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THE ENTROPIC REGULARIZATION OF THE MONGE PROBLEM
ON THE REAL LINE

SIMONE DI MARINO AND JEAN LOUET

Abstract. We study the entropic regularization of the optimal transport problem in dimen-
sion 1 when the cost function is the distance c(x, y) = |y − x|. The selected plan at the limit
is, among those which are optimal for the nonpenalized problem, the most “diffuse” one on the
zones where it may have a density.

1. Introduction

In this paper, we are concerned with the following approximation of the optimal transportation
problem: given two probability measures µ, ν on Rd and ε > 0, find the minimizer of

(1) Jε : γ 7→
¨
|y − x| dγ(x, y) + ε

¨
log

dγ
d(µ⊗ ν)

dγ

among all the measures γ on Rd × Rd which have a density with respect to µ ⊗ ν and whose
first and second marginals are equal to µ and ν, respectively. At the limit ε → 0, we expect
the minimizer γε to converge to an optimal measure for the energy

´
|y − x| dγ with prescribed

marginals, and our goal is to understand which one is selected.

The corresponding problem with ε = 0 is the “distance cost” version of the classical optimal
transport problem, whose original formulation, due to Monge in the 18th century [26], consists
in looking for the map T : Rd → Rd which minimizesˆ

Rd

c(x, T (x)) dµ(x),

where c is a given positive function and T must satisfy the constraint

(2) for any Borel set B ⊂ Rd, µ(T−1(B)) = ν(B).

Due to the difficulty of this image-measure constraint, this problem remained quite difficult to
solve for many years. A suitable relaxation, which corresponds to our problem (1) with no
penalization, was introduced by Kantorovich in the 1940s [19, 20], namely, the minimization
problem:

(3) inf

{¨
Rd×Rd

c(x, y)dγ(x, y) : γ ∈ Π(µ, ν)

}
,

where Π(µ, ν) is the set of probability measures γ on Rd×Rd having µ and ν as marginals, that
is,

(4) for any Borel set B ⊂ Rd, γ(B × Rd) = µ(B) and γ(Rd ×B) = ν(B).

The problem (3) is a generalization of the Monge’s problem as, from any map T satisfying the
above measure constraint, it is easy to build a measure γ ∈ Π(µ, ν) which is concentrated on
the graph of T and has same total energy; moreover, due to the compactness properties of
Π(µ, ν) for the weak topology of measures, proving the existence of solutions of (3) is easy by
the direct methods of the calculus of variations. Thanks to a suitable convex duality argument,
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it is possible to prove [11, 12, 18], under suitable assumptions on the data and the cost function
c (which include the case c = |y − x|p for 1 < p < +∞), that the problem (3) admits a unique
solution which is induced by a map T , yielding optimality of this map for the original Monge
problem. In the case c = |y− x|, the existence results are more recent and the uniqueness is not
guaranteed anymore; cf. [1]. We refer to the monographs [3, 31, 32, 28] for a complete overview
of the optimal transportation theory.

Although it was already present in much earlier works, the penalization (1) has been recently
reintroduced for numerical reasons. Indeed, computing numerically the optimal transport map T
remained for a long time a very challenging problem; a first major achievement appeared in the
beginning of the 2000s, when Benamou and Brenier [5] introduced the so-called “dynamical
formulation” (based on the minimization of the kinetic energy among the curves of measures and
velocity fields satisfying a mass conservation equation), which can be solved by an augmented
Lagragian method after a convex change of variables. Let us also mention the algorithms due
to Angenent, Hacker, and Tannenbaum [4], which also rely on fluid-mechanics formulations,
and more recently the approaches by discretization of the Monge–Ampère equation [7, 8] or via
semidiscrete optimal transport [25, 23].

The numerical interest of the approaches similar to (1) has been shown in the last few years.
The general idea consists in perturbing the Kantorovich problem by the so-called “entropy func-
tional” defined as

Ent(γ|ρ) =


ˆ

log

(
dγ
dρ

)
dγ if γ � ρ,

+∞ otherwise.

and in focusing, given a suitable small parameter ε > 0, on the problem

(5) inf

{¨
c(x, y)dγ(x, y) + εEnt(γ|µ⊗ ν) : γ ∈ Π(µ, ν)

}
.

Among other properties, the function Ent(·|µ ⊗ ν) enforces γ to be an absolutely continuous
measure with respect to the tensor product µ⊗ ν and favors such transport plans which are as
diffuse as possible (on the set Π(µ, ν), its unique minimizer is µ ⊗ ν). The idea of the entropic
penalization actually goes back to Schrödinger’s works [29]; moreover, the algebraic properties
of the entropy functional and of the dual problem of (5) make the numerical computation of its
solution much easier, thanks to the so-called Sinkhorn’s algorithm involving alternated projec-
tions. We refer to the papers [15, 6] and the Ph.D. thesis [27] for more details on the theoretical
and numerical properties of this class of algorithms.

From a theoretical point of view, the convergence of the solution of (5) as ε → 0 has been
recently proven in [14] (we also mention [21, 22], in which similar problems are studied in a much
more abstract framework): therein, the authors showed that the family of functionals

(6) γ ∈ Π(µ, ν) 7→
ˆ
c dγ + εEnt(γ|µ⊗ ν)

is Γ-converging, as ε → 0, to the transport energy γ 7→
´
cdγ. Therefore, when c is one of the

costs for which there exists a unique optimal plan γ for the Kantorovich problem (3), the family
(γε)ε of minimizers of (6) converges to γ.

In this paper, we are interested in the following theoretical question: What’s happening if
there are several minimal plans γ for the cost function c? As usual in minimization problems
of penalized functionals, it is natural to guess that, when the set Oc of optimal plans for cost
function c has at least two elements, the family (γε)ε of minimizers of Jε will converge to the
“most diffuse” element of Oc, namely, the one which minimizes the entropy functional E(·|µ⊗ν).
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However, the existence of a plan belonging to OC and having finite entropy is far from clear, and
is generally false depending on the cost function c and the data.

We here focus on the case where c(x, y) = |y − x|, which was the original cost function
proposed by Monge. This cost function is certainly the most studied one for which it is known
that the uniqueness of optimal plan and optimal map fails, and selecting a particular optimal
plan by adding a “regularizing” term to the energy is quite common: this is classically done
through strictly convex costs which brings to the monotone transport; see, for instance, [13, 17,
30] for existence of optimal maps and [24] for very partial regularity results (we also mention
the quite different approximation proposed in [16], where the “regularizing” term enforces the
transport plan to be induced by a regular map). In the present paper, we concentrate on
the entropic regularization of this problem where the measures are supported on the real line.
In higher dimension, let us just notice that the structure of optimal Monge’s plans is much
more complicated, involving the geometric notion of transport rays (see, for instance, [1] or [28,
Chapter 3]), and although one may guess that the “most diffuse transport plans on each ray”
will be selected, attacking this regularization problem on the Euclidean space would probably
require very different techniques from ours.

In the one-dimensional case, the contributions and results of this paper are the following:
• First of all, we need a complete description of the set of one-dimensional optimal transport

plans for the distance cost c(x, y) = |y − x|; although this result is natural and its proof
is not complicated, it was not present in the literature at that time to the best of our
knowledge. The structure of optimal plans is described in Proposition 3.1 and can be
summarized as follows: denoting by T the monotone rearrangement (that is, the unique
non-decreasing transport map) between µ to ν, the optimal plans γ are those such that
if (x, y) is in the support of γ, then
– if T (x) = x, then y must be exactly equal to x;
– if x belongs to some interval where T − id > 0, then y must belong to the same

interval and be larger than x;
– the analogous constraint holds where T − id < 0.

In particular, any optimal transport plan can be decomposed into a “bad plan” which is
concentrated on the graph on the identity map (and therefore is singular with respect to
the Lebesgue measure) and a “possibly good plan” which must only respect the sign of
T − id and is allowed to have a density.
• Once this structural result is stated, our main result studies the Γ-convergence of the

penalized functional. Actually, we need to consider the “rescaled functional”

Fε : γ 7→ 1

ε

(ˆ
|y − x| dγ −W1(µ, ν)

)
+ Ent(γ|µ⊗ ν)− µ(A)| log(2ε)|,

where A is the set {x ∈ R : T (x) = x} andW1(µ, ν) the minimal transport energy for the
distance cost. For fixed ε, the functional Fε admits exactly the same minimizers as Jε.
In Theorem 4.1 we prove, under technical assumptions on the data, that its Γ-limit is
+∞ outside of the set of optimal plans, and that, in this set, it is equal to

F : γ 7→ Ent(γ (R \A)2|µ⊗ ν) + C,

where the constant C only depends on the data. In particular, the unique minimizer
of F is the plan which is optimal for distance cost and whose “good part” is “as diffuse
as possible”, as we could naturally expect. Moreover, this result implies the asymptotic
expansion

min Jε = W1(µ, ν) + µ(A)ε| log(2ε)|+ εminF + o(ε);
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notice that the excess of order ε| log ε| is a common phenomenon with the penalization
of the Monge problem proposed in [16].
• Finally, Section 5 studies the explicit form of the optimal plan which is selected at the

limit, i.e., the minimizer of F ; the precise result is stated in Theorem 5.1, which also
gives a necessary and sufficient condition for F to be not identically +∞. This section
relies on entropy-minimization problems of the “good part of optimal plans”, which can
be rewritten

min
{

Ent
(
γ | (µ(x)⊗ ν(y)) (I × I) · 1y≥x

}
on maximal positivity intervals I of T − id (and as analogous minimization problems on
their negative counterparts). Similar problems were already deeply analyzed in [9, 10],
and we here provide new self-contained proofs more suitable for our needs.

