 [28], a broad range of soil types

[29], and are found below 500 m in elevation. Data were

extracted from the ForestPlots.net database which curates tree-

by-tree records from RAINFOR and other plot networks [26,30].

For productivity and mortality analyses, we used a subset of

257 repeated census plots with a minimum monitoring period of

2 years from 1962 to 2014. Mean census interval length is 4.4

years and plot mean total monitoring period is 9.9 years. During

each census, all surviving trees and palms were measured, dead

trees were documented and new trees with greater than or equal

to 10 cm DBH were recorded. More detailed measurement

methods and plot characteristics have been previously published

(e.g. [31,32]). All recorded species and genus names were checked

and standardized using the Taxonomic Name Resolution Service

[33]. We excluded all trees and palms not identified to genus

level (7.9% of stems).

(b) Trait data
Trait mean values of potential tree size, mean and maximum

growth rates, mortality rates and wood density were calculated

at both the genus and species levels. Our main analyses were

performed at the genus level and covered genera present in a

recently published genus-level phylogeny for Amazonian trees

[13]. Species-level trait data for those clades where we had

species-level phylogenies with sufficient sampling of species in

our dataset (more than 20 species): Burseraceae [27] and Inga
(KG Dexter & RT Pennington 2013, unpublished data) were

used to investigate whether patterns of PS at the genus level

were consistent with species-level patterns. Species-level trait

data were also used to account for intrageneric variation in the

genus-level analyses of PS: the species-level data were used to

calculate the standard error of each trait within each genus,

and these values were incorporated into the calculations of PS

(described below) [34]. In the methods below, all the details are
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given for trait values calculated at the genus level; similar calcu-

lations and methods were used at the species level.

Potential tree size, mean and maximum growth rates were

all calculated in terms of tree diameter, basal area and biomass

for each genus with at least 20 individuals across multiple

censuses.

Potential tree size was estimated as the 95th percentile of the

size distribution of all trees within each genus. For trees with

multiple measurements, we selected the maximum size across

different censuses to define these distributions. Tree above-

ground biomass per stem was calculated using the pan-tropical,

three parameter allometric equation (diameter, wood density

and E) of Chave, Rejou-Mechain [35], which assumes that tree

diameter–height relationships depend linearly on bioclimatic

variables (E), where E is a measurement of environmental

stress based on measures of temperature seasonality and precipi-

tation seasonality derived from the WorldClim dataset [28] and a

measure of Climatic Water Deficit extracted from a global

gridded dataset [35]. Palm biomass was estimated using a

palm-specific allometric equation based on diameter [36].

For each genus, we computed both mean growth rate and the

95th percentile of growth rates, to represent maximum growth

rates within each genus, across all stems. To calculate these par-

ameters, mean stem-level growth rate was first estimated as the

mean growth per year across multiple censuses and maximum

stem-level growth as the maximum growth rate per year calcu-

lated across multiple censuses. Trees with mean negative

growth rates (0.9% of stems) were excluded in order to normalize

the data (similar to [37]). We also excluded palms, which do not

have secondary growth, nine trees exhibiting diameter growth

greater than 80 mm yr21 which may represent recording errors

and stems where diameter measurements were not made using

a tape measure (0.12% of all stems). If a change in the point of

measurement (POM) was made during the measurement

record of any given tree, we calculated growth rates using the
arithmetic mean of the diameter measured at the original POM

and the diameter at the new POM [38].

Mortality rates were estimated for all genera with a minimum

of 100 individuals in the plot data, based on the number of

individuals found alive in the initial and final censuses of each

plot. To estimate average mortality rates within each genus,

the survival probability of individual trees within each clade

was modelled as an exponentially declining function of the

monitoring period while accounting for variation in tree

size [39,40].

To account for the wide range of environmental conditions

across plots [29], we used mixed models to calculate genus-

level values of potential tree size, mean and maximum growth

rates and mortality rates while accounting for systematic vari-

ation in these parameters among plots [40] (see the electronic

supplementary material, S2).

Wood density data were extracted from the Global Wood

Density database [41,42] and average values calculated for each

genus in the phylogeny [43].

(c) Trait correlations
To identify relationships among genus-level traits, we conducted

a phylogenetic principal component analysis (PPCA) [44]

including genera where we have a complete set of trait data.

