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A Mixture Peaks over Threshold Approach for Predicting

Extreme Bridge Traffic Load Effects

Xiao-Yi Zhou 1, Franziska Schmidt2, François Toutlemonde 3 and Bernard Jacob 4

ABSTRACT1

Traditionally, bridge traffic load effects are considered as identically and indepen-2

dently distributed random variables. However, load effects resulting from different3

loading events in terms of simultaneously involved vehicles/trucks do not have the4

same statistical distributions. To consider this, a novel method has been developed for5

predicting characteristic value and maximum value distribution of traffic load effects6

on bridges. The proposed method is based on the conventional peaks-over-threshold7

method, which uses the generalized Pareto distribution. The principle is to (1) separate8

the traffic load effects by types of loading event, (2) model the upper tail of the load ef-9

fect for each type with generalized Pareto distribution, and (3) integrate them together10

according to their respective weights in the total population. Numerical studies have11

been conducted to demonstrate the feasibility of the proposed method in predicting12

characteristic value or quantile and extreme value distribution for bridge traffic load13
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2Research engineer, Ph.D., Materials and Structures Department, IFSTTAR; Université
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effects. Results show that the proposed approach is efficient to conduct extreme value14

analysis for data having mixture probability distribution function.15

Keywords: Traffic load effects; Peaks-over-threshold; Mixture peaks-over-threshold;16

Bridge; Extreme value; Generalized Pareto distribution17

INTRODUCTION18

Assessing the condition of existing bridges is of increasing concern in bridge19

management as more and more bridges step into their ageing stage worldwide,20

and a deteriorated bridge raises a risk to safety and welfare loss for the users.21

Although extensive efforts have been devoted to elaborate load-carrying capacity22

models, the role of traffic loading in existing bridge structures has increasingly23

received attention in recent years as potential benefits have been revealed in24

terms of optimally allocating the limited maintenance and management budgets25

(COST 345 2002; Frangopol et al. 2008; Fu and You 2009; Li et al. 2012). In26

addition, the growth of traffic has been reported in recent years worldwide: for27

instance in Europe the road freight transport has increased by 35% between 199528

and 2010. This has led the regulators introducing truck weight limit regulations29

and allowing the introduction of higher and longer vehicles in some member30

states, such as Scandinavia. These changes may have aggressive impacts on31

bridge structures in terms of maximum load and load effect, fatigue damage,32

probability of failure and etc. (Desrosiers and Grillo 1973; Ghosn and Moses33

2000; Righiniotis 2006; Gindy and Nassif 2007; Tong et al. 2008; Fu et al. 2011;34

Zhou et al. 2014; O’Brien et al. 2014). The topic of multi-hazard analysis35

combines traffic loading with seismic or wind loading (Cai and Chen 2004; Zhu36

and Frangopol 2012; Ghosh et al. 2013). Therefore, an accurate prediction of the37

extreme traffic load effects on bridges is desired, especially for evaluating existing38

bridge structures.39

Indeed the estimation of a high quantile or tail distribution is not an easy task,40
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making inference about the extremal behaviour, in a domain where the samples41

only contain a very small amount of data. Moreover, extrapolation beyond the42

range of the data is necessary to know something about areas where there are43

no observation at all (Leadbetter et al. 1983; Coles 2001; de Haan and Ferreira44

2006). This issue belongs to extreme value statistics, which has been extensively45

developed in the last 60 years, although it can be tracked back to the early 20th46

century. Extreme value predictive techniques have been used in many disciplines47

including structural engineering, and extensive research has been conducted in48

recent decades on bridge traffic load effects. The methods in the literature on49

extreme traffic load effects on bridges can be broadly classified into two major50

categories: (1) tail distribution methods, and (2) periodic maxima methods.51

The primary objective of the first category of methods is to find the underlying52

distribution of bridge traffic load effects, then the maximum value distribution53

can be easily computed by raising the distribution to a certain power (Coles54

2001). Using Normal distribution (Nowak 1993; Sivakumar et al. 2011), Gumbel55

distribution (Cooper 1997; Fu and You 2009), Weibull distribution (O’Brien et al.56

1995) to bridge traffic load effects belongs to this category of method. In addition,57

the Rice formula based level-crossing method adopted in (Cremona 2001) can also58

be classified into the first category as the mathematical assumption implies that59

the traffic load effect is normally distributed.60

The second category of methods aim at fitting a series of local maxima, taken61

from successive independent samples of observations over a given time period, to62

a standard extreme value distribution. Then the extreme characteristic values63

(or values with a given return period) for expected probabilities of exceedance64

can be computed. Fitting daily or yearly maxima to Weibull distribution (Bailey65

and Bez 1999), or to Gumbel distribution (Fu and You 2009) and to generalized66

extreme value distribution (Messervey et al. 2010; Park and Sohn 2006; Enright67
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et al. 2013) belongs to this category. A comprehensive review and quantitative68

comparison of the prediction methods of extreme traffic load effects on bridges69

can be found in (O’Brien et al. 2015).70

It has been widely accepted in the extreme value statistics research commu-71

nity that the generalized Pareto distribution (GPD) based peaks-over-threshold72

approach (POT) is as effective as generalized extreme value distribution (GEV)73

based block-maxima method (BM) to estimate extreme value. However, the use74

of POT approach has seldom been reported in bridge traffic load effects, although75