2. Notation and preliminary results

In this section, we collect the notation and well-known facts on measure theory and optimal
transportation which will be used throughout the paper.

Let X and Y be two Polish spaces (in this paper, we will only focus on the case X = Y = R),
and let µ, ν be two positive measures on X, Y whose total masses are finite and equal. We
denote by Π(µ, ν) the set of transport plans from µ to ν, that is, the set of positive measures
on X × Y satisfying (4); recall that this constraint can be reformulated as follows: for any
(ϕ,ψ) ∈ Cb(X)× Cb(Y ),¨

ϕ(x)dγ(x, y) =

ˆ
ϕ dµ and

¨
ψ(y) dγ(x, y) =

ˆ
ψ dν.

When T : X → Y is a map, we call it a transport map from µ to ν if it satisfies (2). This is
equivalent to saying that the measure γT defined as

for any f ∈ Cb(X × Y ),

¨
f dγT =

ˆ
f(x, T (x)) dµ(x)

belongs to Π(µ, ν). Equivalently, this means that the equality
´
ϕ ◦ T dµ =

´
ϕ dν holds for any

ϕ ∈ Cb(X). A useful property of Π(µ, ν) is the following.

Proposition 2.1. Let X,Y be Polish spaces, and let µ, ν be positive measures on X,Y with
finite mass. Then the set Π(µ, ν) is compact with respect to the narrow topology of measures.

We now introduce the definition of relative entropy.

Definition 2.1. Let ρ be a fixed positive measure on Rd, d ≥ 1. For any positive measure γ on
Rd, we set

Ent(γ|ρ) :=


ˆ

log

(
dγ
dρ

)
dγ if γ � ρ,

+∞ otherwise,
and the functional Ent(·|ρ) is called relative entropy with respect to ρ.

The following properties of the functional Ent are classical (see, for instance, [2, Theo-
rem 2.34]).

Proposition 2.2. Let ρ be a fixed positive measure on Rd, d ≥ 1. Then the functional Ent(·|ρ) is
strictly convex, and it is lower semicontinuous with respect to the narrow convergence of measures.

In this paper, we are interested in the optimal transport problem when c is given by the
distance c(x, y) = |y − x|. In that case, the so-called “duality formula of the optimal transport
problem” takes the following form.
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Theorem 2.1. Given µ, ν ∈ P(Rd), we have the equality

(7) inf

{ˆ
|y − x| dγ(x, y) : γ ∈ Π(µ, ν)

}
= sup

{ˆ
u dν −

ˆ
u dµ : u ∈ Lip1(Rd)

}
,

where Lip1(Rd) stands for the set of Lipschitz functions on Rd having Lipschitz constant at
most 1. The common optimal value will be denoted by W1(µ, ν) and the set of optimal transport
plans by O1(µ, ν); a maximizer of the dual problem will be called a Kantorovich potential.

As a consequence of (7), given a function u ∈ Lip1(Rd) and a transport plan γ ∈ Π(µ, ν), the
following properties are equivalent:

(i) u is a Kantorovich potential and γ ∈ O1(µ, ν);
(ii) for γ-a.e. (x, y), |y − x| = u(y)− u(x).

The last theoretical notion we will need in this paper is the one of Γ-convergence.

Definition 2.2. Let X be a complete metric space and (Fn)n, F be functionals X → R∪{+∞}.
We say that (Fn)n Γ-converges to F if, for any x ∈ X, the two following inequalities are satisfied:

• for any sequence (xn)n of X converging to x, lim inf
n

Fn(xn) ≥ F (x) (Γ-liminf inequality);
• there exists a sequence (xn)n of X converging to x such that lim sup

n
Fn(xn) ≤ F (x)

(Γ-limsup inequality).

The main interests of this notion are its implications in terms of convergence of minima and
minimizers.

Theorem 2.2. Let (Fn)n be a sequence of functions X → R∪{±∞} and assume that Fn
Γ−→
n
F .

Assume moreover that there exists a compact and nonempty subset K of X such that

∀n ∈ N, inf
X
Fn = inf

K
Fn

(we say that (Fn)n is equi-mildly coercive on X). Then F admits a minimum on X and the
sequence (infX Fn)n converges to minF . Moreover, if (xn)n is a sequence of X such that

lim
n
Fn(xn) = lim

n
(inf
X
Fn)

and if (xϕ(n))n is a subsequence of (xn)n having a limit x, then F (x) = infX F .

In our settings, all the functionals that we consider will be defined on the space Π(µ, ν).
Thanks to its compactness property, the equi-coercivity assumption of Theorem 2.2 will always
be satisfied in this paper: therefore, in order to conclude that the minimal values and the
minimizers of a given family of functionals are converging to those of a given “target” functional,
checking the upper and lower limit conditions of Definition 2.2 will be enough.

We recall now the already known Γ-convergence results in entropic regularization (see [14,
Theorem 2.7] where the proof is given for c(x, y) = |y−x|2 but can easily be adapted for a much
larger class of cost functions).

Theorem 2.3 (zeroth-order Γ-convergence). Let c : Rd → R be continuous and µ, ν be two
probability measures on Rd having compact support and being absolutely continuous with respect
to the Lebesgue measure. Assume thatˆ

log
dµ
dLd

dµ,
ˆ

log
dν
dLd

dν < +∞.

Then the family of functionals

Jε : γ ∈ Π(µ, ν) 7→
ˆ
c dγ + εEnt(γ|µ⊗ ν)
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is Γ-converging, as ε→ 0, to γ 7→
ˆ
c dγ.

We end this section by the “first-order Γ-convergence” result, which completes the previous
one.

Proposition 2.3 (first-order Γ-convergence). Under the same assumptions as Theorem 2.3,
denoting by Wc(µ, ν) the minimal transport energy for cost c and by Oc(µ, ν) the set of corre-
sponding optimal plans, the family of functionals

Hε : γ ∈ Π(µ, ν) 7→ 1

ε

(ˆ
c dγ −Wc(µ, ν)

)
+ Ent(γ|µ⊗ ν)

is Γ-converging to

H : γ ∈ Π(µ, ν) 7→
{

Ent(γ|µ⊗ ν) if γ ∈ Oc(µ, ν),
+∞ otherwise.

Proof. The Γ-limsup inequality is trivial since, given γ ∈ Π(µ, ν),

• if H(γ) = +∞, there is nothing to prove;
• if H(γ) < +∞, this means that E(γ|µ ⊗ ν) is finite and

´
c dγ = Wc(µ, ν). Taking for

(γε)ε the constant family equal to γ, we have immediately Hε(γε) = H(γ) for any ε, such
that the upper limit condition is satisfied.

As for the Γ-liminf, given γε → γ in Π(µ, ν), then,

• if γ /∈ Oc(µ, ν), since the entropy is positive on Π(µ, ν), and
´
c dγε →

´
c dγ, we have

that for ε small enough

Hε(γε) ≥
1

ε

(ˆ
cdγε −Wc(µ, ν)

)
≥ 1

2ε

(ˆ
cdγ −Wc(µ, ν)

)
→ +∞;

• otherwise, it is enough to observe, for any ε > 0, the inequality Hε(γε) ≥ Ent(γε|µ⊗ ν)
and to conclude by semicontinuity of the entropy.

�

The consequences of Theorem 2.3 and Proposition 2.3 are the following.

• The minimal value and the minimizers of Jε are converging (up to subsequences) to the
minimal transport energy and to an optimal transport plan for cost c, respectively. In
particular, if there is only one optimal transport plan, then this plan is selected at the
limit by the entropic regularization.
• If the set Oc(µ, ν) contains at least one plan with finite entropy (which is equivalent to

saying that H is not identically +∞), then the plan which is selected at the limit is the
one having minimal entropy in the set Oc(µ, ν), and we have the asymptotic expansion

min Jε = Wc(µ, ν) + εminH + o(ε) as ε→ 0.

• In the converse case, and if there is no uniqueness of the optimal plan for cost c, then the
plan which is selected at the limit is unknown, and the only information on the behavior
of the minimal value is (inf Jε −Wc(µ, ν))/ε→ +∞.

As we will see later on in the paper, this last case may occur when c(x, y) = |y−x|, depending
on the data µ and ν; precisely, the next section gives a general description of the optimal plans
for distance cost in dimension one.
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3. Structure of one-dimensional optimal plans

3.1. Additional notation and the monotone transport map. First of all, let us recall the
precise definition of the monotone transport map that we will use, which is essentially taken
from [28, Chapter 2]. Let µ, ν be two probability measures on R compactly supported and with
no atom, and let us denote by Fµ, Fν the cumulative distribution functions of µ, ν, respectively;
we notice that since neither µ or ν has any atom, both Fµ and Fν are continuous on R. We
define

T (x) := inf
{
y ∈ R : Fν(y) ≥ Fµ(x)

}
.

