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Abstract

Agents with ex-ante claims over a common pool resource (CPR) of uncertain size

face the risk of resource shortage if the sum of the claims they have over the common

pool resource is incompatible with the actual resource size. In case of shortage, a

sharing rule or bankruptcy rule is required to organize the restrictions and allocate the

available resource among CPR users. However, in many situations, agents can diversify

their resources and substitute an alternative safe but costly resource to the free but

risky CPR. Optimal resource management requires to study the interaction between

the sharing rule of the CPR and the resource diversi�cation choices of agents. We �nd

the optimal sharing rule under two assumptions concerning the regulator: i) the social

planner de�nes simultaneously the sharing rule and the diversi�cation choices in order

to maximize social welfare; ii) the policy maker uses the sharing rule as an instrument

to induce and each agent to make the optimal diversi�cation decision. We interpret our

results in the context of water management in France.
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Introduction

Common pool resources (CPR) are often managed through the - formal or informal - allo-

cation of access rights or use licenses to each member of the group entitled to claim a share

of the resource. When the total availability of the resource is known with certainty, optimal

allocation imposes that the marginal value of the resource to each user be equal. However,

in many cases, CPR are natural resources and quantities available can vary stochastically

due for example to climatic conditions. When the size of the CPR is uncertain, users are

exposed to the risk of shortage. There is a need to establish a sharing rule, ie a rationing

scheme de�ning the share of the total resource allocated to each user when the sum of claims

is larger than the amount of resource that is available. Users therefore face the risk of getting

a a lower quantity of the CPR than planned and claimed. When the possibility exists they

may want to diversify their resource use. For example they can reduce their dependence on

the free but risky CPR by investing into a costly but safer substitute resource which thereby

provides an opportunity to self-insure against resource shortage from the CPR (Ehrlich and

Becker (1972)). Investments in self-insurance are made ex-ante, before knowing the amount

of the CPR. Since the sharing rule determines the share of resource allocated to each agent

in case of shortage, it also a�ects agents' diversi�cation decisions.1 Each individual faces a

trade-o� between reducing the cost of his investment in the substitute resource and mini-

mizing the risk of a CPR shortage. At the society level, the optimal management of a CPR

involves two dimensions when an alternative resource is available: (i) the rule according to

which the resource should be shared in case of shortage, and (ii) the level of shortage risk

that should be taken at the society level, or equivalently, the level of investment in a secure

substitute resource.

CPR shortage arises frequently in irrigated agriculture, when several farmers use the same

water resource for irrigation. Typically, farmers need to choose their crops and decide about

their production plans before knowing the amount of irrigation water that will be available for

the coming season. They face two types of uncertainties : uncertainty about water availability

and uncertainty about the needs of the other users of the CPR. In France for instance, each

farmer has to �ll a form for a water use license in October in order to be authorized to

withdraw the corresponding volume from the river and cover his irrigation needs for the

coming year. Volumetric licenses are granted on an annual basis by the Authority in charge

1We call �diversi�cation decision� or �resource portfolio� the choice of investment into the safe resource
(the self-insurance level) and the dual decision of the claim to the CPR.
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of water management. In times of shortage, when water �ows are too low to ful�l licenses,

irrigation water is shared through a system of temporary restriction roasters, managed and

controlled by public authorities. But French farmers can also partially secure their access

to irrigation water by investing into farm storage, by pumping equipment for groundwater,

or by signing delivery contracts with water companies guaranteeing pressurized water from

storage dams etc.2 Such opportunities allow farmers to mitigate the risk of a water shortage

in the river. Taking up those opportunities, they agree to forego part of their claims on the

(uncertain) river water. The deal with public authorities is the following: their investments

in substitute resources, such as reservoirs �lled in winter, are subsidized but they must hand

back a share of their pumping licenses corresponding to the safe volume obtained. Clearly,

by relying more on private resources, they relieve the collective pressure on the river and

reduce the probability that total demand exceeds total availability, mitigating as well the

severity of shortage when it occurs. From a social welfare perspective, there is a need to �nd

the right balance between economic losses due to the risk of water shortage and investment

costs in alternative safe resources. Water managers must take into account the impact of the

sharing rule they implement in times of drought on the self-insurance investment decisions

of farmers in more secure resources.

Water allocation and river sharing problems are equivalent to �bankruptcy� problems when

existing water rights cannot be full�lled because of low available �ows during drought times

(Ansink and Weikard (2009)). The canonical example of bankruptcy involves the liquidation

of a bankrupt �rm, a situation where creditors' entitlements exceed the worth of the �rm.

The bankruptcy literature provides well-behaved and acceptable sharing rules to award the

remaining resources of the �rm (the estate) between its creditors (Aumann and Maschler

(1985), Herrero and Villar (2001), Moulin (2001)). Interestingly, the CPR and the bankrupcty

literature are rarely refering to one-another whereas such bankruptcy rules have been observed

in di�erent contexts of CPR management. The best-known rule is the proportional rule,

which recommends that awards be proportional to initial claims. The proportional rule is

widely used in Australia: water users hold water rights which give them access to a proportion

2French farmers show a growing interest in individual reservoirs in order to diversify their water resources.
These reservoirs are called �réserves de substitution� or �retenues collinaires� in France. Some of these
reservoirs are not individual but shared between a small number of neighbours. The reservoirs are �lled
during winter, when water is relatively abundant and when the reservoirs' �lling activity does not compete
with irrigation. This resource is perceived as safe by the farmers because the quantities are known in advance
(farmers can observe the quantity stored at the end of winter) and administrative restrictions do not apply to
this resource. Reservoir building is assumed to have no e�ect on the probability of water shortage occurrence
(Erdlenbruch and Montginoul (2009)).
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of the overall amount of seasonal water available. The constrained equal-awards rule shares

the estate equally amongst creditors, subject to the condition that no creditor receives more

than her initial claim. A dual formulation of equality, focusing on the losses creditors incur

as opposed to what they receive, underlies the constrained equal-losses rule. It proposes to

share losses equally across creditors, subject to the condition that no creditor ends up with a

negative award. In France, water is shared through an administrative procedure which often

gives priority to pre-identi�ed �priority� users, for example vegetable growers get the scarce

water at the expenses of fodder producers, independently of their claim over the resource

(their water licenses). It is is akin to the constrained equal-awards rule but the equality

condition is replaced by priority ranks. However, in cases when there is more homogeneity

amongst farmers, the water is shared more practically by restricting allowed irrigation times.

For example left bank farmers are allowed to irrigate on the �rst two days of the week, and

right bank farmers are allocated the last two days. This rule is closer to the constrained

losses rule: the missing water is shared among farmers but they can irrigate according to

their pumping capacity, which is assumed to be calibrated on their volumetric licence.