the POT approach has significant advantages. Many papers in other disciplines76

have proved that it may provide more accurate estimates than the BM method77

in modelling extreme values (Madsen et al. 1997; O’Brien et al. 2015). Moreover78

its mathematical form leads to very simple formulation.79

Most of the previous works assume that bridge traffic load effects are iden-80

tically and independently distributed (iid), which is a main condition to apply81

the extreme value theory (Coles 2001). However, it has been shown that bridge82

traffic load effects are induced by different types of loading events, depending on83

the number of trucks being simultaneously on the bridge deck. Thus the periodic84

maximum (usually daily maximum) used in the estimation may not come from85

the same type of distribution, which does not comply with the iid assumption86

(Harman and Davenport 1979). Desrosiers and Grillo (1973) stated that the mul-87

tiple presence of trucks depends significantly on the bridge length, truck speed88

and traffic volume based on field data collected from several highway locations89

(Connecticut Route 5, I-91 at the Depot Hill Road, and I-91 at the Connecticut90

Route 68). These findings have been confirmed in (Gindy and Nassif 2007) with91

recent traffic data collected from 25 WIM sites in New Jersey between 1993 and92

2003. Moreover, Messervey et al. (2010) states that the periodic maxima usually93

do not come from a single distribution as the number of events varies day by day.94
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It is possible to select an optimal periodic length (Messervey et al. 2010), but it95

may waste data because of the reduced number of extremes used from these data.96

Another solution by (Caprani et al. 2008) named composite statistic distribution97

method accounts for the variation of loading distribution based on block maxima98

method and models extreme load effects from the same type of loading event.99

In order to address the non-identically distributed traffic load effects, a novel100

extreme value analysis method has been proposed. The proposed method is101

based on the conventional peaks-over-threshold method (CPOT), which relies on102

the generalized Pareto distribution. The principle is to classify the traffic load103

effects by types of loading event. Then the CPOT is used to derive the upper104

tail of load effect distribution for each loading event category with generalized105

Pareto distribution. Finally the upper tail distribution is the weighed average of106

the upper tail distributions by loading event.107

In the following sections, the mathematical background and the details of108

derivation of the novel method are presented. Numerical studies, including a109

theoretical example and a real traffic load effect example, are conducted to illus-110

trate the capacity of the proposed method, and its performance is assessed by111

comparing with the conventional methods and the recently developed composite112

statistic distribution method (Caprani et al. 2008).113

METHODOLOGY114

The generalized Pareto distribution and Peaks-over-Thresholds ap-115

proach116

Let X1, . . . , Xn be a sequence of independently and identically distributed117

random variables with distribution function F . When the value taken by Xi118

exceeds some high threshold u, this value can be treated as an extreme event.119

The behavior of those extremes can be described by the conditional distribution120
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function of the excesses, x = X − u, over the threshold u:121

Fu(x) = Pr {X − u ≤ x|X > u} =
F (x+ u)− F (u)

1− F (u)
, (1)

for 0 ≤ x < x0 − u.122

The Balkema-de Haan-Pickands theorem (Balkema and de Haan 1974; Pickands123

III 1975) states that, for a certain class of distributions, the generalized Pareto124

distribution (GPD) is the limiting distribution for the distribution of the excesses,125

as the threshold tends to the right endpoint. The distribution function of GPD126

is usually expressed as:127

H(x; ξ, σ) =


1−

[
1 + ξ

(
x−u
σ

)]−1/ξ
ξ 6=0,

1− exp
(
−x−u

σ

)
ξ = 0,

(2)

where u is the threshold value, σ > 0, and the support is x ≥ 0 when ξ ≥ 0 and128

0 ≤ x − σ/ξ. The GPD comprises three known distribution types, depending129

on the value of parameter ξ. When ξ > 0, the function is equivalent to a re-130

parametrized version of the usual Pareto distribution; if ξ < 0, the distribution131

is called a type II Pareto distribution; ξ = 0 gives the exponential distribution.132

According to Eqs. (1) and (2), the distribution function F (x) can thus be133

expressed as:134

F (x) = (1− ςu) + ςuH(x; ξ, σ, u), (3)

where ςu = Pr {X > u|X ≥ 0} = 1−F (u) represents the survival function, while135

Fu(x) is the cumulative distribution function (CDF) of x > u only.136

The quantile xm that is exceeded on average once every m observations is the137
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solution of:138

xm =


u+ σ

ξ

[
(mςu)

ξ − 1
]

ξ 6=0

u+ σ log (mς) ξ = 0

(4)

provided m is sufficiently large to ensure that xm > u.139

Derivation of the mixture Peaks-over-Thresholds method140

Now, let X1, · · · , Xn be a sequence of independently but non-identically dis-141

tributed random variables with distribution function F , which is a mixture dis-142

tribution consisting of m components, expressed as:143

F (x) =
m∑
j=1

Fj(x) · ϕj, (5)

where the j-th component (distribution function of the j-th sub-population) Fj144

belongs to the domain of maximum attraction, and ϕj is the weight ofX belonging145

to the j-th sub-population, with
∑m

j=1 ϕj = 1. Straightforwardly, the survivor146

function is expressed as:147

F̄ (x) = 1− F (x) =
m∑
j=1

[1− Fj(x)]ϕj. (6)