We can then prove the following properties, thanks to the boundedness of the supports of µ, ν
and to the continuity of Fµ, Fν :

• the map T is finitely valued on (inf(suppµ),+∞);
• for any x with inf(suppµ) < x, the infimum in the definition of T (x) is attained; therefore,

(8)
{
Fν(T (x)) = Fµ(x)
and, for any y < T (x), Fν(y) < Fµ(x).

The following theorem then holds; see [28, Theorems 2.5 and 2.9].

Theorem 3.1. The map T is nondecreasing and satisfies T#µ = ν. Moreover, any other such
map coincides with T except on a µ-negligible set. Finally, for any cost function c having form
c(x, y) = h(y − x) with h convex, the map T is optimal for the transport problem with cost c.

The following lemma is useful in order to make precise the links between Fµ, Fν and the sign
of T − id.

Lemma 3.1. For µ-a.e. every point of R, the following equivalences are true:
(a) T (x) = x if and only if Fµ(x) = Fν(x);
(b) T (x) < x if and only if Fµ(x) < Fν(x);
(c) T (x) > x if and only if Fµ(x) > Fν(x).

Proof. Let us start by the equivalence (b). First of all, let x be a point of the support of µ,
different of its bounds, and such that T (x) < x; in particular, the monotonicity of Fν implies
that Fν(T (x)) ≤ Fν(x). Assume moreover that Fµ(x) ≥ Fν(x): keeping in mind that Fν ◦ T
and Fµ coincide, this enforces Fν(x) = Fν(T (x)). We deduce that the interval (T (x), x) does not
meet the support of ν: therefore, T (x), which belongs to supp ν, is actually a boundary point of
one of the connected components of R \ supp ν. These boundary points being countably many,
they form a ν-negligible set, and the preimage of this set by T is therefore µ-negligible, proving
that the direct implication in (b) is true for µ-a.e. x.

Conversely, let x be such that Fµ(x) < Fν(x) and assume that T (x) ≥ x: therefore, since Fν
is nondecreasing,

Fν(T (x)) ≥ Fν(x) > Fµ(x),

which is impossible since Fν(T (x)) = Fµ(x).
The equivalence (c) can be proved by pretty similar arguments, and (a) is an obvious conse-

quence of (b) and (c). �

In what follows in the paper, we will often use the following sets:

A :=
{
x ∈ R : Fµ(x) = Fν(x)

}
and A+ :=

{
x ∈ R : Fµ(x) > Fν(x)

}
, A− :=

{
x ∈ R : Fµ(x) < Fν(x)

}
.

We notice that A+ and A− are both open and that A, which is the complementary set of their
union, is closed. Moreover, thanks to the Lemma 3.1, these three sets coincide, up to µ-negligible
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sets, with the sets where T − id is respectively zero, positive and negative. The following remark,
though obvious, will also sometimes be useful.

Lemma 3.2. Let I be a maximal interval fully included in A− or in A+. Then µ(I) = ν(I).

Proof. Such an I is necessarily an open and bounded interval of R; calling it (a, b) and using its
maximality and the continuity of Fµ, Fν , we can easily see that Fµ(a) = Fν(a) and Fµ(b) = Fν(b),
so that µ(I) = ν(I). �

We can now state the precise result on the structure of one-dimensional optimal plans.

Proposition 3.1. Let µ, ν ∈ P(R) be atomless and compactly supported. Then the optimal plans
for the Monge problem are exactly the transport plans from µ to ν such that, for γ-a.e. (x, y) ∈ R2,

(a) if x ∈ A, then y = x;
(b) if x ∈ A+, then y ≥ x, and y belongs to the same connected component of A+ as x;
(c) similarly, if x ∈ A−, then y ≤ x, and y belongs to the same connected component of A−

as x.

The key point of the proof of Proposition 3.1 consists in building a suitable Kantorovich
potential, which is the topic of the next subsection.

3.2. Construction of a Kantorovich potential.

Lemma 3.3. For x ∈ R, define

u(x) =

ˆ x

0

(
1A+ − 1A−

)
(t) dt.

Then u is a Kantorovich potential from µ to ν, that is, a maximizer of the problem (7).

Proof of Lemma 3.3. The fact that u is 1-Lipschitz being obvious, the only non-trivial point of
the proof is checking that

(9) u(T (x))− u(x) = |T (x)− x| for µ-a.e. x ,

which will ensure that u is optimal for the dual problem. Let then x be a point of the support
of µ such that T (x) 6= x (otherwise the equality (9) is obviously satisfied); assume without loss
of generality that T (x) > x. By contradiction, suppose that u(T (x)) − u(x) < |T (x) − x| (the
converse inequality cannot hold since u is a 1-Lipschitz function): from the definition of u, this
implies that L([x, T (x)]\A+) 6= 0 and in particular there exists a point y such that x < y < T (x)
and y /∈ A+, that is, Fµ(y) ≤ Fν(y). By the property (8), we deduce y ≥ T (y): summarizing,{

x < y;
T (x) > y ≥ T (y).

Since T is a nondecreasing function, this is impossible. The arguments are identical in the case
T (x) < x. �

The two following paragraphs are then devoted to the rigorous proof of Proposition 3.1.

3.3. Necessary condition to be optimal. In this paragraph, we prove that all the optimal
plans for the Monge problem satisfy properties (a)-(c) of Proposition 3.1. We then fix γ ∈
O1(µ, ν).

Step I: for any x ∈ A, we have γ((−∞, x]× [x,+∞)) = γ([x,+∞)× (−∞, x]) = 0. Let x ∈ A,
and assume by contradiction that

(10) γ((−∞, x]× [x,+∞)) > 0.
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Notice that (10) implies that 0 < Fµ(x) = Fν(x) < 1. We first show that

(11) γ([x,+∞)× (−∞, x]) > 0.

Indeed, if (11) was false, then we would have

ν([x,+∞)) = µ([x,+∞)) = γ([x,+∞)× R) = γ([x,+∞)2)

and consequently

γ((−∞, x]× [x,+∞)) = ν([x,+∞))− γ([x,+∞)× [x,+∞)) = 0,

which contradicts (10)
From (10) and (11), we deduce that there exists (x1, y1) and (x2, y2) in the support of γ with

x1 < x < y1 and y2 < x < x2.

Theorem 2.1 and the continuity of u imply that u(y1) − u(x1) = y1 − x1 and u(y2) − u(x2) =
−(y2 − x2): since u is 1-Lipschitz, this enforces u to be an affine function with slope 1 and −1
on the whole intervals [x1, y1] and [y2, x2], respectively. But these intervals have nontrivial
intersection, which leads to a contradiction.

Step II: γ satisfies property (a) of Proposition 3.1. Let x ∈ A, let y such that (x, y) belongs
to the support of γ, and assume by contradiction that y > x. Without loss of generality, we may
assume

(x, y) ∩A 6= ∅.

Indeed, if this was not the case, x would be a boundary point of one of the connected components
of R \A: since this set is open, such points are countably many, forming then a µ-negligible set.
Let then x′ ∈ A such that x < x′ < y. From the result of Step I, it holds that

(12) γ((−∞, x′]× [x′,+∞)) = 0.

In particular, selecting a positive ε < min(x′ − x, y − x′), we deduce from (12) that γ([x± ε]×
[y ± ε]) = 0 so that (x, y) does not belong to the support of γ, a contradiction. Analogously, we
prove that the inequality y < x cannot hold except for at most countably points x.

Step III: γ satisfies the properties (b) and (c) of Proposition 3.1. Let x ∈ A+ and y ∈ R be
such that (x, y) belongs to the support of γ and u(y)− u(x) = |y− x|. First, assume that y < x,
which implies

−
ˆ x

y

(1A+ − 1A−) = x− y;

in particular, since A+ is an open set and does not meet A−, we must have A+ ∩ (y, x) = ∅, but
since x belongs to A+ which is open, this is impossible.

We then have y ≥ x; let us now prove that y belongs to the same connected component of A+

as x. Since A+ is an open set it suffices to prove that (x, y) ⊂ A+. As above, we deduce from
the equality u(y)− u(x) = |y − x| that A− ∩ (x, y) = ∅; therefore it suffices to prove that (x, y)
does not meet A. Assume then that there exists z ∈ A with x < z < y; the result of Step I gives
then

γ((−∞, z]× [z,+∞)) = 0.

By selecting a positive ε < min(z− x, y− z) we obtain again γ([x− ε, x+ ε]× [y− ε, y+ ε]) = 0,
a contradiction since (x, y) belongs to the support of γ. As before, the arguments in the case
x ∈ A− are identical.
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3.4. Sufficient condition to be optimal. We now focus on the converse implication of Propo-
sition 3.1 and denote by (I−j )j , (I+

k )k the connected components of A−, A+, respectively (which
are at most countably many). We also set for each j, k,

µ−j = µ I−j , µ
+
k = µ I+

k ,

and ν−j = ν I−j , ν
+
k = ν I+

k .