In this paper we develop a model that allows us to study the interactions between the rule

used to share the CPR in case of shortage and users' resource diversi�cation strategies.

The paper aims at determining the optimal sharing rule of the CPR under two di�erent

set of assumptions concerning the regulator: i) the social planner de�nes simultaneouly the

optimal investment in a secure resource and the e�cient allocation of the CPR in case of

shortage; ii) the policy-maker can use the sharing rule as an instrument to in�uence CPR

users diversi�cation strategies. We �nd that the optimal sharing rule depends on social value

from resource use when the only source of heterogeneity among agents is their valuation of

the resource use and depends on relative risk tolerance when the only source of heterogeneity

among agents is their risk tolerance. We also determine the optimal claim to the CPR as

a function of agent's valuation of theresource and her risk tolerance, the distribution of the

CPR size and the cost of the safe resource. Finally, we �nd that agents choose an optimal

diversi�cation strategy when they know the sharing rule and when this rule does not depend

onindividual claims . The paper contributes to the empirical literature about the speci�c

issue of water sharing rules in times of shortage and provides some advice targeted towards

policy makers in charge of designing those rules.

The paper is organized as follows. The �rst section outlines the main assumptions of the

model. In section 2 we consider the case of risk neutral agents with heterogeneous resource

values. In section 3 we consider agents heterogeneous in their risk preferences through a
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mean-variance model. Section 4 concludes and draws some general recommendations for

resource management under uncertain resource size when a substitute resource is available.

We illustrate and interpret our results in the speci�c context of water management in France.

All the proofs are relegated in the appendix.

1 The model

The model is intended to provide answers to two questions:

(Q1) What is the optimal total claim to the CPR (or optimal diversi�cation) and the optimal

sharing of the resource when the total claim exceeds the CPR size? This �rst question is

related to the solution that would be chosen by a perfectly informed benevolent social planner,

who can decide both on the sharing rule and on each individual's diversi�cation strategies.

(Q2) How well di�erent sharing rules perform in decentralizing the optimal diversi�cation

solution? This second question considers the more realistic issue where the regulator can only

choose the sharing rule. Indeed, for the type of secure resource we consider, the investment

decision in the safe resource is taken at the farm level.3

1.1 Assumptions

For clarity, the assumptions are presented with the exemple of irrigation water management

in France. It can easily be extended to any CPR of uncertain size with ex-ante claims over

the resource, when a safe and costly alternative is also available for substitution.

We consider a population of n = 2 farmers indexed by i = 1, 2. The results can be extended

to the case of n agents but are more easily understandable with only two agents. Each farmer

has access to a maximum quantity of water H̄i and is given the choice to diversify his water

sources.4 He has access to water from the river (CPR) and from a private reservoir (secure

3The model does not capture other investments that can also securize the water resource such as big dams.
Such solution would require public investment and thus regulatory involvement in the decision process.

4We assume that each farmer i historically request an annual water licence H̄i equal to his pro�t maxi-
mizing water input use. The H̄i can thus be interpreted as the historical allocation of pumping rights into
the river, satisfying the historical needs of water input. Since pumping rights have been largely over allo-
cated in the past, public authorities have decided that no additional quantities can be granted to individual
farmers. Therefore, H̄i is not only the historical pro�t maximizing quantity of water for farmer i, it is also
the maximum quantity that he is allowed to draw from the river.
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resource). The river water is an uncertain resource: farmers are exposed to a risk on the size

x of the CPR. The reservoir o�ers a safe alternative but it entails a variable cost of c > 0

per unit of water (no �x cost). We assume that the two resources are perfect substitutes,

allowing for any combination of claims to the two resources.

Note Ri farmer i's ex-ante claim on the river water. His claim is constrained by 0 ≤ Ri ≤ H̄i

because it cannot exceed the historical water license H̄i. Once the resource size is known, the

volume of water he can draw from the river is denoted Qi. It may not be equal to the volume

claimed if the resource size is lower than the sum of the claims over the CPR and restrictions

are organized. H̄i −Ri is the complementary quantity claimed from the secure resource. All

the units claimed in the secure resource are received by de�nition of a safe resource. In order

to study the diversi�cation choices of agents according to their individual caracteristics such

as value of the resource and risk preferences, we keep everything else equal and assume a

total claim of water equal for all farmers: H̄i = H̄ ∀i.

Agent i's pro�t from water use is denoted Πi. It is set equal to the value of the water units

drawn from both resources (Hi = (H̄ − Ri) + Qi with 0 ≤ Hi ≤ H̄). minus the cost of the

units obtained from the secure resource. For simplicity, we assume that the value of each

unit of resource is constant and equal to υi. We assume it is always strictly larger than the

cost of the alternative resource (υi > c).

Πi = υi
[
(H̄ −Ri) +Qi(x,Ri, R−i)

]
− c(H̄ −Ri) (1)

The volume of water Qi that farmer i is allowed to draw from the river depends on the size

of the resource x and on the total demand for river water R = R1 + R2. For simplicity, we

assume that x follows a uniform distribution on the interval [a; b] (a ≥ 0): F (x) = x−a
b−a and

f(x) = 1
b−a . Nevertheless, the results of this section can easily be generalized (in implicit

form) to any other distribution of x provided risk neutrality is assumed. If the size of the

resource available is larger or equal to the total claim R, farmer i gets his claim Ri from the

river. In the opposite case, a sharing rule is implemented. The sharing rule determines the

quantity θi that agent i gets in case of restriction. As a result,

Qi = Ri and Hi = H̄ if R ≤ x

Qi = θi and Hi < H̄ if R > x
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There are many possible ways to de�ne the relation between θi and x. The quantity received

can eventually be function of claims: θi(x,Ri, R−i). Two obvious restrictions are necessary :

(C1) θ1 + θ2 = x and (C2) 0 ≤ θi ≤ Ri for i = 1, 2. According to restriction (C1) the sharing

rule must exhaust the total quantity available x. It means that any rule should be de�ned

such that the available resource x is always fully allocated when R > x. This is of course a

condition for optimality as a share of the resource not allocated will not contribute to social

welfare.5 Restriction (C2) states that no agent can get a negative quantity nor get a share of

the CPR that exceeds her claim (0 ≤ θi ≤ Ri). This constraint rely on the assumption that

an agent has no value for the units of a resource above H̄. It is thus not optimal to allocate

a share θi > Ri to an agent as her total water allocation will be Hi > H̄. The sharing rules

should be speci�ed to ensure these two conditions. Section 1.2 presents the di�erent sharing

rules mentionned in the bankruptcy literature that we shall consider in this paper.