Assume that for a given threshold uj the exceedances of j−th component148

could be reliably described by a generalized Pareto distribution, from Eq.(3) the149

survivor function of the j−th component can be formulated:150

1− Fj(x) ≡ [1−Hj(x− uj)][1− Fj(uj)] (7)

Substituting Eq.(7) into Eq.(6), the survivor function of the mixture distribution151
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can be expressed as:152

F̄ (x) =
nt∑
j=1

[1−Hj(x− uj)][1− Fj(uj)]ϕj. (8)

Therefore, the tail of the mixture distribution can be represented by:153

F (x) = 1− F̄ (x) = 1−
nt∑
j=1

[1−Hj(x− uj)][1− Fj(uj)]ϕj. (9)

As shown in Eq.(9), the quantile for this mixture distribution can not be154

obtained directly. Hence, iteration is needed to find optimal estimate x̂m that155

satisfies the following equation:156

[1− F (x̂m)]− 1

m
≤ ε. (10)

with ε as a given small value.157

Approach for threshold selection in the use of Mixture Peaks-Over-158

Thresholds method159

In the application of the MPOT method, an essential step is to select an ap-160

propriate threshold uj for each component of the mixture models of load effects161

to which the asymptotic GPD is approximated. The threshold selection requires162

consideration of the trade-off between bias and variance: a too high threshold163

reduces the number of exceedances and thus increases the estimated variance,164

whereas a low threshold can reduce the estimated variance but increase the bias165

(Scarrott and MacDonald 2012). Graphical diagnosis approaches, e.g. the mean166

residual life plot, are commonly used for such a selection, but they require the167

practitioner to have substantial expertise and can be rather subjective. More-168

over, they may be time-consuming if there are many thresholds to be selected.169
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Hence, graphical diagnosis approaches are not fully suitable for our problem. Au-170

tomatic threshold selection approach with appropriate measure is preferable to171

avoid subjective judgement and to apply the proposed approach efficiently as sev-172

eral thresholds are needed to be selected in the MPOT method. Several types of173

automatic threshold selection rules exist. The simplest ones are the fix number174

rules such as the upper 10% rule, the square root rule k =
√
n or its modification175

k = n2/3/ log [log(n)], but they are usually lacking of theoretical background.176

Therefore, we adopt the automatic method based on goodness-of-fit test statis-177

tics. The Anderson-Darling (AD) and Cramer - von Mises (CM) test proposed178

by Choulakian and Stephens (2001) to examine the goodness-of-fit for GPD have179

been adopted:180

W 2
n =

1

12n
+

n∑
i=1

(
zi −

1− 1/2

n

)2

for CM test,

A2
n = −n− 1

n

n∑
i=1

(2i− 1) {ln zi + ln (1− zn+1−i)} for AD test. (11)

It is worth mentioning that the collection of optimal thresholds for individual com-181

ponents may not be the optimal threshold combination for the mixture model.182

An additional procedure is needed to find an optimal combination of the indi-183

vidual thresholds. Again, a goodness-of-fit test is used to make the decision.184

However, only a non-parametric test is reasonable to be used due to the feature185

of mixture model: the Kolmogorov-Smirnov (KS) test has been chosen in this186

work. In statistics, the KS test is a non-parametric test and qualifies a distance187

between the empirical distribution function of the sample and the cumulative188

distribution function of the reference distribution. In addition, the generalized189

Pareto distribution has an important property that will be used to find the opti-190

mal combination of thresholds. If excesses of a sample over the optimal threshold,191

9



u0, can be reasonably modelled by a GPD with shape parameter ξ and σ0, then192

the excesses over thresholds larger than the optimum will follow GPDs with same193

shape parameter ξ but different scale parameter, σu that linearly depends on the194

threshold value σu = σ0 + ξ(u − u0). Therefore, the solution is to find a set of195

u1, · · · , um that satisfy:196

Dn = sup {Fn(x)− F (x;u1, · · · , um)}. (12)

The estimation of GPD parameters197

Estimating the distribution parameters of GPD is another decisive point that198

influences the performance of the MPOT method. Various estimators have been199

proposed to estimate the parameters of GPD. The applicability of a certain200

method depends on the features of the considered data. A comprehensive re-201

view and qualitative comparison of different parameter estimation methods has202

been provided by (de Zea Bermudez and Kotz 2010), and a quantitative study has203

been conducted in (Zhou 2013) to evaluate the performance of various parameter204

estimation methods when applying peaks-over-threshold method on traffic load205

effect data. The method of moment (MM), the power weighted moment method206

(PWM) and the maximum likelihood method (ML) are commonly used in the207

literature. It has been widely accepted that the maximum distribution of bridge208

traffic load effects belongs to an upper bounded Weibull distribution which has209

a shape parameter ξ < 0. Hence, the MM, PWM and ML methods are suit-210

able to traffic load effects. In addition, the minimum density power divergence211

(MDPD) method is used in this work due to its excellent performance in the case212

of contaminated data (Juarez and Schucany 2004).213

TRAFFIC DATA AND BRIDGE TRAFFIC LOAD EFFECTS214
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Description of Weigh-in-Motion traffic data215