Lemma 3.2 implies that µ−j , ν
−
j (respectively, µ+

k , ν
+
k ) have the same mass. Moreover, thanks to

the previous subsection, the points (a)-(c) of Proposition 3.1 apply for the plan which is induced
by the map T , which enforces, for any j, k,

ν−j = T#µ
−
j and ν+

k = T#µ
+
k .

Using also Lemma 3.1, we deduce

W1(µ, ν) =

ˆ
|T (x)− x| dµ(x)

=
∑
j

ˆ
I−j

(T (x)− x) dµ(x) +
∑
k

ˆ
I+k

(x− T (x)) dµ(x)

=
∑
j

(ˆ
y dν−j (y)−

ˆ
x dµ−j (x)

)
+
∑
k

(ˆ
x dµ+

k (x)−
ˆ
y dν+

k (y)

)
.(13)

Let now γ be a transport plan from µ to ν satisfying conditions (a)-(c) of Proposition 3.1. Then
we haveˆ

|y − x|dγ(x, y) =

ˆ
A×R
|y − x| dγ(x, y)

+
∑
j

ˆ
I−j ×R

|y − x| dγ(x, y) +
∑
k

ˆ
I+k ×R

|y − x|dγ(x, y).

From the property (a), we immediately deduce that the first integral in the sum above is zero,
and from (b) and (c), we infer that, for any j, k,ˆ

I−j ×R
|y − x| dγ(x, y) =

ˆ
I−j ×I

−
j

(x− y) dγ(x, y) =

ˆ
x dµ−j −

ˆ
y dν−j

and
ˆ
I+k ×R

|y − x|dγ(x, y) =

ˆ
I+k ×I

+
k

(y − x) dγ(x, y) =

ˆ
y dν+

k −
ˆ
x dµ+

k .

Adding on all the indexes j, k and using (13) leads to
´
|y − x| dγ(x, y) = W1(µ, ν), so that γ is

optimal, as required.

4. Γ-convergence result

4.1. Statement of the main theorem. Having at hand the notation of the previous section
and of Proposition 3.1, we can now state the main result of this paper.

Theorem 4.1. Let µ, ν ∈ P(R) be two probability measures with bounded support such that
Ent(µ|L1),Ent(ν|L1) < ∞; in particular they are absolutely continuous with respect to the
Lebesgue measure. Assume that the following assumptions are true.
(H1) The set A ∩ suppµ has a Lebesgue-negligible boundary, and its interior has the form

int(A ∩ suppµ) =
⋃
i

(ai, bi)



ENTROPIC REGULARIZATION OF THE MONGE PROBLEM ON THE REAL LINE 11

where the intervals (ai, bi) are pairwise disjoint and satisfy

(14) −
∑
i

ˆ bi

ai

log
(
min{x− ai, bi − x}

)
dµ(x) < +∞.

This assumption is in particular satisfied in the two following cases:
(H1a) µ has bounded density on A and

∑
i |ai − bi| log |ai − bi| < +∞, or

(H1b) we have
∑
i |ai − bi|1−δ < +∞ for some δ > 0.

(H2) There exists an optimal plan γ for the Monge problem such that γ (R \ A)2 has finite
entropy with respect to µ⊗ ν.

Then the family (Fε)ε of functionals defined on the set Π(µ, ν) by

Fε(γ) =
1

ε

(ˆ
|y − x| dγ −W1(µ, ν)

)
+ Ent(γ|µ⊗ ν)− | log(2ε)|µ(A)

is Γ-converging, as ε→ 0, to the functional F which is finite only on the set O1(µ, ν) of optimal
plans for the Monge problem, and is then equal to

F (γ) = Ent(γ (R \A)2|µ⊗ ν)−
ˆ
A

log

(
dµ
dL1

)
dµ.

The main qualitative consequence of this result is that the minimizer which is selected by the
entropic regularization is exactly the most diffuse one on the zone where an optimal transport
plan may have a density, if such a plan having also finite entropy exists (which is the sense of
the assumption (H2)). Indeed, Proposition 3.1 implies that if the set A has positive mass for µ,
all the elements of O1(µ, ν) have infinite entropy, since their restriction to A×A is concentrated
on the graph on the one-dimensional function T . On the contrary, it is natural to guess that
there should exist two-dimensional densities on the squares (I−j )2, (I+

k )2 which respect the sign
of T − id: selecting the most diffuse such density (that is, the one which minimizes the entropy
with respect to µ ⊗ µ on these squares, provided that such a density exists), we obtain exactly
the minimizer of the target functionals F . Since, for fixed ε > 0, the functional Fε is only a
rescaling version of the original functional Jε, it admits exactly the same minimizers, which are
therefore converging to the (only) minimizer of F .

As we said in the introduction, we may also notice that Theorem 4.1 allows us to know
precisely the asymptotic behavior of the minimal value of the penalized problem: precisely, as
ε→ 0,

min Jε = W1(µ, ν) + ε| log(2ε)|µ(A) + εminF + o(ε).

The excess of order | log ε| is a common phenomenon with another type of approximation of the
Monge problem where the regularization impacts the transport map itself; see [16]. Moreover,
this was also the order of convergence of the construction proposed by Carlier et al. in [14] (“block
approximation”) to prove the density, in the set of transport plans, of transport plans having
finite entropy (see Proposition 2.14 therein).

We postpone to the last section an explicit representation formula for the minimizer of the
entropy restricted to the squares (I−j )2, (I+

k )2 and in particular a necessary and sufficient con-
dition for the assumption (H2). Concerning the assumption (H1), it is essentially needed for
technical reasons; we do not claim it to be necessary for the Γ-convergence result, but unfortu-
nately we were not able to conclude the lower limit estimate without it (see below the proof in
subsection 4.3).
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4.2. Γ-limsup inequality. In this section, we prove the Γ-limsup inequality of Theorem 4.1,
that is, for any fixed γ ∈ Π(µ, ν), building a family (γε)ε in Π(µ, ν) having γ as limit and such
that

lim sup
ε→0

Fε(γε) ≤ F (γ).

We then select γ ∈ Π(µ, ν) such that F (γ) < +∞; otherwise there is nothing to prove. there-
fore, γ satisfies the conditions (a)-(c) and the assumption (H2) of Proposition 3.1. Let ε > 0 be
fixed. We will define separately two densities whose sum will be our approximating transport
plan.

Our first transport plan is simply γ1
ε := γ (R \A)2. Thanks to the result of Proposition 3.1,

it is exactly the part of γ where there is some displacement, so that its Monge cost has value
W1(µ, ν).

In order to get a transport plan γε from µ to ν, we have to build a “complementary transport
plan” γ2

ε ∈ Π(µ A, µ A) and to set γε = γ1
ε + γ2

ε . Let us now see what the requirements are
so that the family (γε)ε that we will obtain satisfies the Γ-limsup condition. Assume then that
γ2
ε ∈ Π(µ A, µ A) is given: then, γε connects µ to ν and we have on one hand

(15)
ˆ
|y − x|dγε(x, y) =

ˆ
|y − x|dγ2

ε (x, y) +W1(µ, ν)

and on the other, since γ1
ε and γ2

ε have disjoint supports,

(16) Ent(γε|µ⊗ ν) = Ent(γ2
ε |µ⊗ ν) + Ent(γ1

ε |µ⊗ ν).

Plugging back the equalities (15) and (16) into the expression of Fε, we can see that the mea-
sure γ2

ε that we want to build must be a transport plan from µ A to itself which satisfies

(17)
1

ε

ˆ
|y − x| dγ2

ε (x, y) + Ent(γ2
ε |µ⊗ ν) ≤ µ(A)| log(2ε)| −

ˆ
A

log
dµ
dL1

dµ+ o(1).

From now on, we will denote by µA the density of the measure µ A; with a slight abuse of
notation, we will also use, when required, the same symbols for positive measure on R2 which
are absolutely continuous with respect to the Lebesgue measure and, in that case, their densities
(notice that by “density” we mean “density with respect to L2” and not to µ⊗ ν).

Step I: the definition of γ2
ε . The strategy would be easy if we knew exactly the expression of

the transport plan which minimizes, for fixed ε > 0, the energy
´
|y − x|dγ + εEnt(γ|µ⊗ ν) on

the set Π(µA, µA). From the dual formulation of this last problem, it is not hard to see that
this plan must have form aε(x)aε(y)e−|y−x|/ε for some positive function aε; unfortunately, the
function aε seems difficult to compute explicitly. Instead, our strategy will be to define directly
a first density γε which looks like aε(x)aε(y)e−|y−x|/ε, and whose marginals are almost µ A
and are dominated by µ A; then, we will build another “complement” γ̃ε between the remaining
part of the marginals.

Precisely, the first density that we define is given by

γε(x, y) := min(µA(x), µA(y))
e−|y−x|/ε

2ε
.