PPCA incorporates the expected correlation among traits due

to their shared evolutionary history into the principal component

analyses [45]. We standardized trait values to a mean of zero

and unit variance to ensure that each trait contributed equally

to the PPCA.

(d) Phylogenetic signal
In order to estimate PS for traits, we used Blomberg’s K [1]. This

metric quantifies the amount of variance in an observed trait in
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relation to the expected trait variance under a Brownian motion

model of evolution [1,4]. Under this model of evolution, trait

values drift randomly over time, with small changes being

more likely than large changes within a given unit of time

(trait values at t1 are chosen from a normal distribution centred

on the trait value at t0). This model generates trait data where the

covariance among trait values for taxa is proportional to the dur-

ation of their shared evolutionary history [4]. Values of K equal

to 0 indicate that there is no PS, while K equal to 1 indicates high

PS and is the expected value under a Brownian motion model of

evolution. Intermediate values (0 , K , 1) indicate intermediate

levels of PS. To assess significance in K, we recalculated K on the

tree with randomized tips a thousand times, and compared the

simulated values with the observed value of K. If the observed

value fell outside the range given by 2.5–97.5 percentiles of the

simulated values, this value was considered significant.

We accounted for intrageneric trait variation in the calcu-

lation of K by measuring the standard error for each genus,

treating individual genera as species and intrageneric variation

as intraspecific variation sensu [34]. For genera where the stan-

dard error could not be computed, we assigned the mean

value of the standard error for all genera with estimates for mul-

tiple species [34]. Including this within-genus variation allows us

to account for uncertainty in trait estimation (e.g. population

variation and measurement error), improve parameter estimation

and reduce bias in the calculation of PS [1,34].

We also calculated PS using Pagel’s l [46] in order to explore

whether our results were dependent on the particular method

used to calculate PS (see the electronic supplementary material, S3).

(e) Sensitivity analysis
To investigate whether our results were affected by the spatial

scale of our study, we repeated our analyses using 26 plots

within 55 km of each other near Manaus. Similarly, to verify

whether our results were affected by our use of genus-level

data, we conducted the same analyses at the species level for

the genus Inga and the Protieae (Burseraceae). Likewise, to inves-

tigate whether the number of lineages included in the analyses

affected the extent of PS, we repeated the calculations of PS

with just the genera with a complete set of trait values (214).

Statistical analyses were performed in the R v. 3.1.1 program

[47], using ape [48], phytools [44] and data.table [49] packages.
3. Results
(a) Trait data
All traits measured varied substantially among genera (table 1

and figure 2): wood density varied eightfold, potential size in

tree diameter 12-fold, potential size in biomass 814-fold, maxi-

mum growth rates in tree diameter 23-fold, mean diameter

growth rates 35-fold and mortality rates 275-fold. Overall, the

trait values after correcting for environmental variation and

those estimated directly from the database without accounting

for variation among plots were highly correlated with each

other ( p , 0.001 in all cases and t ranging from 0.59 to 0.79).

(b) Trait relationships
Trait associations among lineages were analysed with a PPCA:

83% of the variation in the four-dimensional space was

accounted for by the first two axes (figure 3). The first axis

(PPCA1) explained 52.8% of the variation and shows strong

positive loadings for mortality and maximum growth rates,

while wood density was negatively associated with this axis

(electronic supplementary material, S4). PPCA1 thus
represents a continuum from pioneer and light demanding

lineages with low wood density and fast demographic traits

(e.g. high mortality and growth rates) to non-pioneer lineages

with high wood density and slow demographic rates. The

second axis (PPCA2) explained 30.5% of the variation and

was associated more closely with potential tree size, and

reflects the variation from individuals of understory genera,

to individuals of canopy and emergent lineages (figure 3).

(c) Phylogenetic signal
All traits and the first two PPCA axes exhibited significant

PS, with closely related genera being more similar than

expected by chance, using either Bloomberg’s K (table 1) or

Pagel’s l (electronic supplementary material, S3). Because

estimates of Pagel’s l and Blomberg’s K are strongly corre-

lated and most studies of PS in tropical trees have focused

on the K metric rather than l, we focus our results and

discussion on the calculations using Blomberg’s K-value.

Traits showed significant and similar values for K, vary-

ing from 0.25 to 0.39 and from 0.17 to 0.27, with and

without accounting for intrageneric variation, respectively.