Traffic data from the A9 motorway near Saint-Jean-de-Védas (SJDV), in216

southeastern France, was used in this study. Weights and dimensions of trucks,217

which travelled in the slow and fast lanes in one direction of the 6-lane motorway,218

were recorded by using a piezo-ceramic Weigh-in-Motion (WIM) system from219

January 2010 to May 2010. A total number of 581,011 trucks representing traffic220

of 86 days were drawn from the original data by excluding unreasonable record-221

ings, weekends and system inactivity days. The traffic composition displayed in222

Fig.1a shows that the 5-axle truck is the dominant type of truck on this site rep-223

resenting 76.4% in traffic volume. The histogram of gross vehicle weight (GVW)224

is presented in Fig.1b. To see the contribution from each type of truck, a stacked225

plot is given. It can be seen that the 5-axle truck governs the leading mode of226

the GVW histogram.227

Traffic loading Monte Carlo simulation228

If traffic data can be recorded by WIM for a sufficiently long period of time,229

such as a year, then the load effects induced by the measured traffic can be230

directly used to estimate the extreme load effect. Long term data, however, are231

not always available, due to the limitation of storage for huge amount of data for232

continuous recording, the problem of the equipment, the limitation of budget for233

conducting long term measuring, etc. Using limited data to predict extreme value234

distribution is thus a common situation in practice. The estimate of characteristic235

value may have large variance if extrapolation is based on limited data. Hybrid236

method that integrates extreme value analysis approaches with traffic simulation237

techniques is a practical solution. Using microscopic traffic simulation techniques238

to generate long-term traffic loads or load effects has been demonstrated as an239

efficient and accurate approach to study bridge traffic load effect in recent years240
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(O’Connor and O’Brien 2005; Chen and Wu 2011; Enright and O’Brien 2012).241

In the present study, a simulation program is developed to generate virtual242

traffic and to calculate traffic load effects on bridges. The basic principle is to243

generate traffic flow with the same features as those extracted from measured244

traffic data, such as aforementioned 86 days’ WIM data. This is realized in245

following steps:246

1. Calculating traffic composition: In this study, vehicles are categorized into247

classes according to their silhouettes as illustrated in Fig.2.248

2. Establishing statistical models for characteristics of each class of vehicle,249

including gross vehicle weight (GVW), distribution of GVW to individ-250

ual axle or axle group, vehicle speed, vehicle configuration in terms of251

axle spacing and vehicle length, and lateral position of the vehicle in the252

lane. The best fit is selected among the normal, bi- and tri-modal normal253

distribution.254

3. Establishing vehicle moving model: Time headway distribution model,255

which describes the time distance between the rear axle of the front truck256

and the front axle of the following truck, is fundamental to traffic flow257

modelling in traffic simulation. A refined hourly truck flow rate depended258

headway model proposed by O’Brien and Caprani (2005) is adopted in259

the present study. Headways of less than 4 seconds are modelled using260

quadratic curves for different flow rates, and a negative exponential distri-261

bution is used for larger headways.262

4. Simulating traffic flow: Assume the simulation program started at time t,263

a group of nt vehicles is generated by using headway model in step (3);264

each vehicle of these nt vehicles is randomly assigned a vehicle class with265

the traffic composition information that is a uniform distributed random266
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variable ranging from 0 to 1, and the vehicle characteristics are generated267

according to the assigned class.268

5. Calculating load effects: Once the traffic data is generated, it is passed to269

the load effect calculation subroutine. The calculation is activated when270

a vehicle arrives on the bridge, then this vehicle is assumed as leading271

vehicle and passes the bridge in a time step ∆t.272

At each step, the program searches and counts the number of vehicles, N , on273

the bridge. The load effect, LE(tn), at time, tn, induced by these N vehicles can274

be obtained by using:275

LE(tn) =
N∑
j=1

nj∑
k=1

φSi
(
xkj , y

k
j

)
P k
j , (13)

where:276

N : number of vehicles on the bridge,277

nj: number of axles of the jth vehicle,278

φ: dynamic amplification factor,279

Si: influence surface for load effect of interest produced by a unit load of i-th280

type of tyre,281

xkj : longitudinal position of the k-th axle of the j-th vehicle282

xkj = vj · (tn − t0j)− dkj ,

vj: speed of jth vehicle,283

t0j : arrival time of the first axle of the jth vehicle, when passing over the position284

x = 0,285
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dkj : distance between steering axle and the kth axle of the jth vehicle,286

ykj : transversal position of the k-th axle of the j-th vehicle,287

P k
j : load of the k-th axle of the jth vehicle.288

Classifying load effects by loading event289

Recording traffic load effects and loading events simultaneously, Fig.3 shows290

that several single truck loading events have induced a larger load effect than those291

induced by 2-truck loading events. In order to use all possible relatively large load292

effects efficiently, the full time history of effects induced by traffic passing over293

the bridge is retained first, then the local extremes and corresponding types of294

loading events (comprising the number of trucks) are identified. Fig. 4 illustrates295

such a process, the time history of the traffic load effect is drawn in blue line and296

the local extremes are marked with red stars:297

1. The process starts with a single loading event when the first truck arrives298

the bridge.299

2. Then another truck (2nd truck) arrives on the bridge generating a 2-truck300

loading event.301

3. The first arrived truck leaves the bridge and the loading becomes a single302

truck event again.303

4. Then a new truck (3rd truck) enters the bridge and the loading becomes304

a 2-truck event again,305

5. The 2nd arrived truck exits the bridge (single loading event),306

6. Then a new truck (4th truck) arrives so that a new 2-truck loading event307

is generated,308

7. Finally the 3rd truck exits the bridge and the loading event is a single309

truck loading event again.310

14



In this process, a total of four trucks has arrived on the bridge and produced311