1.2 Bankruptcy sharing rules

We follow the presentation of the bankruptcy rules of Thomson (2003) but slightly modify

these rules in order to full�ll conditions (C1) and (C2) de�ned as the minimal requirements

for an optimal rule in our problem. Moreover, we remove the constraint of equality and

therefore modify the names: �constrained-equal awards rule� becomes �constrained awards

rule� and �constrained-equal losses rule� is replaced by �constrained losses rule�. We can

therefore de�ne three sharing rules based on bankruptcy rules:

(i) The proportional rule divides the amount of resource available proportionally to the

agents' claims. In case of shortage an agent who claimed Ri receives θ
P
i = xRi

R
. This rule

automatically satis�es constraints (C1) and (C2).

5In the �eld, when water is not fully allocated to irrigators, the water remains into the river and contributes
to �environmental �ows�. This is of course not a pure loss for the society. In the model, we consider that x is
the quantity of resource that has been allocated to agricultural users such that they can use all of it without
compromising the needs of other users (like the environment).
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(ii) The CA (constrained awards) rule divides the estate among the creditors independently

from their claims. In case of shortage, an agent who claimed Ri receives a share of the

available resource θi = Ωix with
n∑
i=1

Ωi = 1 and Ωi the �priority� rank of each agent inde-

pendant from the vector of claims. In the case of two agents, in order to satisfy constraints

(C1) and (C2), we rewrite the CA rule as follows for R1 ≥ R2: θ
CA
2 = min [Ω2x;R2] and

θCA1 = min
[
x− θCA2 ;R1

]
. It garantees that no agent receives more than her claim and all

the resource x is allocated when R > x. For example, if agent 2's claim is lower than Ω2x,

she receives her claim R2 and the other agent is allocated all the resource left x−R2.

(iii) The CL (constrained losses) rule allocates the missing amount of resource. The claim of

each agent is restricted by a share of the di�erence between the aggregate claim and the total

amount available, provided no agent ends up with a negative transfer. In case of shortage

an agent who claimed Ri receives θi = Ri − βi (R− x) with
n∑
i=1

βi = 1. For two agents, in

order to satisfy constraints (C1) and (C2), we rewrite the CA rule as follows for R1 ≥ R2:

θCL2 = max [R2 − β2 (R− x) ; 0] and θCL1 = x − θCL2 . It garantees that all the resource x is

allocated when R > x and the awards cannot be negative.

These three rules will be compared on the basis of their capacity to participate to the e�cient

managent of the CPR. We �rst study if one of these rules is an optimal sharing rule when the

regulator both �x the sharing rule and decide on the optimal investment in the secure resource

(Q1). Secondly, we determine which rule induces farmers to take the optimal decisions in

terms of diversi�cation choices (Q2). The answer to these questions will be given under

di�erent assumptions concerning agents preferences. In section 2, we �rst solve the model

assuming risk neutral agents in order to isolate the e�ect of heterogeneous values of the

resource. In section 3, we introduce a mean-variance objective function to observe the e�ect

of heterogeneity in risk tolerance when values of the resource are identical.
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2 Risk neutral agents with heterogenous values

In this section, we assume risk neutral agents with heterogeneous values of the resource. A

risk neutral agent, with value vi of the resource, chooses her portfolio of resources in order

to maximize her expected pro�t de�ned as follows. We assume perfect knowledge of υi, H̄

and the distribution of x by the two agents and the regulator.

Max
Ri

E [Πi] = (υi − c)(H̄ −Ri) +
υi

b− a

 bˆ

R

Ri dx+

R̂

a

θi(x) dx

 ∀i = 1, 2 (2)

We �rst solve the full optimization program of the regulator to answer Q1. Then we compare

the rules on the basis of their capacity to decentralize the optimal claims to the CPR (Q2).

2.1 Social optimum: optimal sharing rule and diversi�cation

We assume that the social planner is a perfectly informed benevolent regulator. Formally,

he chooses both the vector of claims to the CPR {R∗i } and the sharing rule {θ∗i } in order

to maximize the weighted sum of the expected pro�ts of the two agents. λi is the weight

of agent i in the social welfare function, and λiυi measures the �social value� (SVi) of the

resource used by agent i (the private value υi multiplied by the weight of agent i λi in the

social welfare function). Since the two resources are perfect substitutes, the investment in

the safe resource is the dual decision of the claim to the CPR.

We consider a vast array of rules θi(x,Ri, R−i) where the individual quantities allocated to

agent i in case of shortage may depend on the amount of resource available x and the vector

of claims (Ri, R−i). The program of the regulator writes as follows:

max SW
{Ri},{θi(x,Ri,R−i)}

=
∑
i=1,2

λi

(υi − c)(H̄ −Ri) +
υi

b− a

 bˆ

R

Ri dx+

R̂

a

θi(x,Ri, R−i) dx

(3)
/c (1) θ1 + θ2 = x

(2) 0 ≤ θi ≤ Ri ∀i = 1, 2
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Proposition 1: If SV1 > SV2(λ1υ1 > λ2υ2), the optimal sharing rule is :

θ∗1(x) = min [x ; R1] (4)

θ∗2(x) = x− θ∗1(x)

and the optimum claims to the CPR are given by :

R∗1 = max

[
min

[
a+ c(b− a)

λ1 − λ2

λ1υ1 − λ2υ2

; H̄

]
; 0

]
R∗2 = max

[
min

[
c

υ2

(b− a)
λ1 (υ1 − υ2)

λ1υ1 − λ2υ2

; H̄

]
; 0

]
R∗ = min

[
a+

c

υ2

(b− a); ¯2H

]
(5)

The optimal sharing rule is such that the agent with the higher social value of the resource

gets all the resource, provided constraints (C1) and (C2) are satis�ed. Intuitively, when

agents are risk neutral, the uncertainty on resource size has no impact and the resource

should be allocated according to social value of the resource.

The optimal total claim to the CPR is R∗: claiming more than R∗is sub-optimal because the

probability of restriction becomes too high; claiming less than R∗ is sub-optimal because of

the cost of the alternative resource. This optimal total claim to the CPR is at least equal

to the minimum quantity of CPR available (the lower bound of the distribution a). It is

increasing with the cost of the alternative resource c adjusted to the value of the resource

by the lower value user υ2. The lower-value user is determinant as the alternative resource

is relatively more costly to him. A decrease in the average quantity available of the CPR (a

decrease in a and/or b) leads to a lower optimal claim to the CPR. Note that the optimal

claim is independant of the total demand H̄, as long as R∗i < H̄ for i = 1, 2. The optimal total

claim is also independant of the weights λi. The weights only determine how this optimal

total claim is shared between both agents. Whether the agent with the higher social value

for the resource should withdraw more or less than the other from the CPR depends on their

relative values.

Lemma 1: If agents are perfectly identical (equal social value), any sharing rule is optimal.