These K-values indicate that evolutionarily related genera

tend to be more similar to each other, but less than expected

under a BM model of evolution (table 1). Finally, removing

the environmental contribution to trait variation did not

substantially alter the magnitude of PS (table 1).

(d) Sensitivity analyses
Although using just the Manaus plot data significantly

reduced the number of genera, species and individual trees

included in the analyses, PS at smaller spatial scales showed

similar patterns to PS calculated using the whole dataset (elec-

tronic supplementary material, S5). Similarly, reducing the

number of lineages to genera we had all trait values showed

congruent patterns of PS (electronic supplementary material,

S5). In addition, all traits showed similar or slightly higher

Blomberg’s K values for just Inga or Protieae than for all taxa

together (electronic supplementary material, S5).
4. Discussion
This is the first study, to our knowledge, to investigate the

extent of PS for traits that quantify the main axes of life-

history variation in survival and growth of trees at such a

large phylogenetic and spatial scale. Our results demonstrate

that for Amazonian forests, closely related genera have simi-

lar life-history strategies, with all traits showing similar levels

of PS (table 1 and figure 2; electronic supplementary material,

S6). The similar level of PS found across all the different,

correlated traits suggests that the main axes of life-history

variation among lineages of Amazonian trees may represent

the result of repeated evolution of a suite of coordinated

functional characteristics.

(a) Relationships among traits
Strong correlations among traits were represented by two

major axes of variation, which are likely to be associated

with adaptations to horizontal and vertical light gradients.

Ecological differences among species adapted to gaps

versus the shaded understory or to the understory versus

the canopy are well established as the principal axes of
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Figure 2. Phylogeny (based on rbcL and matK plastid gene) of 497 Amazonian tree and palm genera. Number of genera varied in the different phylogenies
according to the selection criterion for each trait (see Material and methods). Branches are coloured according to (a) wood density (wd g.cm3), (b) potential
tree size in diameter (Max.D cm), (c) maximum tree growth in diameter (Max.gr cm yr21) and (d ) mortality rates (% yr21). Continuous traits were coloured
using a continuous colour gradient, with colour codes indicate the wide range of trait values, from blue to red, indicating higher and lower trait values, respectively.
Phylogenies for each trait with all tips labelled are available in the electronic supplementary material (S6).
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functional variation among tropical forest tree species [50,51].

The first axis runs from pioneer and light demanding genera

with low wood density and fast demographic traits (e.g. high

mortality and high growth rates) to shade tolerant genera with

dense wood and slow demographic traits. The second axis rep-

resents variation in tree size and contrasts understorey genera,

from lineages of canopy trees. For example, these axes dis-

tinguish Cecropia and Croton, classic pioneers with low wood

density and fast demographic traits, from Hirtella—a typically

dense-wooded and slow-growing understory genus of trees.

Lineages of emergent trees which all achieve very large poten-

tial tree sizes (e.g. Bertholletia, Ceiba, Hura, Dipteryx), are also

distinguished in this analysis by their different wood densities

and growth rates (figure 3).

(b) Phylogenetic signal
Our results demonstrate significant levels of PS among demo-

graphic and structural traits of tropical trees, with Blomberg’s

K ranging from 0.25 to 0.39. This pattern suggests that evolu-

tionary relationships provide useful information about the

ecological similarity of these lineages. However, while our ana-

lyses of PS shows that evolutionarily related lineages have more

similar traits than expected by chance, their values are lower
than expected under a pure BM model of evolution (table 1

and figure 2) under which K-values would be close to 1. PS

can be lower than expected under BM if there is convergent

evolution across distantly related lineages and/or divergent

selection among closely related groups [3,4]. This result

therefore suggests that there has been repeated convergent evol-

ution and/or divergent selection, along the two main axes of

variation identified by the PPCA analysis (figure 3). This finding

suggests that adaptations to light gaps, or understorey and

canopy light environments, have repeatedly evolved within

multiple lineages of tropical trees as shown by the different

pioneer and shade tolerant genera within a series of unrelated

families (e.g. Cecropia versus Brosimum (Urticaceae/Moraceae),

Vismia versus Calophyllum (Clusiaceae) and Inga versus

Dipteryx/Parkia (Fabaceae); figure 2).