We notice that, for µ-a.e. x ∈ A, we have

(18)
ˆ
R
γε(x, y) dy ≤ µA(x)

ˆ
R

e−|y−x|/ε

2ε
dy = µA(x).

Let us denote by µε the first marginal of γε, which coincides with the second one, and let us set
µ̃ε := µA − µε: therefore, (18) implies that µ̃ε is a positive measure on R. It then remains to
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build a complementary transport plan γ̃ε belonging to Π(µ̃ε, µ̃ε); then, setting γ2
ε := γε + γ̃ε will

be enough to get a transport plan from µA to itself.
Our construction of γ̃ε is inspired by the “block approximation” in [14, Definition 2.9] and

consists in building a density which is piecewise equal, on small squares, to the multiplication
of µ̃ε ⊗ µ̃ε by appropriate constants, keeping in mind that γ̃ε must satisfy a marginal condition.
Precisely, we select a family (Qi)i of segments recovering the support of µ A (and so of µ̃ε) and
having all length at most ε; notice that thanks to the boundedness of A, the number Nε of such
segments which are needed is bounded by C/ε for a universal constant C. Now we set, for any
Borel set B ⊂ R2,

γ̃ε(B) =
∑
i

µ̃ε ⊗ µ̃ε(B ∩ (Qi ×Qi))
µ̃ε(Qi)

.

It is then easy to check that γ̃ε is, as required, a transport plan from µ̃ε to itself. In the next
steps, we prove that γε + γ̃ε satisfies (17).

Step II: the total mass of µ̃ε vanishes as ε → 0. The result of this step will be proved by a
dominated convergence argument: we thus begin by showing that

for µA-a.e. x, µ̃ε(x)→ 0 as ε→ 0.

From the definition of µε and µ̃ε, it is clear that, for µA-a.e. x,

0 ≤ µ̃ε(x) ≤
ˆ
y∈R
|µA(y)− µA(x)|e

−|y−x|/ε

2ε
dy.

Denoting by αε(r) := re−r/ε

ε2 , it follows that

ˆ
y∈R
|µA(y)− µA(x)|e

−|y−x|/ε

2ε
dy =

ˆ
y∈R

(ˆ +∞

r=|y−x|

αε(r)

2r
dr

)
|µA(y)− µA(x)| dy

=

ˆ +∞

r=0

(
1

2r

ˆ x+r

x−r
|µA(y)− µA(x)|dy

)
αε(r) dr

by the Fubini theorem. Now we notice that, as a measure, αε weakly converges to the Dirac
mass δ0; on the other hand, we have

lim
r→0

(
1

2r

ˆ x+r

x−r
|µA(y)− µA(x)| dy

)
= 0

as soon as x is a Lebesgue point of µA. This proves that, for µA-a.e. x ∈ R, the pointwise
convergence of densities µ̃ε(x) → 0. The domination assumption can then easily be checked,
concluding the proof of this step.
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Before passing to the next steps, let us decompose the energy we are interested in in several
terms, namely,

1

ε

ˆ
|y − x| dγ2

ε (x, y) + Ent(γ2
ε |µ⊗ ν)

= −2

ˆ
µA logµA dx

+
1

ε

ˆ
|y − x|dγε(x, y) +

ˆ
log(γε)dγε (I)

+
1

ε

ˆ
|y − x|dγ̃ε(x, y) (II)

+

ˆ
log

(
1 +

γ̃ε
γε

)
dγε (III)

+

ˆ
log(γ̃ε + γε) dγ̃ε (IV).

We will estimate successively the terms (I), (II), (III) and (IV).

Step III: estimates on the terms (I), (II), and (III). Starting from the definition of γε(x, y),
we have for any (x, y) ∈ R2

log γε(x, y) = log min(µA(x), µA(y))− log(2ε)− 1

ε
|y − x|.

Integrating with respect to γε and coming back on the expression of (I) leads to

(19) (I) = − log(2ε)γε(R2) +

ˆ
log min(µA(x), µA(y)) min(µA(x), µA(y))

e−|y−x|/ε

2ε
dx dy.

Denoting by
fA(x, y) := min{µA(x), µA(y)} log(min{µA(x), µA(y)})

and g(x) = µA(x) log(µA(x)),

we claim that

(20)
¨

fA(x, y)
e−|y−x|/ε

2ε
dx dy −−−→

ε→0

ˆ
R
g(x) dx.

This can be proved exactly in the same way as the result of Step II; more precisely, we notice
that we have |fA(x, y)− g(x)| ≤ |g(y)− g(x)|, since fA(x, y) is either g(x) or g(y). In particular
we have ˆ

y∈R
|fA(x, y)− g(x)|e

−|y−x|/ε

2ε
dy ≤

ˆ
r>0

(
1

2r

ˆ x+r

x−r
|g(y)− g(x)| dy

)
αε(r) dr

with the same kernel αε as above. It can be checked that the mean value in r goes to zero
for a.e. x thanks to the fact that g ∈ L1, and since (αε)ε has δ0 as limit in the weak sense of
measures, this proves (20).

By combining (19) and (20), we conclude

(21) (I) = γε(R2) · | log(2ε)|+
ˆ

logµA dµA + o(1).
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We now pass to the terms (II) and (III), which are the two easiest terms. First, since γ̃ε is
supported in the union of the squares Qi×Qi which have length at most ε, we have |y−x| ≤

√
2ε

for γ̃ε-a.e. (x, y), so that

0 ≤ (II) ≤ 1

ε
· γ̃ε(R2) ·

√
2ε =

√
2µ̃ε(R)→ 0

since, thanks to the result of Step II, we have µ̃ε(R)→ 0 as ε→ 0.
On the other hand, it also holds by the concavity of the logarithm

0 ≤ (III) =

ˆ
log

(
1 +

γ̃ε
γε

)
dγε ≤

ˆ
γ̃ε
γε

dγε = γ̃ε(R2),

which is again equal to µ̃ε(R) and therefore vanishes as ε→ 0. The two terms (II) and (III) have
therefore zero as limit as ε→ 0.

Step IV: estimate on the term (IV). This one is the most difficult. Recall that, from the
definition of γε and γ̃ε, we have for any (x, y) ∈ R2

γ̃ε(x, y) =
µ̃ε(x)µ̃ε(y)

µ̃ε(Qi)
≤ µA(x)µA(y)

µ̃ε(Qi)

and γε(x, y) = min(µA(x), µA(y))
e−|y−x|/ε

2ε
≤ µA(x)

2ε
.

It immediately follows that

(IV) ≤
∑
i

ˆ
Q2

i

log

(
µA(x)µA(y)

µ̃ε(Qi)
+
µA(x)

2ε

)
dγ̃ε(x, y).

We separate this sum into two terms, depending if µ̃ε(Qi) is larger or smaller than 2ε; therefore,
we denote by Ismall the set of indexes i such that µ̃ε(Qi) ≤ 2ε, by Ilarge its complementary set,
and also set

Asmall :=
⋃

i∈Ismall

Qi and Alarge :=
⋃

i∈Ilarge

Qi.

Denoting by (IV.a) the part of the sum above whose indexes belong to Ismall, we have therefore

(IV.a) ≤
∑

i∈Ismall

ˆ
Q2

i

log

(
µA(x)µA(y)

µ̃ε(Qi)
+
µA(x)

µ̃ε(Qi)

)
dγ̃ε(x, y)

≤
∑

i∈Ismall

ˆ
Q2

i

(
log(µA(x)) + log(µA(y) + 1)

)
dγ̃ε − µ̃ε(Qi) log (µ̃ε(Qi))

≤ 2

ˆ
Asmall

log(µA(x) + 1) dµ̃ε −
∑

i∈Ismall

µ̃ε(Qi) log (µ̃ε(Qi)) .

Consequently, since log(µA(x) + 1) is µA integrable and µA ≥ µ̃ε → 0 thanks to the results of
Step I, by dominated convergence we get

(22) (IV.a) ≤ o(1)−
∑

i∈Ismall

µ̃ε(Qi) log µ̃ε(Qi).
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For the second term, denoting by Nε the number of indexes in Ismall, the convexity of t 7→ t log t
gives

− 1

Nε

∑
i∈Ismall

µ̃ε(Qi) log µ̃ε(Qi) ≤ −

(
1

Nε

∑
i∈Ismall

µ̃ε(Qi)

)
log

(
1

Nε

∑
i∈Ismall

µ̃ε(Qi)

)

≤ 1

Nε
µ̃ε(Asmall) (logNε − log µ̃ε(Asmall)) .

Plugging this inequality into (22) provides

(IV.a) ≤ µ̃ε(Asmall) logNε + o(1)

as, at ε goes to 0, the term µ̃ε(Asmall) log(µ̃ε(Asmall)) vanishes (thus giving a negligible term once
we multiply it by ε). Keeping in mind that Nε ≤ C/ε for a constant C which does not depend
on ε and using again the convergence µ̃ε(Asmall)→ 0, we infer

(23) (IV.a) ≤ | log ε|µ̃ε(Asmall) + o(ε).