The optimal total claim to the CPR remains equal to (5). Identically, when there is only one

agent and thus no question of optimal sharing, the optimal claim to the CPR is equal to (5).

10



2.2 Optimal sharing rule when diversi�cation is a private decision

We assume now that the regulator cannot decide in lieu of the agents. Agents choose their

resource claims and the regulator use the sharing rule as an instrument. We identify sharing

rules {θi} such that agents' diversi�cation choices and claims to the CPR lead to the optimal

solution {R∗i } found above. Formally, the agents and the regulator play a Stackelberg game

where the regulator is the leader and the agents the followers. The timing of the game is as

follows: step 1: The regulator announces the sharing rule; step 2: Each agent chooses his

claim to the CPR so as to maximize her expected pro�t. Because the sharing rule introduces

strategic interactions between agents, we calculate the best response of each agent and identify

the unique Nash equilibrium. Knowing each agent's best response function, the regulator

should choose the sharing rule announced in step 1 such that the Nash equilibrium found

in step 2 coincides with the socially optimal total claim determined in (5). This will ensure

that the chosen rule maximizes social welfare. The game is solved by backward induction.

Proposition 2: The constrained-awards rule, where the regulator favors the

agent with the highest social value for the resource, is the only rule that maxi-

mizes social welfare

Indeed, the sharing rule θ∗1(x) = min [x ; R1] and θ∗2(x) = x− θ∗1(x) is equivalent to the CA

rule with the parameters (Ω1 = 1; Ω2 = 0) for λ1υ1 > λ2υ2. It is the only rule (among the

three rules described in 1.2) for which the sum of the private claims is equal to the optimal

claim R∗. This rule maximizes social welfare when claims decisions are decentralized.

The CA rule depends on individual claims only through the constraint (C2). This rule thus

does not create any strategic interaction.6On the contrary, the proportional and CL rules

depend directly on individual claims. These two rules fail to yield a social optimum as they

introduce strategic interactions between agents. They in fact create incentives to claim more

from the CPR than what social optimality would require and lead to suoptimal pressure on

the CPT. The social welfare is lower under the proportional and CL rule than under the CA

rule de�ned in proposition 2.

6It does not mean that individual claims are totally irrelavant to de�ne the rule. Indeed, the CA sharing
rule is independant of the claim only when the allocated share of the resource is lower than the individual
claim for both agents.

11



With a numerical example, one can show the reduction in social welfare when the sharing

rule imposed by the regulator to the agents is not the rule de�ned in proposition 2. Figure 3

represents the social welfare as a function of the sharing rule. We only consider a sharing rule

of the CA form and vary Ωi. It appears clearly that the social welfare maximizing sharing

rule is (Ω1 = 1; Ω2 = 0) when υ2 < υ1.

In this second section, we have answered ther two questions stated in section 1, when the

two agents are risk neutral and heterogeneous in their social value of the resource (with

λ1υ1 > λ2υ2):

(Q1) The optimal claim to the CPR, equal to (5), is increasing in the cost of the secure

resource and decreasing in the average quantity available from the CPR. The optimal sharing

rule is such that the agent with the higher social value for the resource gets all the available

resource, up to her claim (the other agent is allocated what is left of the CPR). When the

two agents have equal social value, any sharing rule and any repartition of the total claim

are optimal.

(Q2) The constrained-awards rule with (Ω1; Ω2) = (1; 0) is the only rule (among the bankruptcy

rules considered) that maximizes social welfare when the claim to the CPR is a private de-

cision, in response to the sharing rule �xed by the regulator.

The results of this �rst section are rather intuitive and constitute a benchmark. For an

irrigation basin in which farmers would mainly di�er by the marginal value of water input, the

administrative rule adopted by France which consists in announcing priority rules according

to the economic weight of crops leads to less strategic interactions (and therefore a better

global use of water) than rules based on proportional sharing of available water. However,

it is important to check whether such result also holds when farmers have identical marginal

value of water but display di�erent levels of risk aversion. The uncertainty on resource size

becomes challenging as the way the resource is shared impacts the risk born by agents and

their incentive to self-insure. Despite the large evidence of risk aversion amongst farmers

(Binswanger (1980), Couture and Reynaud (2010)...), risk preferences are rarely taken into

account in the design of mechanisms for e�cient allocation of water between heterogeneous

agents (see for rare exceptions Tarlock (2000), Fapchamps (2003), Calatrava and Garrido

(2006)). The next section deals with heteorogeneity in agents' risk tolerances.

12



3 Mean-Variance agents with homogeneous values

The model is modi�ed to account for risk tolerance and heterogeneous risk preferences, by

relying on the two-moment decision model �rst introduced by Markowitz (1952). Our fo-

cus is on the consequences of risk-tolerance heterogeneity on the optimal sharing of the

resource when resource size is uncertain. Therefore, we assume equal value of the resource

(υ1 = υ2 = 1) in order to simplify the analysis. We showed that under risk neutrality the

optimal sharing of the CPR in case of shortage is such that the agent with the higher social

value for the resource receives the total available amount of resource. We can now study

the impact of heterogeneity in risk tolerance on the optimal sharing rule and optimal and

individual diversi�cation choices.

In the two-moment decision model, the risk is approximated by the variance and agents

rank choices according to their mean and their variance. For instance, a risk-averse agent

will accept an increase in the variance of his pro�t only if he receives a compensation in

terms of a higher mean pro�t. The two-moment decision model is compatible with any

Von-Neumann Morgenstern utility function as long as the class of available choice options is

restricted to distributions that di�er from each other only by location and scale (Sinn (1983),

Meyer (1987)). For tractability and computation of explicit solutions, we adopt the standard

linear speci�cation V (µ, σ) = γµ − ασ2, where µ and σ2 correspond to the mean and the

variance respectively. The parameter α captures the agent's risk-attitude or sensitiviness

with respect to σ2 and γ measures her marginal utility for pro�t. A positive (negative)

value for α corresponds to risk-aversion (risk-seeking) and the null value to risk-neutrality.

Assuming α di�erent of zero, under this linear speci�cation, the marginal rate of substitution

between pro�t and risk γ
α
is a constant.

Agents are assumed to maximize their objective function Φ [Πi] de�ned in (6). The �rst term

is the expected pro�t and the second term captures the e�ect of the variance of pro�t on the

objective function. Let Ti = 1
αi

be the agent's risk tolerance and set γ = 1 , such that Ti is

also the constant marginal rate of substitution between pro�t and risk. We call �relative risk

tolerance� the ratio Ti
Ti+T−i

. We assume the two agents have di�erent risk tolerance.
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Φ [Πi] = µ [Πi]−
1

2Ti
σ2 [Πi] (6)

µ [Πi] = (1− c)(H̄ −Ri) +
1

b− a

 bˆ

R

Ri dx+

R̂

a

θi(x) dx


σ2 [Πi] =

1

b− a

R2
i (b−R) +

R̂

a

θ2
i (x,Ri, R−i) dx


− 1

(b− a)2

R2
i (b−R)2 + 2Ri(b−R)

R̂

a

θi(x,Ri, R−i) dx+

 R̂

a

θi(x,Ri, R−i) dx

2


Note that all the agents with Ri > 0 are subject to the risk on the CPR size. This risk

is exogeneously given. However, the individual risk born by an agent is endogeneous: it

depends on her own diversi�cation choice. The more she chooses to rely on the CPR, the

higher the risk she bears. The individual risk born by an agent is given by the distribution

of her pro�t function de�ned in (1).