4 extreme single truck loading events and 3 extreme two-truck loading events.312

The local extreme for each loading event is identified and marked in Fig.4. Using313

this procedure, local extremes for various types of loading event are identified.314

Fig.5 shows histograms of traffic load effects induced by simulated traffic for315

illustration purpose, and it can be seen that local extremes induced by different316

types of loading events are not identically distributed. The classical extreme value317

theory can thus not be directly applied to these mixed data as it requires data of318

independent and identical distribution.319

Previous studies have demonstrated that three types of load effects are critical320

for short to median length bridges: (I1) bending moment at mid-span and (I2)321

shear force at end-support of a simply supported bridge, and (I3) hogging moment322

at middle support of a two-span continuous bridge. In this study, these three323

types of load effects are studied with span lengths of 20m, 30m, 40m and 50324

m. Considering the time consumption, 1500-day’s traffic data were generated by325

the developed traffic simulation program using statistical inputs extracted from326

SJDV traffic data. For the three types of load effects, six categories of loading327

events have been identified from the simulation. These six categories of truck328

arrangements are 1-truck, 2-truck, 3-truck, 4-truck, 5-truck, and 6-truck loading329

events. It should be noted that the 1-truck case includes situations from only330

one axle of the truck to the whole truck being on the bridge. Similarly, 2-truck331

loading events include all possible combinations of two trucks, from both trucks332

having only one axle on the bridge to both trucks having all axles on the bridge333

simultaneously. This is also the case for all loading types.334

Two sets of loading event composition are listed in Table 1 for the three types335

of load effects, with four types of bridge lengths. The first group is for load336

effects over 90th percentile, and the second group is for load effects above 95th337
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percentile. Fig. 6 shows that the governing type of loading event changes with338

increased bridge length. For a bridge length of 20 m, 2-truck and 3-truck loading339

events govern the upper tail. For a bridge length of 30 m, it can be seen from340

Fig. 6 that the governing event is 3-truck loading event. For bridge lengths of 40341

and 50 m, 3-truck events are still the governing but some 4- and 5-truck events342

occur at the upper end of the simulation period. In addition, the composition of343

loading events are different between the data over 90th percentile and those over344

95th percentile. In general, it demonstrates the importance to classify the load345

effects by loading events in predicting extreme value distribution or characteristic346

value.347

EVALUATING THE PERFORMANCE OF THE MPOT APPROACH348

To show how the MPOT method works for realistic bridge traffic load effects,349

two numerical studies have been conducted and are reported in this section. The350

first example is to examine the performance of the MPOT method for a set of data351

generated from a mixture normal distribution, and the second example is to eval-352

uate the MPOT method for bridge traffic load effects generated by Monte Carlo353

traffic microsimulation. In both examples, a comparison of the relative accuracy354

of the present MPOT and of the conventional peaks-over-threshold (CPOT) is355

performed.356

Theoretical example357

The normal distribution is widely used in bridge engineering: for example358

gross vehicle weights are usually modelled by normal distribution or mixture359

normal distribution. In the first example, the performance of MPOT method is360

evaluated by using a random event having a parent distribution of mixture normal361

distribution with two components, F (X < x) = ϕ1Φ(x−µ1
σ1

) + ϕ2Φ(x−µ2
σ2

). The362

core distribution is N(420, 30) with the relative frequency of occurrence ϕ1 = 0.9,363
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and the ”contaminating” distribution is N(380, 45) with the relative frequency364

of ϕ2 = 0.1. Assuming a thousand events of this type occurring every day,365

three thousand days’ events are simulated with a total of n = (3000 × 1000) =366

3, 000, 000-elements sample. In the simulation process, values from the N(420, 30)367

are denoted as event one, while those from the N(380, 45) are denoted as event368

two. These 3,000,000 sample are thus classified into two groups.369

To approximate the upper tail of the distribution of the simulated sample,370

the two aforementioned CPOT and MPOT methods are applied. For the CPOT371

method, an optimal GPD is needed to be found, while for the MPOT method two372

optimal GPDs with one for each subgroup of events are required. The goodness-373

of-fit based threshold selection approach is used first to select the optimal thresh-374

old, then the GPD parameters for the exceedances are estimated by using the375

four previously mentioned estimators. Following this procedure, the threshold376

and GPD parameter estimates for the CPOT are obtained and tabulated in Ta-377

ble 2, and the corresponding results for the MPOT method are listed in Table378

3.379

Using these estimates, the upper tail distribution can be obtained from Eq.(3)380

for CPOT and Eq.(9) for MPOT. They are shown in a log-scale plot in Fig.7381

along with the empirical distribution function of the sample. It can be seen that382