On the other hand, recall that we have (IV) ≤ (IV.a) + (IV.b) with

(IV.b) :=
∑

i∈Ilarge

ˆ
Qi

log

(
µA(x)µA(y)

2ε
+
µA(x)

2ε

)
dγ̃ε(x, y)

≤
∑

i∈Ilarge

ˆ
Q2

i

(
log(µA(x)) + log(µA(y) + 1)

)
dγ̃ε − µ̃ε(Qi) log (2ε)

≤
ˆ
Alarge

log(µA(x) + 1) dµ̃ε + | log 2ε|µ̃ε(Alarge)

= | log 2ε|µ̃ε(Alarge) + o(1)

using again that the µA ≥ µ̃ε → 0 and dominated convergence. Putting together this last
estimate with (23), we get

(IV) ≤ | log(2ε)|µ̃ε(R) + o(1).

Finally, by adding this last estimate to (21) and using that both (II) and (III) have zero limit
as ε→ 0, we get

1

ε

ˆ
|y − x| dγ2

ε (x, y) + Ent(γ2
ε |µ⊗ ν)

≤ (µε(R) + µ̃ε(R))| log(2ε)| −
ˆ

logµA dµA + o(1)

≤ µ(A)| log(2ε)| −
ˆ
µA logµA dx+ o(1)

so that (17) is proven.

4.3. Γ-liminf inequality. Let (γε)ε be a family of transport plans having a limit γ as ε → 0
for the weak convergence of measures. First of all, we start by eliminating the case where γ is
not an optimal transport plan for the Monge problem by noticing that, in that case,

Fε(γε) ≥
M

ε
− µ(A)| log(2ε)|

for some positive constantM ; thus the Γ-liminf inequality is obviously satisfied. We now assume
that γ ∈ O1(µ, ν), so that it verifies the statement of Proposition 3.1; we moreover may assume
without loss of generality that all the γε, for ε > 0 small enough, have finite energy Fε and
consequently that all of them have a density with respect to the two-dimensional Lebesgue
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measure. Again we will use generally the same notation for the measures γε and their two-
dimensional densities with respect to the Lebesgue measure (and not to µ⊗ ν).

Let u be the Kantorovich potential given by Lemma 3.3. Using the 1-Lipschitz property of u,
we may write

1

ε

(ˆ
|y − x| dγε(x, y)−W1(µ, ν)

)
=

1

ε

ˆ (
|y − x| − (u(y)− u(x))

)
dγε(x, y)

≥ 1

ε

ˆ
A×R

(
|y − x| − (u(y)− u(x))

)
dγε(x, y).

Let us denote by γAε = γε A × R and γ̂ε = γε − γAε . Notice that the first marginal of γAε
is precisely µA, while the second marginal may be different and we call it νε; notice that νε ⇀
ν A = µA but, thanks to the fact that

´
ν log ν <∞, we still have

´
νε log ν →

´
A
µA logµA.

Since γ̂ε and γAε are concentrated on disjoint sets and have γε as sum, we have

Ent(γε|µ⊗ ν) = Ent(γ̂ε|µ⊗ ν) + Ent(γAε |µ⊗ ν).

Moreover, it is clear that γ̂ε weakly converges, as ε→ 0, to γ (R\A)2; by the lower-semicontinuity
property of the entropy functional, it follows that

lim inf
ε→0

Ent(γ̂ε|µ⊗ ν) ≥ Ent(γ (R \A)2|µ⊗ ν).

Putting together the above estimates, and using the lower semicontinuity of the entropy, it is
clear that the Γ-liminf inequality we look for reduces to¨ (

|y − x| − (u(y)− u(x))
)
dγAε (x, y) + εEnt(γAε |µ⊗ ν)

≥ ε
(
µ(A)| log(2ε)| −

ˆ
A

log
( dµ
dL1

)
dµ
)

+ o(ε),

which, by noticing that Ent(γAε |µ⊗ ν) =
˜
γAε log γAε − 2

´
A
µA logµA + o(1), is equivalent to

(24)
¨
A×R

(
|y − x| − (u(y)− u(x))

)
dγAε (x, y) + ε

¨
A×R

γAε log γAε

≥ ε
(
µ(A)| log(2ε)|+

ˆ
A

µ logµ

)
+ o(ε).

In order to prove (24), we will make use of the following lemma.

Lemma 4.1. Let f, c be measurable positive functions such that cf ∈ L1(R) and f ∈ L logL(R).
Let ε > 0. Then the following inequality holds:ˆ (

c(x)f(x) + εf(x) log(f(x))
)
dx ≥ ε

((ˆ
f

)
log

(ˆ
f

)
−
(ˆ

f

)
log

(ˆ
e−c/ε

))
.

Proof of Lemma 4.1. We write the left-hand side as

ε×
(ˆ

e−c/ε
)
× 1´

e−c/ε

ˆ
f(x)

e−c(x)/ε
log

(
f(x)

e−c(x)/ε

)
e−c(x)/ε dx

and the claimed inequality is then a direct consequence of the Jensen inequality, applied to the

convex function t 7→ t log t and the probability measure
e−c(x)/ε dx´

e−c/ε
. �

Let ε > 0 and x ∈ A be fixed, and let [a, b] be a bounded interval containing the supports of
µ and ν. We apply Lemma 4.1 to the function fx : y 7→ γAε (x, y) and the function c defined as

cx(y) = (|y − x| − (u(y)− u(x)))1a≤y≤b.
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We then obtainˆ b

a

(
|y − x| − (u(y)− u(x))

)
γε(x, y) dy + ε

ˆ b

a

log γε(x, y)γε(x, y) dy

≥ ε

(ˆ b

a

γε(x, ·)

)
log

(ˆ b

a

γε(x, ·)

)
− ε

(ˆ b

a

γε(x, ·)dy

)
log

(ˆ b

a

e−cx(y)/ε dy

)

≥ εµA(x) logµA(x)− εµ(x) log

(ˆ b

a

e−cx(y)/ε dy

)
.

After integrating with respect to x, it remains to prove the following lower estimate:

−
ˆ
A

log

(ˆ b

a

e−cx(y)/ε dy

)
dµ(x) ≥ µ(A)| log(2ε)|+ o(1).

We notice that, from the definition of the Kantorovich potential u, it holds that∣∣∣|y − x| − (u(y)− u(x))
∣∣∣ ≤ L1(A ∩ [x, y])

for any x, y ∈ R (and where the notation [x, y] is used alternatively for [x, y] and [y, x], depending
if x ≤ y or y ≤ x). Consequently, it is enough to prove the following:

−
ˆ
A

log

(ˆ b

a

e−L
1([x,y]∩A)/ε dy

)
dµ(x) ≥ µ(A)| log(2ε)|+ o(1),

which can be written, after changing of variable y = x+ εt, as

(25) lim inf
ε→0

ˆ
A

− log

(
1

2

ˆ
Iε(x)

exp

(
−|t| · L

1([x, x+ εt] ∩A)

ε|t|

)
dt

)
dµ(x) ≥ 0 ,

where we denote by Iε(x) the interval [−(x− a)/ε, (b− x)/ε].
We prove (25) by a dominated convergence argument. Denote by

Iε(x) :=
1

2

ˆ
Iε(x)

exp

(
−|t| · L

1([x, x+ εt] ∩A)

ε|t|

)
dt.

Let x be a fixed Lebesgue point of A for µ and let α > 0 be arbitrary small. Let η > 0 be fixed
such that

1− α ≤ L
1([x, y] ∩A)

|y − x|
≤ 1 + α

for any y ∈ [x− η, x+ η]. Setting y = x+ εt, we obtain after multiplying by t, composing with
the function exp(−·) and integrating

(26)
1

1 + α

(
1− exp

(
−(1 + α)

η

ε

))
≤ 1

2

ˆ η/ε

−η/ε
exp

(
−|t| · L

1([x, x+ εt] ∩A)

ε|t|

)
dt

≤ 1

1− α

(
1− exp

(
−(1− α)

η

ε

))
.

The other part of Iε(x) can be estimated simply by noticing that, for any t such that |t| ≥ η/ε,
it holds that

L1([x, x+ εt] ∩A) ≥ L1([x, x+ η] ∩A) > 0,

the last inequality coming from the fact that x is a Lebesgue point of A. Therefore,

(27)
1

2

ˆ
Iε(x)\[−η/ε,η/ε]

e−L
1([x,x+εt]∩A) dt ≤ b− a

2ε
exp

(
−L

1([x, x+ η] ∩A)

ε

)
.
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Using (26) and (27) and sending ε to 0, we obtain

1

1 + α
≤ lim inf

ε→0
Iε(x) ≤ lim sup

ε→0
Iε(x) ≤ 1

1− α

and since α > 0 is arbitrary, we conclude that − log Iε(x)→ 0 for µ-a.e. x ∈ A.
To conclude the proof, we have to control − log Iε(x) by an µ-integrable function which does

not depend on ε; here our assumption (H1) on the structure of the set A comes into play.
Denote by

l(x) = min
(

(x− ai), (x− bi)
)

for x ∈ int(A ∩ suppµ), ai < x < bi.