The above speci�cation has several advantages. Firstly, risk preferences are captured by a

single coe�cient (Ti). Secondly it takes into account three components of the cost of risk: (i)

the risk premium that agents incur due to the variability of the resource received from the

CPR; (ii) the cost c(H̄ − Ri) of relying on the secure resource; (iii) the opportunity cost of

self insurance: under the substitution assumption, requiring a unit from the secure resource

reduces the claim on the CPR and therefore decreases the quantity of free resource that one

receive when there is no shortage. It's an opportunity cost in the sense that the opportunity

to receive free units is reduced. Last but not least, we get some computable analytical results

for this speci�cation whereas a more general model is more di�cult to solve.7

7Samuelson (1970) writes: �Many writers have made valuable contributions the problem of optimal risk
decisions by emphasizing to analyses of means and variances. These writers have realized that the results can
be only approximate, but have also realized that approximate but computable results are better than none�.
Liu (2004) goes further: �the popularity of the mean-variance analysis is possibly not because of its precision
of approximating the expected utility theory but because of its simplicity and the power of its implications�.
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3.1 Social optimum: optimal sharing rule and diversi�cation

Under the assumption of a perfectly-informed benevolent social planner who can de�ne both

the vector of claims {Ri} and the sharing rule {θi} in order to maximize social welfare, we

identify the optimal {R∗i } and {θ∗i }. The social welfare function writes as (7) for two agents.

The same constraints (C1) and (C2) hold under risk aversion. We solve the model for equal

weights and therefore equal social value (λ1υ1 = λ2υ2 = 1).

max SW
{Ri},{θi(x,Ri,R−i)}

=
∑
i=1,2

(
µ [Πi]−

1

2Ti
σ2 [Πi]

)
(7)

Proposition 3: The optimal sharing rule depends on each agent's relative risk

tolerance:

θ∗∗i =
Ti

Ti + T−i
x ∀i = 1, 2 (8)

and the optimal individual claim is increasing in relative risk tolerance:

R∗i = min

[
Ti

Ti + T−i
Z∗ ; H̄

]
∀i = 1, 2 (9)

with Z∗ unique solution of g(Z) = 0 in [0; b] and

g(Z) = Z3−Z2 (b+ 2a)+Z
(
2(Ti + T−i)(a− b) + 2ba+ a2

)
−a2b+2(Ti+T−i)(b−a)(a+c(b−a))

(10)

Contrarily to the risk neutral case, the optimal solution cannot be identi�ed without specify-

ing a functional form for the sharing rule. We are thus in a second-best world. We consider

the three functional forms presented in 1.2 and �nd an optimal rule for each class of rules

by optimizing on the parameter: {Ωi} for the CA rule and {βi} for the CL rule. We show

that the optimal rule de�ned for each form are all equivalent for the vector of optimal claims

{R∗i }: Ω∗i = β∗i = Ti
Ti+T−i

. The social welfare is therefore equal for the three functional forms

considered here.

We �nd that the total claim to the CPR (Z∗) is increasing with the cost of the alternative

resource c and decreasing with the average quantity available from the CPR (a decrease in

a and/or b). The more risk tolerant the agents, the higher the total claim to the CPR. The

optimal sharing rule is a function of relative risk tolerance: the more risk tolerant agent gets

a greater share of the CPR in case of shortage. This result can be surprising at �rst sight
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as one could think that a risk tolerant agent is better able to bear risk and thus should be

allocated less resource when it is scarce.8 However, it is optimal that less risk tolerant agents

invest more in the safe resource. We verify in (9) that the optimal claim to the CPR of less

risk tolerant agent is e�ectively lower than the optimal claim of more risk tolerant agent.

The less resource is promized to an agent through the application of the sharing rule in case

of shortage, the lower her claims to the risky CPR at optimum.

3.2 Optimal sharing rule when diversi�cation is a private decision

As in the risk neutral case, the objective is to identify the best sharing rule when it is used

by the regulator as an instrument to in�uence the diversi�cation decisions of the agents. The

best sharing rule is such that decentralized Nash equilibrium claims of agents to the CPR

coincide with the optimum determined in (9) and thus maximizes social welfare. We verify if

the optimal sharing rule de�ned in the previous section (function of individual relative risk

tolerances) is to be chosen by a regulator when he can only choose the rule and diversi�cation

decisions are decentralized.

Proposition 4: The constrained-awards rule where resource is shared according

to relative risk tolerance maximizes social welfare: θ∗∗i = Ti
Ti+T−i

x ∀i = 1, 2

The Nash equilibrium claims to the CPR corresponds to the optimal claims de�ned in propo-

sition 3 only for the constrained-awards rule with Ωi = Ti
Ti+T−i

. This rule allocates smaller

volumes in case of shortage to the less risk tolerant such that they have an incentive to

self-insure more. Any CA rule with another allocation criterion is suboptimal. For example,

favorizing on the contrary the less risk tolerant agent would crowd out her incentive to self-

insure and therefore reduce social welfare. The constrained-losses and proportional rules are

also suboptimal as they introduce strategic interactions between agents. We �nd that they

do not lead to optimal claims to the CPR and reduce social welfare compare to the CA rule

de�ned in proposition 4.

8Considering the optimal sharing rule of the CL form, one �nd that at optimum, the agent relatively more
risk tolerant sees her claim to the CPR restricted by a higher proportion: θi = Ri − Ti

Ti+T−i
(R − x). This

result is intuitive as it suggests that the more risk tolerant agent should bear more of the resource shortage
at optimum (which is equivalent to bearing more of the risk). However, as the more risk tolerant takes more
risk at optimum, she ends up with a higher share of the available resource. The rule is indeed equivalent
with the CL and CA form and equal to θi = Ti

Ti+T−i
x.
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With a numerical example, one can show the reduction in social welfare when the sharing

rule imposed by the regulator to the agents is not the rule de�ned in proposition 4. Figure 5

shows the social welfare as a function of the sharing rule. We only consider a sharing rule of

the CA form and vary Ωi. It appears clearly that the social welfare maximizing sharing rule

of the CA type is such that Ω1 = T1

T1+T2
= 0.2.