(c) Sensitivity analyses
The PS found here for trees across lowland closed-canopy

South American forests is generally stronger than previously

reported in the literature for tropical forests in smaller scale

analyses (electronic supplementary material, S7). In previous

studies, some traits showed low but significant PS [6,7,13],

while others have even found that traits are randomly
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dispersed over the phylogeny [10,11]. However, although

K-values are standardized to allow comparison between

traits and phylogenetic trees [1,4], direct comparisons of PS

are affected by differences in the spatial and taxonomic

scale of the studies, the number of lineages and the use of

different kinds of phylogenies.

A first issue for comparing the extent of PS among studies

is variation in spatial scales. However, here we show that the

higher PS in this study is unlikely to be an artefact of our

larger spatial scale: restricting our analyses to 26 plots

around Manaus shows consistent patterns, with similar

levels of PS for all traits compared to analyses for the

whole Amazon (electronic supplementary material, S5).

Secondly, different numbers of lineages in different

studies may play a role in determining variation in the

extent of PS. Although Blomberg’s K is efficient at detecting

the strength of similarity among closely related lineages for

sample sizes greater than 20 [1], the ability to detect different

levels of PS may increase with larger sample sizes [52]. To

address this issue, we conducted a set of analyses restricted

to genera for which we had all trait values (214 genera). As

estimates of K are highly consistent when we include fewer

genera (electronic supplementary material, S5), it appears

that the number of lineages is unlikely to have caused the

observed trends of high levels of PS for our traits.

Thirdly, most of previous studies [6,7,10–12] were con-

ducted at the species level, and taxonomic scale can also

affect the degree of PS. PS in any trait may vary at different
taxonomic scales; a single trait can have high similarity at

one level (e.g. genus level) but this pattern can break down

at higher or lower taxonomic levels [52]. Here, the PS of

these traits at the species level within the Protieae and Inga
were similar or slightly greater than for the genus-level

results (electronic supplementary material, S5), suggesting

that our results are consistent at finer taxonomic levels. How-

ever, as our analyses at low taxonomic levels were limited to

two lineages it remains to be fully tested whether the result

indeed holds within all clades of Neotropical trees.

Finally, the use of different kinds of phylogenies is likely

to affect the extent of similarity among related species that

is reported in different studies (electronic supplementary

material, S7). Much previous work was carried out using

community-level phylogenies, restricted to locally co-occur-

ring species [6,12] and in many cases using unresolved

phylogenies with relationships represented as polytomies

[11]. Such community-level phylogenies may lack sister

lineages for many clades that may be critical to effectively

measure PS. In addition, the use of trees with many poly-

tomies, e.g. those which add genera and species as

polytomies onto backbone family-level trees [53], leads to

uncertainty in PS estimates [14]. More importantly, phylo-

genetic sampling may play a major role in determining the

extent of PS. Although the genus-level phylogeny used here

is far from complete, our analyses do encompass a far wider

range of lineages than previous studies, including the major

angiosperm lineages present in the Amazon basin.
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Our results demonstrate that there is significant PS for key

demographic and structural traits in tropical forests. This find-

ing opens the way for clearer predictions of how evolutionary

diversity relates to ecosystem structure and function, and

how different drivers will, in turn, affect the evolutionary

diversity of Amazonian forests. For example, this study

suggests that community-level measures of evolutionary relat-

edness among species are likely to be good predictors of the

structure and functioning of these ecosystems [8,9]. These

results also indicate that changes in environmental conditions

or disturbance regimes that favour particular life-history

strategies will ultimately erode evolutionary diversity [54,55],

although the presence of some convergent evolution across

lineages may prevent significant loss of phylogenetic diversity

over some scales of anthropogenic disturbance [56]. Our results

may therefore help to resolve why different studies of the effect

of disturbance on phylogenetic diversity have obtained

contrasting results [54–56]: in particular, this study suggests

that investigating the PS of traits that influence species ability

to persist after disturbance within the species pool of interest

will be critical to understand how disturbance will alter phylo-

genetic diversity. Finally, our results also suggest that any

long-term changes in the evolutionary diversity of intact Ama-

zonian forests may indicate functional shifts in these diverse

ecosystems. Overall, the phylogenetic structure of life-history

strategies within Amazon tree communities described in this

study helps to provide a predictive framework to understand

how such complex systems will respond to global change

and anthropogenic disturbance.
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