both CPOT and MPOT methods capture the main part of the distribution very383

well, but the discrepancy between empirical distribution and fitted distribution384

becomes larger when getting close to the upper tail. The CDF obtained from385

MPOT captures the upper tail with significantly less bias than that from the386

CPOT. Indeed, the MPOT follows the trend of the data, while the CPOT strongly387

deviates. By using the estimates of GPD, the quantile or characteristic values for388

a certain return period can be calculated from Eq.(4) for CPOT or Eq.(10) for389

MPOT. Fig.8 compares the characteristic values for a return period of 100-year390
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calculated with CPOT and MPOT methods with the real one (which is known391

because the underlying distribution is known). It indicates that both approaches392

have good performance on quantile estimation, with maximum error less than393

2%. The return levels estimated with conventional method are even much closer394

to the true value.395

For reliability analysis, the maximum value distribution of load effects is396

required. After obtaining the upper tail distribution, it is straightforward to397

calculate the maximum value distribution function using F n(x). The CDFs of398

maximum value distribution with CPOT and MPOT methods are displayed in a399

Gumbel plot in Fig.9, where the true distribution is given as well. It can be seen400

that the MPOT based maximum value distribution matches the true distribution401

well, while the CPOT based maximum value distribution differs from the true402

distribution, particularly at the upper tail.403

Although the CPOT can provide a relatively accurate estimate of character-404

istic value, especially for low return period, as the advanced MPOT method, it405

can not predict the upper tail of the distribution in sufficient accuracy as sig-406

nificant deviation is found in maximum value distribution when comparing with407

the bench mark. It is of particular importance to estimate the maximum value408

distribution for reliability-based structural assessment. It therefore illustrates the409

importance to consider the inherent distribution for load effects.410

Simulated traffic load effect example411

The previous simple example showed that the MPOT method has better per-412

formance than the CPOT method when the data are not identically distributed.413

Now we will evaluate its performance for bridge traffic load effects, which are gen-414

erated by the previously mentioned microscopic Monte Carlo traffic simulation415

program. Table 1 has shown that the upper tail of distribution for bridge traffic416
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load effects consists of contributions from different loading events, and Fig.5 has417

displayed that load effects from different loading events have various distribution418

features in terms of distribution type or parameters. To show how these features419

influence the distribution function estimation or high quantile prediction and to420

demonstrate the advantage of the proposed method, a comparative study between421

the CPOT method and the MPOT method is performed.422

To exclude the influence of the threshold selection, we firstly conducted the423

comparison with fixed thresholds at 90th, 92nd, 94th, 96th, and 98th percentiles.424

Again, the estimators of MM, PWM, ML, and MDPD are used to estimate the425

distribution parameters for the involved GPDs. We used the graphical method to426

evaluate the performance of MPOT and CPOT methods. For instance, Fig. 10427

shows the comparison between CPOT method and MPOT method for bending428

moment at the mid-span of a simply-supported bridge with span of 40m I1 load429

effect, and the distribution parameters are estimated by ML method. The graphs430

on the left in Fig.10 illustrate the empirical survival function (black dots) fitted431

function with CPOT estimates (red solid lines) and with mixture POT estimates432

(green dash lines) for various thresholds, while the graphs on the right side show433

corresponding these results in a logarithm scale plot. It can be seen that the434

MPOT method approximates the excesses over threshold with good accuracy,435

while the CPOT method approximates the majority of the data well but has436

poor approximation for the high tail. It is commonly accepted that the high tail437

is extremely important in the extreme value analysis such as quantile estimation.438

A quantitative method has been adopted to compare the performance of the two439

methods. The results of root-mean-square-error reported in Table 4 confirm that440

the MPOT method improves the modelling as a majority of the values for MPOT441

are smaller than those for CPOT. Therefore, the MPOT has better performance442

than the CPOT method in capturing the upper tail of the distribution.443
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This preliminary study has demonstrated that the MPOT method has the444

potential to provide more accurate prediction than the CPOT method. When445

studying bridge traffic load effects, the prediction of characteristic values for long446

return periods, such as the 1000-year characteristic value for traffic load model447

in Eurocode (CEN 2003), is a critical issue. Here we will illustrate the difference448

between CPOT and MPOT on this characteristic value prediction. Except for449

these two GPD based methods, the comparison also includes the GEV distribu-450

tion based BM method. In the preliminary study, fixed thresholds are used to451

compare the performance of CPOT and MPOT methods under consistent con-452

ditions. But it should be noted that a fixed threshold may not be optimal to453

approximate the upper tail distribution. Thus, in the following study, threshold454

for each GPD is selected by using the goodness-of-fit statistics based automatic455

method for both CPOT and MPOT methods. With an illustration purpose, the456

selected optimal threshold and corresponding distribution parameters for each457

component of the mixture distribution are listed in Table 5 for the I1 load ef-458

fect with bridge length of 40m. The tail distribution consists of load effects459

from 2-truck, 3-truck and 4-truck loading events, thus three sets of threshold and460

parameters have to be estimated. It can be seen from the results that each com-461

ponent has different tail distribution. For instance, distribution for load effects462

resulting from 2-truck loading events has a Pareto distribution with shape pa-463

rameter ξ > 0, while those from 3-truck loading events and 4-truck loading events464