In this third section, we have answered our two questions assuming agents have mean-variance

preferences and have the same social value for the resource (λiυi = 1 ∀i = 1, 2):

(Q1) The optimal claim to the CPR, equal to (9), is increasing in the cost of the alternative

resource and the risk tolerance of the agents, and decreasing in the average quantity available

from the CPR. The optimal sharing rule is such that each agent receives a share of the CPR

proportional to her relative risk tolerance, with the more risk tolerant agent receiving a

greater share of the resource.

(Q2) The best choice of a regulator, in charge of implementing the social welfare maximizing

sharing rule when agents are free to decide their level of diversi�cation, is the constrained-

awards rule with Ωi = Ti
Ti+T−i

. This sharing rule encourages the less risk tolerant agents to

self-insure as they receive a low share of the CPR in case of shortage.
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4 Conclusion and policy recommendations

In this paper we analyze di�erent sharing rules of a risky common-pool resourcewhen resource-

users have both ex-ante claims and the possibility to invest into a safe substitute resource.

The �rst innovation of the paper is to adress simultaneously the issue of optimal diversi�cation

choices and optimal allocation of the CPR in case of shortage. We demonstrate that the

optimal decision of a social planner has the following caracteristics: the optimal investment

in the safe resource for each agent depends on his marginal social value of the resource and on

his relative risk tolerance, as well as on the distribution of the CPR size and the cost of the

safe resource. Relying too much on the CPR reduces self-insurance and therefore increases

individual risk. It also increases the social risk as it increases the pressure on the CPR and

therefore the frequency and severity of shortage. Alternatively, investing too much in the

safe resource is suboptimal since it is costly. The social optimum is used as a benchmark to

compare the performance of sharing rules when agents have the opportunity to diversify their

resource use, reduce their reliance on the CPR and therefore decide the level of shortage risk

they bear.

Our second contribution is to identify the sharing rule that a regulator should choose in order

to induce CPR users to adopt the level of diversi�cation leading to a social optimum. Our

model con�rms the well-known result that the rules decentralizing the optimum are rules

which do not create strategic interactions between users (eg. the constrained-awards rule).

Any rule sharing the resource according to individual claims introduces strategic interactions

between agents and fails to encourage agents to diversify optimally their resource portfolio.

For a population of risk-neutral agents with heterogenous values for the resource, the priority

parameter of the constrained-awards rule should be such that the agent with the higher

social value for the resource gets all the resource available in case of shortage. When agents

have heterogenous risk preference but identical values of the resource, the priority is given

to the agent with the higher individual relative risk tolerance. Further work could study

how to design a contract such that CPR users reveal thruthfully their risk tolerance to the

regulator in order to be able to implement the optimal rule under risk aversion and asymetric

information. We also leave for further research numerical simulations to study the optimal

sharing rule when agents are heterogeneous both in their risk tolerance and in their value

for water. An other extension could include a three-moments model where agents have a

mean-variance-skewness objective function. Recent �ndings in the �nance literature showed
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that most people react to skewness. This is relevant for examining the sharing rules when

agents are sensitive to left-skewed distributions (i.e. there is a higher probability of a drought

than an excess water supply, which is more and more likely with climate change).

Our work can help a practical implementation of a scarcity sharing rule, for example in the

context of the water law reform that France is presently implementing in order to adjust to

the increased frequency of drought. A �rst recommendation to policy makers is to take into

account the impact of the restrictions rule that they implement in scarcity times on farmers

choices of water resource use and investments in diversi�cation. Water restriction rules which

are de�ned as a proportion of existing pumping rights or licences are likely to induce sub-

optimal investments in alternative safe resources (such as reservoirs). This is an important

result since many countries do rely on such restriction rules. For example in Australia, water

rights held by farmers determine their allocation as a proportion of total water available

for agriculture. In some regions in Spain, volumes distributed in times of shortage are also

calculated as proportions of the subscribed quotas. We recommend that restrictions rules be

carefully revised in order to limit strategic interactions of farmers when claiming their annual

water licenses. Ideally, the rule should take into account the relative marginal social value

of water use by each irrigator and his relative risk tolerance. A second message concerns the

common practice in France of de�ning priority users in times of water restriction. Farmers

growing high value crops such as vegetables or fruit trees and contracted growers are usually

exempted from water restrictions. Our result suggests that this practice is not ine�cient

as long as priority ranks are independent from volumetric licences. But with the increased

variability of water availability, the economic value generated by irrigation should not be

the only determinant of water allocation and the risk tolerance of the farmers should also

be taken into account. When water available for irrigation is stochastic, contracted growers

and fruit producers bear high risk on their pro�ts. These farmers are therefore supposed to

be less risk tolerant. As a result, the current practice of exemptions warranting relatively

more water to the less risk tolerant farmers in case of drought is ine�cient as it reduces their

incentives to self-insure whereas it would be optimal from a social point of view that they do

so. The social cost of drought can be reduced by using an e�cient and transparent restriction

rule, encouraging e�cient risk management decisions at the farm level.

The authors wish to thank Mickaël Beaud (Lameta, Montpellier University), Charles Figuières

(Lameta, INRA Montpellier) and Birendra Rai (Monash University, Melbourne) for helpful com-
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Figures

Figure 1: Optimal sharing rule under risk neutrality
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Figure 2: The CA rule does verify constraints C1 and C2 (case 2)

Figure 3: Social welfare according to the sharing rule (Risk neutral agents with υ1 > υ2)
a = 0, b = 40, H = 20, c = 0.2, υ1 = 4, υ2 = 1
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Figure 4: Optimal sharing rule under risk aversion

Figure 5: Social welfare according to the sharing rule (Mean-Variance agents with T1 < T2)
a = 0, b = 40, H = 20, c = 0.2, T1 = 1, T2 = 4
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Proof Proposition 1

Under the constraint θ1 = x− θ2, the social welfare function simpli�es in:

SW = λ1(υ1 − c)(H̄ −R1) + λ2(υ2 − c)(H̄ −R2)

+
1

b− a

bˆ

R

[λ2υ2R2 + λ1υ1R1] dx+
1

b− a

R̂

a

[(λ1υ1 − λ2υ2).θ1(x,R1, R2) + λ2υ2x] dx

For λ1υ1 − λ2υ2 > 0, the social welfare is increasing in θ1(x,R1, R2). As a result, the social welfare

maximizing sharing rule is such that θ1(x,R1, R2) is maximum: θ∗1(x) = min [x;R1]. The optimal

sharing rule writes as (4) in order to satisfy constraints (C1) and (C2) (as illustrated in Figure 1).