Since A has negligible boundary, the function l is well-defined µ-a.e. on A. Let now x be a point
of the interior of A and i such that ai < x < bi. We claim that

(28) for any y ∈ I, L1([x, y] ∩A) ≥ |y − x|
(b− a)

l(x).

Indeed, this inequality is clearly true if y ∈ (ai, bi), since this implies L1([x, y]∩A) = |y−x| and
since l(x) < b− a; on the other hand, if y > bi for instance, then L1([x, y]∩A) ≥ (bi−x) ≥ l(x),
and since y and x both belong to [a, b], yielding |y − x|/(b− a) ≥ 1.

Inequality (28) directly implies

Iε(x) ≤ 1

2

ˆ
Iε(x)

exp

(
−|t| l(x)

b− a

)
dt ≤ b− a

l(x)

and we also notice, by simply using the inequality L1([x, x+ εt] ∩A) ≤ εt for any x, that Iε(x)
is also always at least equal to 1, for any x. Therefore,

0 ≤ log Iε(x) ≤ log

(
b− a
l(x)

)
.

The domination assumption is therefore satisfied as soon as
´
A
| log l(x)|dµ(x) < +∞, as it was

stated in (H1).
It remains to prove that (H1) holds as soon as (H1a) or (H1b) does. Let us write, for each i,

[ai, bi] = [ai, αi] + [αi, βi] + [βi, bi], where

αi = min

(
ai + 1,

ai + bi
2

)
and βi = max

(
bi − 1,

ai + bi
2

)
.

We then obtain, by controlling l(x) with b− a on each [α,βi],

ˆ
A

| log l(x)| dµ(x) =
∑
i

ˆ bi

ai

| log l(x)| dµ(x)

≤
∑
i

(
−
ˆ αi

ai

log(x− ai) dµ(x)−
ˆ bi

βi

log(bi − x) dµ(x)

)
+
∑
i

| log(b− a)|µ([ai, bi]).
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The last term in (29) is exactly µ(A)| log(b− a)|, so it remains to control the two first terms. In
case assumption (H1a) is true, we simply notice

0 ≤ −
ˆ αi

ai

log(x− ai)dµ(x)

≤ −‖µ‖∞(αi − ai)
(

log(αi − ai)− 1
)

≤ ‖µ‖∞bi − ai
2

(
1 +

∣∣∣∣log
bi − ai

2

∣∣∣∣)
and the same bound holds for the term

´ bi
βi
| log(bi− x)|dµ(x) by exactly the same computation,

leading toˆ
A

| log l(x)| dµ(x) ≤ ‖µ‖∞L1(A ∩ suppµ) + | log(b− a)|µ(A) +
∑
i

(bi − ai)| log(bi − ai)|,

which is finite by assumption (H1a).
Assume now instead that (H1b) holds. We then use the inequality δtu ≤ u log u + eδt−1 and

get

δ

ˆ αi

ai

| log(x− ai)|µ(x) dx ≤
ˆ αi

ai

e−δ log(x−ai) dx+

ˆ αi

ai

log(µ(x))µ(x) dx

=

ˆ αi

ai

1

(x− ai)δ
dx+

ˆ αi

ai

log(µ(x))µ(x) dx

=
(αi − ai)1−δ

1− δ
+

ˆ αi

ai

log(µ(x))µ(x) dx.

Using a similar argument for the intervals βi, bi and then summing up we get

δ

ˆ
A

| log l(x)| dµ(x) ≤ 2

ˆ
A

log(µ)µ dx+ | log(b− a)|µ(A) +
2

1− δ
∑
i

(bi − ai)1−δ,

concluding the proof.

5. An explicit form of the minimizer

In this section we will try to compute explicitly what plan we are selecting via the limit
procedure, that is, the minimizer of F . Given the expression of F and the result of Proposition 3.1
on the structure of O1(µ, ν), it is enough to know, on each maximal interval I where Fµ − Fν
has constant sign, the minimizer of the entropy among all the plans γ such that y − x has good
sign for γ-a.e. pairs (x, y).

In particular, for each j (and using the notation of subsection 3.4), this plan will be the
minimizer, on the set Π(µ I, ν I), of the entropy with respect to the measure k = µ−j ⊗ ν

−
j ·

1y>x. This problem is well known in the literature (see, for example, [10]), and the shape of the
minimizer is known to be of the form a(x)⊗ b(y) · k. The proof of [10] relies on an abstract and
general result of [9]: to be more precise the usual proof relies on the existence of maximizers in
the dual problem if the entropy minimization has a finite value; then, using the duality relation,
we can get that the minimizer has the special shape a(x)⊗ b(y) · k.

We will provide a self-contained proof of this result, in a more suitable context for our needs:
precisely, we prove the existence of a plan with this special shape, independently of the finiteness
of the entropy (see Proposition 5.1 below), which we think is an interesting result itself. It would
anyway be interesting to know when there exists a plan of the form a(x)⊗ b(y) · k still when the
entropy minimization problem is not finite, besides our case.
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In Proposition 5.2 we then prove that the construction in Proposition 5.1 gives in fact the
unique minimizer in the optimization problem, whenever its value is finite; here we in fact
pass to the dual problem and we use the dual functions given by the particular shape found in
Proposition 5.1.

Then, thanks to the explicit construction given in Proposition 5.1 we can state in Theorem 5.1
a necessary and sufficient condition in order to satisfy assumption (H2).

Proposition 5.1. Let µ, ν be two probability measures on R, compactly supported and with no
atom, and denote by F = Fµ − Fν (where Fµ, Fν are the cumulative distribution functions of
µ, ν, respectively). Let I = (a, b) be a maximal positivity interval for F , that is, F(a) = F(b) = 0
and F > 0 on I. Then there exist two nonnegative measures ρ1, ρ2 on I such that, defining

G(x) := ρ2([x, b]) and F (y) := ρ1([a, y])

for any x, y ∈ I, we have {
G · ρ1 = µ

F · ρ2 = ν
on I.

Moreover G and F are continuous and positive on (a, b), and the positive measure

γ0(x, y) := ρ1(x)⊗ ρ2(y) · 1y>x
is a transport plan between µ I and ν I.

Similarly, if I is a maximal negativity interval of F , there exist two positive measures ρ1, ρ2

with densities such that{
G · ρ1 = µ,
F · ρ2 = ν,

where F (y) = ρ1([y, b]), G(x) = ρ2([a, x]),

the functions G and F being continuous and positive on (a, b), and

γ0(x, y) := ρ1(x)⊗ ρ2(y) · 1y<x
belongs to Π(µ I, ν I).

Proof. We treat only the case where I is a maximal positivity interval of F and claim that the
proof is similar for their negative counterpart. Denote by

Gµ : x 7→ µ([a, x]) = Fµ(x)− Fµ(a)

and define the function Gν in the same way; in particular, the assumption on F , a, b implies that

Gµ > Gν on I and Gµ(a) = Gν(a) = 0, Gµ(b) = Gν(b) = µ(I).

On the other hand, the function F is continuous and strictly positive on the whole I; we can
thus define an integral of µ/F on I and call it T . We then observe that µ/F ≥ µ/Gµ so that we
have, for any x0, x ∈ I and using that D logGµ = µ/Gµ,

T (x0)− T (x) =

ˆ x0

x

1

F
dµ ≥

ˆ x0

x

1

Gµ
dµ = logGµ(x0)− logGµ(x).

In particular, since Gµ(a) = 0 we have T (a) = −∞. Let us define

F : x ∈ I 7→ eT (x) and G : y ∈ I 7→ F(y)

F (y)
.

The observations above imply F (a) = 0. Similarly, G(b) = 0 and log(G) is a primitive of −ν/F .
Finally, we define ρ1 = DF and ρ2 = −DG as derivative of BVloc functions (since they are
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increasing and locally bounded); notice by construction F and G are continuous, so ρ1 and ρ2

will have no atoms. Since T and F are BVloc without jump part, the chain rule holds:

ρ1 = DF = DeT = eT ·DT = F · µ
F

=
µ

G
.

In other words, we have G ·ρ1 = µ and we can prove the equality F ·ρ2 = ν in the same way. By
construction F and G are continuous and nonnegative; moreover, F · G = F > 0 on I, so that
neither F nor G may vanish on I.

Define now γ0 as in the statement of Proposition 5.1: it is then clear that, for any ϕ ∈ Cb(R),ˆ
I×I

ϕ(x)dγ0(x, y) =

ˆ
I

ϕ(x)G(x) dρ1(x) =

ˆ
I

ϕ(x) dµ(x)

and that, similarly, the second marginal of γ0 is ν. �

The next result proves that the transport plan γ0 defined in Proposition 5.1 is actually the
minimizer of the entropy among the transport plans on I2 satisfying the corresponding sign
constraint.

Proposition 5.2. Let µ, ν, ρ1, ρ2, I and γ0 as in Proposition 5.1. Let Γ0 be the set of optimal
plans from µ I to ν I (that is, the set of γ ∈ Π(µ I, ν I) such that y − x > 0 for γ-
a.e. (x, y)). Then we have

(29) min
γ∈Γ0

Ent(γ|µ⊗ ν) = Ent(γ0|µ⊗ ν),

this equality also being true if both sides are +∞. Moreover, whenever Ent(γ0|µ ⊗ ν) < ∞, the
only minimizer in (29) is γ0.