have type II Pareto distribution with ξ < 0. Similar procedures are applied to465

other load effect cases, then the optimal threshold and corresponding distribution466

parameters are obtained. For the BM method, daily maxima are identified from467

the simulated load effects, then GEV distribution is fitted to each set of daily468

maxima.469

For the load effects I1, I2 and I3 with span lengths of 20m, 30m, 40m and 50m,470
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the 100-year and 1000-year return period characteristic values are calculated by471

the BM, CPOT and MPOT approaches. Results from the BM and CPOT meth-472

ods are given in Table 6 for characteristic values for 100-year return period and473

in Table 7 for characteristic values for 1000-year return period in terms of relative474

difference with respect to the corresponding results from the MPOT method. The475

differences between conventional and mixture estimates are smaller for 100-year476

return level than for 1000-year return level. For example, the difference between477

the convention method and the proposed method for 100-year return level of load478

effect I1 with span of 30 m shown in Table 6 is around −6.31% for MM case,479

while the difference for 1000-year return level in Table 7 is around 13.5%. It480

confirms the common impression that the extrapolation to remote future is not481

stable. As expected, the difference between conventional method and mixture482

method is smaller for load effects for shorter spans, either the BM or the POT.483

For instance, the difference is −8.49% for BM for 100-year return level of load484

effect I1 at length of 20 m in Table 6, but it increases to about 17% at span length485

of 50m. The composition of loading events becoming more complex when span486

length increases, and more types of loading events thus become the governing487

loading events. Among the three types of load effects, the performances of the488

methods are different. The differences are larger for load effects of I3 than for the489

other two. As stated in Harman and Davenport (1979), the load effect of I3 is490

more sensitive to the multiple presence of trucks. This shows that the differences491

for return level of type I3 load effect between conventional method and mixture492

method becomes larger with the increase of span length.493

To further demonstrate the accuracy of the proposed MPOT method, a com-494

parison study between the present MPOT method and the composite distribution495

statistic (CDS) approach proposed by (Caprani et al. 2008), which fit GEV dis-496

tribution to block maxima for load effects resulting from same loading event, has497
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been performed to predict the characteristic values for 100-year return period498

and 1000-year period. The relative differences between these two approaches are499

given in Table 8. The two methods seem to provide consistent results. In general,500

the differences are less than 10%, it can be concluded that the two loading event501

depended methods have similar performance. However, it is also clear that some502

of the differences are significant, especially for longer span lengths.503

It is clear from Fig.10 that the CPOT method is strongly governed by the504

relative frequency extremes, it thus results in the upper tail with less observed505

extremes poorly fitted. While the proposed MPOT method considering the con-506

tribution by type of loading event that results in a well captured tail. Quantitative507

comparison in terms of characteristic value for 100- and 1000-year return period508

further demonstrates the difference between the two methods. Due to the lack of509

sufficient long-term measured traffic data, although it is impossible to provide an510

directly comparison between predict method and measurement, the comparison511

between the MPOT method and the CDS method provides confidence that the512

MPOT method can provide sufficiently accurate prediction.513

CONCLUSIONS514

Special caution should be taken when estimating the high quantile or finding515

the extreme value distribution for bridge traffic load effects. A novel method is516

proposed in the present paper to study extreme value distribution of bridge traffic517

load effects and properly predict the characteristic values for long return periods.518

The proposed method is based on the generalized Pareto distribution as the clas-519

sic Peaks-over-Threshold method. But conversely to the GPD which is seldom520

fitted to load effects resulting from the same loading event defined by number of521

simultaneously involved trucks/vehicles, since bridge traffic load effects generally522

result from different loading events, the proposed method accounts for various523
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numbers of simultaneous trucks/vehicles on the bridges. Thus, the upper tail of524

the load effect distribution can be approximated by a mixture generalized distri-525

bution, and the method is thus named Mixture Peaks-over-Threshold Approach.526

Numerical studies have been conducted to demonstrate the capability of the pro-527

posed method in predicting characteristic values and extreme value distribution528

for bridge traffic load effects. In a theoretical example with known distribution,529

comparison between conventional extreme value estimation methods and the pro-530

posed method shows that the proposed MPOT method has better performance531

to capture the upper tail of the parent distribution and the maximum value dis-532

tribution. In the traffic load effects example, the differences can be seen between533

the conventional methods and the proposed method for predicting characteristic534

values. Consistent results have been obtained from the proposed MPOT method535

and the composite statistic distribution method. It is believed that the proposed536

MPOT method provides more accurate and reasonable prediction as it considers537

the non-identically distributed nature of load effects.538
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TABLE 2: Parameter estimates for the CPOT method by various estimators

Estimator Shape Scale Location No. exceedances KS, p-value
MM -0.0767 10.21 510.52 1321 0.8823

PWM -0.0930 10.37 510.52 1321 0.9735
ML -0.0583 10.03 510.52 1321 0.6936

MDPD -0.0760 10.20 510.52 1321 0.8726

TABLE 3: Parameter estimates for the MPOT method by various estimators

Item Parameter
Estimator

MM PWM ML MDPD

Comp. 1

Shape, ξ -0.173 -0.105 -0.177 -0.177
Scale, σ 9.9 10.0 10.0 10.0
Location, µ 515.2 508.0 515.2 515.2
No. exceed. 707 1500 707 707
KS p-value 0.908 0.909 0.922 0.922