Plugging back the optimal rule de�ned in (4) into the social welfare function, the social welfare

function writes as:

SW = λ1

(υ1 − c)(H̄ −R1) +
υ1

b− a

 bˆ

R

R1 dx+

R̂

R1

R1 dx+

R1ˆ

a

x dx

 (11)

+ λ2

(υ2 − c)(H̄ −R2) +
υ2

b− a

 bˆ

R

R2 dx+

R̂

R1

(x−R2) dx+

R1ˆ

a

0 dx


The �rst order conditions are:

∂SW

∂R1
=
λ1c(b− a) + λ1υ1(a−R1)− λ2υ2R2

b− a
= 0

∂SW

∂R2
=
λ2c(b− a) + λ2υ2(a−R1 −R2)

b− a
= 0

We �nd the optimal claims de�ned in (5) and verify that R∗1 and R∗2 are maxima.

∂2SW

∂R2
1

(R∗1, R
∗
2) = −λ1υ1

b−a < 0

∂2SW

∂R2
2

(R∗1, R
∗
2) = −λ2υ2

b−a < 0(
∂2SW

∂R2
1

∂2SW

∂R2
2

−
(
∂2SW

∂R1∂R2

)2
)

(R∗1, R
∗
2) = − λ2υ2

(b−a)2
(λ1v1 − λ2v2) > 0

�
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Proof Lemma 1

For λiυi = υ ∀i = 1, 2, the social welfare function simpli�es in:

SW = (v − c)(2H̄ −R) +
υ

b− a

 bˆ

R

R dx+

R̂

a

x dx


The social welfare function does not depend on {θi}. Therefore, any sharing rule such that θ1 +θ2 =

x, 0 ≤ θi ≤ Ri ∀i = 1, 2 is optimal. Moreover, the social welfare is only function of R. Any

repartition of the total claim between the two agents is optimal. The optimal claim R∗is such that
∂SW
∂R = 0 and equal to:

R∗ = min
[ c
υ

(b− a) + a; ¯2H
]
.

We verify that R∗ is a maximum ∂2SW
∂R2 (R∗) = − v

b−a < 0

The same result holds for one single agent. In that case, the social welfare function is:

SW = (υi − c)(H̄ −Ri) +
υi

b− a

 bˆ

Ri

Ri dx+

Riˆ

a

x dx


�

Proof Proposition 2

We plug the di�erent sharing rules de�ned in section 1.2 into the objective function of the agents

and compute the corresponding Nash equilibrium. We then compare Nash equilibrium solutions

and optimal claims to the CPR de�ned in proposition 1. When no explicit solution is available

for Nash equilibrium, we verify if the FOC conditions of expected pro�t maximization vanish for

Ri = R∗i ∀i = 1, 2. If this is not the case, the Nash equilibrium solution do not correspond to

optimum and the sharing rule does not maximize social welfare when diversi�cation decisions are

decentralized.
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CA rule: θ1 = min [Ω1x;R1] and θ2 = min [x− θ1;R2]

Assuming constraints (C1) and (C2) need to be satis�ed, three cases are possible. Figure 2 represents

one of them (case 2).

case 1: If R1
Ω1

> R and R2
(1−Ω1) > R:

E [Π1] = (υ1 − c)(H̄ −R1) + υ1
b−a

[´ b
RR1 dx+

´ R
a Ω1x dx

]
E [Π2] = (υ2 − c)(H̄ −R2) + υ2

b−a

[´ b
RR2 dx+

´ R
a (1− Ω1)x dx

]
case 2: If R1

Ω1
< R and R1

Ω1
< R2

(1−Ω1) :

E [Π1] = (υ1 − c)(H̄ −R1) + υ1
b−a

[´ b
RR1 dx+

´ R
R1/Ω1

R1 dx+
´ R1/Ω1

a Ω1x dx
]

E [Π2] = (υ2 − c)(H̄ −R2) + υ2
b−a

[´ b
RR2 dx+

´ R
R1/Ω1

(x−R1) dx+
´ R1/Ω1

a (1− Ω1)x dx
]

case 3: If R2
(1−Ω1) < R and R1

Ω1
> R2

(1−Ω1) :

E [Π1] = (υ1 − c)(H̄ −R1) + υ1
b−a

[´ b
RR1 dx+

´ R
R2/(1−Ω1) x−R2 dx+

´ R2/(1−Ω1)
a Ω1x dx

]
E [Π2] = (υ2 − c)(H̄ −R2) + υ2

b−a

[´ b
RR2 dx+

´ R
R2/(1−Ω1)R2 dx+

´ R2/(1−Ω1)
a (1− Ω1)x dx

]
We compute the Nash equilibrium solution for the three cases and verify ex-post which case is

relevant. We �nd that the Nash equilibrium solution veri�es the condition of case 2. The Nash

equilibrium solution is:

R1 = max

[
min

[
Ω1

(
a+

c(b− a)
υ1

)
; H̄
]

; 0
]

R2 = max

[
min

[
(1− Ω1)a+

c(b− a)
υ2

− c(b− a)
υ1

Ω1; H̄
]

; 0
]

The total equilibrium claim is R = max
[
min

[
a+ c

υ2
(b− a); ¯2H

]
; 0
]
, which is exactly the optimal

total claim R∗. In other words, any CA rule (∀Ωi) decentralizes any optimum (∀λi) at the group

level. The equilibrium individual claims are optimal only for the speci�c parameters λ1 = 1, λ2 =

0,Ω1 = 1,Ω2 = 0.

The social welfare is equal to:

OS =
c2

8
(b− a)

(
υ2

υ2
1

(1 + Ω1) +
υ1

υ2
2

(2− Ω1) +
1− Ω1

υ2

+
Ω1

υ1

)
+ ca+ H̄(υ1 + υ2 − 2c) (12)
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Proportional rule: θi = Ri
R x ∀i = 1, 2

The objective function of each agent i = 1, 2 is :

E [Πi] = (υi − c)(H̄ −Ri) + υi
b−a

[´ b
RRi dx+

´ R
a

Ri
R x dx

]
The FOC conditions do not vanish for Ri = R∗i ∀i = 1, 2. As a result, the proportional rule does

not decentralize the optimal claims. The social welfare is thus necesarily lowers than (12).