In the proof of Proposition 5.2 we will make use of the following lemma.

Lemma 5.1. Let a, b two Borel functions defined on an open set Ω and let us consider a finite
measure µ on Ω. Then, we have thatˆ

Ω

(ϕn(a) + ϕn(b))+ dµ→
ˆ

Ω

(a+ b)+ dµ,
ˆ

Ω

(ϕn(a) + ϕn(b))− dµ→
ˆ

Ω

(a+ b)− dµ,

where ϕn(t) = max{−n,min{t, n}}. In particular, if either (a+ b)− or (a+ b)+ is in L1(µ), we
have also ˆ

Ω

(ϕn(a) + ϕn(b)) dµ→
ˆ

Ω

(a+ b) dµ.

Proof. First we claim that

(30) (ϕn(a) + ϕn(b))+ ≤ (a+ b)+

(and similarly (ϕn(a) + ϕn(b))− ≤ (a+ b)−).
If a, b > 0 this is obvious, so let us suppose a > 0 and b < 0, with a+ b = k > 0 then a = k− b

and so
ϕn(a) = ϕn(k − b) ≤ ϕn(k) + ϕn(−b) = ϕn(k)− ϕn(b) ≤ k − ϕn(b),

where we used that ϕn is odd and it is subadditive on the positive numbers. In order to conclude
the proof of (30) we need to show that ϕn(a) +ϕn(b) ≤ 0 whenever a+ b ≤ 0, but this is obvious
from the fact that ϕn is increasing and odd and in particular if a+ b ≤ 0 we have a ≤ −b and so

ϕn(a) + ϕn(b) ≤ ϕn(−b) + ϕn(b) = 0.

In particular, using (30) we immediately get

lim sup
n→∞

ˆ
Ω

(ϕn(a) + ϕn(b))+ dµ ≤
ˆ

Ω

(a+ b)+ dµ,
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while, since limn→∞(ϕn(a) + ϕn(b))+ = (a+ b)+, by Fatou’s lemma we have

lim inf
n→∞

ˆ
Ω

(ϕn(a) + ϕn(b))+ dµ ≥
ˆ

Ω

(a+ b)+ dµ,

thus giving us that
´

(ϕn(a) +ϕn(b))+ →
´

(a+ b)+. We deal with the negative part in the same
way. �

Proof or Proposition 5.2. Again we only will deal with an interval I where F is positive. Assume
that Ent(·|µ⊗ ν) is not identically +∞ on Γ0 and let γ ∈ Γ0 having finite entropy; with a slight
abuse of notation, we will also denote by γ(x, y) the density of the plan γ with respect to µ⊗ ν.
Let us denote Ω = I × I ∩ {y > x}; we know that for every bounded measurable couple of
functions A,B : I → R, we have

Ent(γ|µ⊗ ν) =

ˆ
Ω

(
γ log(γ)− (A(x) +B(y))γ − γ

)
dµ(x)dν(y) +

ˆ
Ω

(A+B + 1) dγ0.

Now we use that t log(t) − ct ≥ −ec−1 for any real numbers c, t; applying this with c = A(x) +
B(y) + 1 and t = γ(x, y), we deduce

(31) Ent(γ|µ⊗ ν) ≥ −
ˆ

Ω

eA(x)+B(y) dµdν +

ˆ
Ω

(A(x) +B(y) + 1) dγ0(x, y).

Let now ϕn be defined as in Lemma 5.1 and define

An(x) := ϕn(− log(G(y))) and Bn(y) = ϕn(− log(F (y))).

Equation (31) holds in particular with An and Bn instead of A and B, and we will estimate the
two terms of the right-hand side from below by Ent(γ0|µ⊗ν) as n→ +∞. By Lemma 5.1 we know
that (An(x) +Bn(y))+ ≤ (− logG(x)− logF (y))+ and so eAn(x)+Bn(y) ≤ max{1/G(x)F (y), 1}.
Thus, by dominated convergence, we getˆ

Ω

eAn+Bn dµdν →
ˆ

Ω

1

GF
dµdν =

ˆ
Ω

dγ0.

As for the second term of (31), it is clear that (− logG(x)− log(F (y))− ∈ L1(γ0) sinceˆ
Ω

(− log(G)− log(F ))− dγ0 =

ˆ
Ω

log
( 1

GF

)
−

1

GF
dµ⊗ ν ≤

ˆ
Ω

e−1 dµ⊗ ν <∞.

In particular using again Lemma 5.1 we getˆ
Ω

(An(x) +Bn(y) + 1) dγ0 →
ˆ

Ω

(
log
( 1

F (y)G(x)

)
+ 1

)
dγ0.

So, putting all the estimates together and using
dγ0

d(µ⊗ ν)
=

1

G(x)F (y)
, we obtain

Ent(γ (I × I)|µ⊗ ν) ≥ −
ˆ

Ω

eAn(x)+Bn(y) dx dy +

ˆ
(An(x) +Bn(y) + 1) dγ0(x, y)

→ −
ˆ

Ω

dγ0 +

ˆ
Ω

(
log
( dγ0

dµ⊗ ν

)
+ 1

)
dγ0 = Ent(γ0|µ⊗ ν),

proving that γ0 minimizes Ent(·|µ ⊗ ν) on Γ0. As for the uniqueness it is sufficient to observe
that Γ0 is a linear space and Ent(·|µ⊗ ν) is strictly convex. �

We can now prove the following result, which expresses exactly when the above assumption
(H2) holds depending on the cumulative distribution functions Fµ, Fν .
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Theorem 5.1. Let µ, ν be two probability measures on R, compactly supported and absolutely
continuous with respect to the Lebesgue measure. Let F = Fµ − Fν , where Fµ, Fν are the
cumulative distribution functions of µ, ν, and A+, A− as in Section 3. Then a necessary and
sufficient condition for assumption (H2) is

−
ˆ
A+∪A−

log |F(x)| dµ(x) < +∞

and in that case, the minimal entropy among the elements of O1(µ, ν) is reached by the plan γ
which coincides with the identity map on A × A and, on each square I2 where I is a maximal
positivity (resp., negativity) interval of F , is equal to the γ0 defined by Proposition 5.2. Moreover,
for any such interval I, we have

(32) Ent(γ0 I2|µ⊗ ν) = −
ˆ
I

log |F(x)|dµ(x)− µ(I).

Proof. Let I be a maximal positivity interval of F (the set where F is negative being treated
in a similar way). We first notice that, thanks to Proposition 3.1(b) we have that γ I2 =
γ I×R = γ R×I and so it is an (optimal) plan between µ I and ν I . Then we can deduce
from Proposition 5.2 that the minimal entropy of γ I2 among the elements of O1(µ, ν) is reached
by γ0, even if it is +∞; so it is sufficient to prove that equality (32) holds, even when one of the
two sides is not finite. Let us assume, for simplicity, that I = (0, 1). Then by definition

Ent(γ0|µ⊗ ν) = −
ˆ 1

0

ˆ 1

x

log(G(x)F (y)) dρ2(y) dρ1(x).

We can split the logarithm in the inner integral since G(x) is constant and use the definition of
F,G and the results from Proposition 5.1 to get

Ent(γ0|µ⊗ ν) =

ˆ 1

0

(
− log(G(x))G(x) +

ˆ 1

x

log(F (y)) dρ2(y)

)
dρ1(x).

Since −ρ2 = DG we can use integration by parts in order to get
ˆ 1

x

log(F (y)) dDG(y)dy

=
[
G(y) log(F (y)

]1
x
−
ˆ 1

x

G(y)

F (y)
dDF = −G(x) logF (x)−

ˆ 1

x

dµ(y)

F (y)
,

where we used that G(y) logF (y) → 0 for y → 1. This is true since for y sufficiently close to 1
we have F(y) < 1 and so in particular F (1/2) ≤ F (y) = F(y)/G(y) ≤ 1/G(y). In particular,
using G(y)→ 0 as y → 1 we get

0 = lim
y→1

G(y) log(F (1/2)) ≤ lim
y→1

G(y) log(F (y)) ≤ lim
y→1
−G(y) log(G(y)) = 0.

Now for any nonnegative measure η in (0, 1) we have that
´ 1

0
f(x)

´ 1

x
dη(y)
F (y) dx = η(0, 1): it is true

by integration by parts for any measure compactly supported in (0, 1), and then we reach every
measure by an approximation argument. We use this to get

Ent(γ0|µ⊗ ν) =

ˆ 1

0

(
− log(G(x))G(x)− log(F (x))G(x)−

ˆ 1

x

1

F (y)
dµ(y)

)
dρ1(x)

= −
ˆ 1

0

log(F) d(G · ρ1)−
ˆ 1

0

dµ

= −
ˆ 1

0

log(F) dµ− µ(I),
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where we used F (x) · G(x) = F(x) and in the last passage G · ρ1 = µ, proving the desired
equality (32). �
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