Comp. 2

Shape, ξ -0.056 -0.058 -0.053 -0.057
Scale, σ 15.9 16.0 15.9 16.0
Location, µ 479.1 479.1 479.1 479.1
No. exceed. 1371 1371 1371 1371
KS p-value 0.926 0.903 0.945 0.918

Mixture KS p-value 0.964 0.866 0.979 0.974

TABLE 4: Root mean square error at various thresholds

Threshold No. Method MM PWM ML MDPD

X0.90 6403
CPOT 0.0091 0.0083 0.0035 0.0066
MPOT 0.004 0.0059 0.0032 0.0062

X0.92 5122
CPOT 0.0079 0.0079 0.0034 0.0063
MPOT 0.0033 0.0054 0.0032 0.0065

X0.94 3842
CPOT 0.0099 0.0083 0.0064 0.0099
MPOT 0.0061 0.0079 0.0042 0.0071

X0.96 2561
CPOT 0.0095 0.0084 0.0048 0.0083
MPOT 0.0051 0.0071 0.0039 0.0069

X0.98 1281
CPOT 0.0086 0.0086 0.0041 0.0061
MPOT 0.0035 0.0059 0.0033 0.0068
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TABLE 6: Percentage difference of 100-year return level between conventional
and mixture method (%)

Load
Length BM/GEV

POT/GPD
effect MM PWM ML MDPD

I1

20 -8.49 0.11 0.43 0.19 0.17
30 -9.56 -6.31 -10.40 -8.18 -9.66
40 -14.63 -8.27 -7.90 -1.82 -7.19
50 -16.98 15.78 -2.71 20.32 21.18

I2

20 5.12 -0.47 1.54 0.20 0.36
30 -20.60 -3.02 -0.32 -6.33 -3.66
40 -9.51 -3.02 -16.38 -16.02 -21.40
50 -11.22 0.08 -2.73 1.20 1.04

I3

20 -29.92 -4.55 -7.11 -1.63 -4.30
30 -15.22 -5.89 -9.69 -4.11 -5.92
40 -8.28 5.76 20.09 16.59 23.89
50 -17.85 8.44 24.03 9.14 14.40

TABLE 7: Difference in 1000-year return level between conventional and mixture
model (%)

Load
Length BM/GEV

POT/GPD
effect MM PWM ML MDPD

I1

20 -10.62 0.24 0.64 0.30 0.28
30 -16.20 -13.50 -22.30 -22.38 -24.88
40 -29.67 -9.78 -11.11 -1.00 -9.44
50 -36.45 34.53 -1.39 44.65 46.16

I2

20 8.65 -0.80 1.93 0.05 0.28
30 -25.62 -8.36 -8.90 -11.17 -8.81
40 -11.39 -4.48 -36.71 -36.18 -42.90
50 -13.91 1.26 -2.68 2.69 2.58

I3

20 -41.27 -8.28 -12.52 -3.83 -7.92
30 -17.82 -7.10 -13.42 -6.72 -10.99
40 -10.21 9.40 34.22 28.00 40.81
50 -17.65 15.34 40.60 16.50 24.94
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TABLE 8: Difference (mixture POT vs. mixture GEV)

Load
Length

100-year 1000-year
effect MM PWM ML MDPD MM PWM ML MDPD

I1

20 0.43 -0.65 -0.57 0.89 0.48 -0.74 -0.65 1.02
30 2.14 0.13 1.22 9.21 8.13 8.84 11.73 17.17
40 -0.14 -0.05 0.25 0.46 1.80 0.14 1.32 8.82
50 -1.78 0.50 -0.10 -1.38 -2.44 0.70 -0.14 -1.85

I2

20 0.13 -1.91 -1.38 1.74 0.08 -2.45 -1.79 2.14
30 -3.81 3.98 0.60 -3.03 -0.92 3.74 0.41 -3.95
40 16.27 15.95 23.47 32.22 51.41 50.41 67.44 87.83
50 2.79 -0.85 -0.99 -1.23 3.93 -1.07 -1.35 -1.53

I3

20 5.27 -4.12 -0.21 15.40 8.39 -6.18 -0.32 25.15
30 3.34 -1.77 -0.06 2.40 6.06 -0.29 4.23 13.06
40 -0.07 -0.72 0.00 5.57 -0.12 -1.28 -0.03 10.09
50 -5.15 1.49 0.36 -2.09 -7.19 2.18 0.51 -2.80
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(a) Traffic composition (b) Histogram of gross vehicle weight

FIG. 1: Characteristics of measured traffic data

FIG. 2: Classification of vehicles/trucks
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FIG. 3: Time history of load effects

FIG. 4: Time history and local extreme
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FIG. 5: Histogram of load effects due to various types of loading events
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FIG. 6: Probabilities for six types of loading events (left) over 90th percentile

FIG. 7: Gumbel scaled cumulative distribution probability plot.
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FIG. 8: Comparison of estimates of the characteristic values obtained from be-
tween CPOT and MPOT.

FIG. 9: Extreme value distribution from CPOT and MPOT with true distribu-
tion.
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FIG. 10: Diagnosis plot for threshold excess model fitted to load effect.
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