CL rule: θ1 = min [R1 − β1(R− x); 0] and θ2 = min [x− θ1;R2]

Assuming constraints (C1) and (C2) need to be satis�ed, three cases are possible.

case 1: If R1 − β1(R− x) and R2 − (1− β1)(R− x) do not vanish for x ∈ [a; b]

E [Π1] = (υ1 − c)(H̄ −R1) + υ1
b−a

[´ b
RR1 dx+

´ R
a R1 − β1(R− x) dx

]
E [Π2] = (υ2 − c)(H̄ −R2) + υ2

b−a

[´ b
RR2 dx+

´ R
a R2 − (1− β2)(R− x) dx

]
case 2: If R1 − β1(R− x) = 0 for x ∈ [a; b] and R2 − (1− β1)(R− x) do not vanish for x ∈ [a; b]

E [Π1] = (υ1 − c)(H̄ −R1) + υ1
b−a

[´ b
RR1 dx+

´ R
R−R1/β1

R1 − β1(R− x) dx+
´ R−R1/β1

a 0 dx
]

E [Π2] = (υ2 − c)(H̄ −R2) + υ2
b−a

[´ b
RR2 dx+

´ R
R−R1/β1

R2 − (1− β1)(R− x) dx+
´ R−R1/β1

a x dx
]

case 3: If R2 − (1− β1)(R− x) = 0 for x ∈ [a; b] and R1 − β1(R− x) do not vanish for x ∈ [a; b]

E [Π1] = (υ1 − c)(H̄ −R1) + υ1
b−a

[´ b
RR1 dx+

´ R
R−R2/(1−β1)R1 − β1(R− x) dx+

´ R−R2/(1−β1)
a x dx

]
E [Π2] = (υ2−c)(H̄−R2)+ υ2

b−a

[´ b
RR2 dx+

´ R
R−R2/(1−β1)R2 − (1− β1)(R− x) dx+

´ R−R2/(1−β1)
a 0 dx

]
The FOC conditions do not vanish for Ri = R∗i ∀i = 1, 2 in none of the three cases. As a result, the

CL rule does not decentralize the optimal claims and the social welfare is reduced compare to (12).

For the special case where υ1 = υ2, we show that the FOC evaluated at R∗1 and R∗2 are equal to

zero in case 3. We can verify that R1 = R∗1 and R2 = R∗2 e�ectively respect conditions for case 3.

Therefore, the Constrained Loss rule, ∀βi, can lead to the optimal claims to the CPR when values

are equal.

�
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Proof Proposition 3

In the case of mean-variance agents, the optimal solution cannot be identi�ed without specifying a

functional form for the sharing rule. We consider the three functional forms presented in 1.2. We

�nd an optimal rule for each class of rules by optimizing on the parameter: {Ωi} for the CA rule

and {βi} for the CL rule. We do not take into account the full specti�cation of the sharing rules

as de�ned in 1.2 but verify ex-post that the optimal rules satis�es constraints (C1) and (C2) (see

�gure 4 for the example of the CA rule).

CA rule

We solve the problem under the constraint θi = Ωix with
∑
i=1,2

Ωi = 1. The FOC of the problem are

∂SW
∂Ri

= 0 and ∂SW
∂Ωi

= 0 for i = 1, 2.

To solve the FOC we proceed as follows: From ∂SW
∂Ω1

= 0, we obtain Ωint
1 as a function of R1 and R2.

Replacing Ωint
1 in ∂SW

∂R1
− ∂SW

∂R2
= 0, we obtain three possible solutions: R1 +R2 = a , R1 +R2 = b,

R1 = T1
T2
R2. We can easily verify that R1 + R2 = a does not verify the FOC ∂SW

∂Ri
= 0, for i = 1, 2.

Replacing R1 = T1
T2
R2 in ∂SW

∂Ri
= 0 for i = 1, 2, we obtain that the solution {R∗i } that maximizes

social welfare is given by (10). The factor depends on relative risk tolerance de�ned as the ratio of

individual risk tolerance over the sum of risk tolerances in the pair: Ti
Ti+T−i

. We can verify that the

social welfare for this solution SW |
R1=

T1
T2
R2

is higher than SW |R1+R2=b. We then replace {R∗i } in

Ωint
i to �nd Ω∗i de�ned in (8).

Proportional rule

We solve the same problem under the constraint θi = Ri
R x. There is no parameter to optimize

because there is a unique rule of the form θi = Ri
R x such that constraints (C1) and (C2) are veri�ed.

The FOC of the problem are ∂SW
∂Ri

= 0 for i = 1, 2. Solving ∂SW
∂R1
− ∂SW

∂R2
= 0, we obtain three possible

solutions: R1 + R2 = a , R1 + R2 = 4
3b−

1
3a , R1 = T1

T2
R2 . We can easily verify that R1 + R2 = a

and R1 + R2 = 4
3b −

1
3a does not verify the FOC ∂SW

∂Ri
= 0 for i = 1, 2. Replacing R1 = Tj1

T2
R2 in

∂SW
∂Ri

= 0, we obtain that the solution {R∗i } that maximizes social welfare is given by (10). If we

replace {R∗i } in θi = Ri
R x, we �nd θ∗∗i = Ti

Ti+T−i
x. The social welfare is equal to the social welfare

with the optimal CA rule.
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CL rule

We solve the problem under the constraint θi = Ri − βi (R− x) with
∑
i=1,2

βi = 1.

The FOC of the problem are ∂SW
∂Ri

= 0 and ∂SW
∂βi

= 0 for i = 1, 2. From ∂SW
∂β1

= 0 and ∂SW
∂β2

= 0, we

obtain β∗i = Ti
Ti+T−i

for i = 1, 2. Replacing β∗i in ∂SW
∂Ri

= 0 we obtain R∗ = Z given by (10). For this

rule individual claims are not determined. One can choose for example the repartition de�ned in

(9). If we replace {R∗i } in θ∗i = Ri − β∗i (R− x), we �nd θ∗∗i = Ti
Ti+T−i

x. The social welfare is equal

to the social welfare with the optimal CA and proportional rules.

We verify that the total optimal claim to the CPR (9) tends to the risk neutrality optimal solution

when risk tolerances tends to in�nity. The total optimal claim is equal to Z∗, given by the solution

of g(Z). The roots of this polynom in Z tend to the roots of the limit polynom g∞(Z) given by:

g∞(Z) = Z (2(T1 + T2)(a− b)) + 2(T1 + T2)(b− a)(a+ c(b− a)).

The solution to g∞(Z) = 0 is Z = a+ c(b− a). Thus, lim
T1,T2→∞

R∗ = lim
T1,T2→∞

Z = a+ c(b− a). This is

the optimal total claim under risk neutrality with υ1 = υ2 = 1.

�

Proof Proposition 4

The proof is similar to proposition 2. We verify if the FOC conditions of objective function maxi-

mization vanish for Ri = R∗i ∀i = 1, 2. If this is the case, the Nash equilibrium solution corresponds

to optimum and the sharing rule maximizes social welfare when diversi�cation decisions are decen-

tralized. We consider the di�erent possible cases for (Ri,Ωi, βi) ∀i = 1, 2 and verify ex-post which

case is relevant according to the equilibrium solution. We �nd that the FOC vanish for the optimal

solutions {R∗i } only for the CA rule with Ωi = Ti
Ti+T−i

x.

�
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