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HAL is

from evolution theory. In 1999, Corno et al have proposed a new algorithm called selfish gene algorithm (SGA) [START_REF] Corno | The selfish gene algorithm: a new evolutionary optimization strategy[END_REF]. This later is inspired from the modern theory of evolution, called the selfish gene theory (SGT), proposed by the biologist Richard Dawkins [START_REF] Dawkins | The selfish gene[END_REF]. In SGT, the evolution is based on genes rather than individuals. Thus, the natural selection acts on genes rather than individuals. In the point of view of SGT, the breeds' bodies is made by genes only to assure their own replication through the reproduction process. Hence, Species are just vehicles that reproduce genes [START_REF] Dawkins | The selfish gene[END_REF]. Unlike other evolutionary algorithms that are based on a populations of individuals, the SGA proposed by Corno et al. uses the same paradigms of Dawkins's theory of evolution. Therefore, the SGA is based on genes and the population is replaced by the concept of virtual population (VP) that consists of a pool of genes. At each generation, two individuals, denoted G1 and G2 respectively, are sampled from VP. The SGA associates for each gene a selection probability that measure the chance that it have to be selected. The selection probability is tuned by a tournament selection, i.e. a completion between G1 and G2. The winner's gene are rewarded by increasing their selection probabilities by 1/N and the loser genes are punished by decreasing their selection probability by 1/N. Note that N is the number of gene competing for each locus. One can see that in SGA, the genes are competing for loci. The pseudocode of SGA is shown in Fig. 1.

___________________________________________

Algorithm1: Selfish Gene Algorithm [START_REF] Corno | The selfish gene algorithm: a new evolutionary optimization strategy[END_REF] ___________________________________________ 1. VP = uniform initialization of the virtual population 2. P = initialize all probabilities pij to l/ni 3. B = select (VP) / * assume the best */ 

Intelligent Trajectory Planning and Control of a Humanoid Robot

Using a New Elitism-Based Selfish Gene Algorithm Lyes Tighzert, Thafsouth Aguercif, Cyril Fonlupt, and B. Mendil L. Tighzert and B. Mendil have proposed recently a new variants called the replacing and never penalizing selfish gene algorithm (RNPSGA) that replace the loser's genes by those of the winner rather than penalizing them [START_REF] Tighzert | Realization of Gymnastic Movements on the Bar by Humanoid Robot Using a New Selfish Gene Algorithm[END_REF]. The authors have demonstrated its performance under several benchmark functions and have applied it to the realization of gymnastic movements of a humanoid robot. In this paper, we propose the reconciliation of SGA with elitism strategies. Permanent elitism-based selfish gene algorithm (peSGA) and nonpermanent elitism-based selfish gene algorithm (neSGA) are proposed and analyzed. The proposed elitisms strategies make selection pressure that is good enough to allow global convergence. Thus, the SGA performance are improved. The rest of this paper is organized as follow.

In next section, we present the proposed algorithms, i.e. peSGA and neSGA. Third section presents the validation of the proposed algorithms on the IEEE CEC2014 benchmark functions. In section four, we give an application of the proposed algorithms to optimization of bipedal waking of seven links humanoid robot. Section 5 concludes this paper.

II. ELITISM-BASED SELFISH GENE ALGORITHM

In order to enhance the performance of SGA, we propose two elitism strategies. In this subsection, we propose permanent elitism selfish gene algorithm (peSGA). This strategy is inspired from the works of Ahn Chang Wook and Rudrapatna S. Ramakrishna [START_REF] Ahn | Elitism-based compact genetic algorithms[END_REF]. The idea is to apply a selection pressure to accelerate the convergence while avoiding local convergence. In peSGA, at each generation only one individual, denoted G, is generated from VP. Then, a tournament is done between the elite (best) individual and G. The winner's gene are reworded and the loser's gene are penalized. Furthermore, the sampling mechanism is done differently than in the classical SGA. An adjustment procedure is added. During the sampling proves, each generated gene can be adjusted with a probability Pa. The adjustment formula is given in [START_REF] Plestan | Stable walking of a 7-DOF biped robot[END_REF].

A. Permanent elitism

Gi K+1 = Gi K +AR K+1 × randn(-1,1) (1) 
Where Gi k+1 is the value of gene of locus I at the iteration K+1, Gi k is the value of gene of locus I at the iteration K, AR K is the adjustment rayon at iteration K.

The Adjustment rayon is decreased using formula [START_REF] Hong | Evolutionary Optimization for Optimal Hopping of Humanoid Robots[END_REF].

AR K = ARmax+ ( ARmax-ARmin)*K/Maxiter. ( 2 
)
Where ARmax is the maximum value AR, ARmin is the minimum value of AR, K is the currant iteration index and Maxiter in the maximum number of iteration. The pseudocode of the proposed peSGA is given in Fig. 2. GFit=evaluate(G) , K=K+1 16.

B. Nonpermanent elitism-based SGA ________________________________________________

Gm=adjust G's genes with probability Pa using (1) 17.

Reduce rayon adjustment according to (2) 18.

GmFit=evaluate(Gm) , K=K+1 One of the drawbacks of peSGA may that the applied selection pressure made by keeping the elite as long as possible. This high selection pressure may result in premature convergence. In nonpermanent elitism based selfish gene algorithm (neSGA), the elite is guarded for a given number of cycles in which is not surpassed. This means that the elite is updated after a predefined inherence length denoted η. For the rest, peSGA is similar to neSGA. The pseudocode of neSGA is given in Fig. 3. We note that the VP and the probability selection in the proposed peSGA and neSGA are matrix of size (N×M), where N in the number of genes competing for each locus and M is the dimension of the optimization problem. Hence, each gene contains one allele and represents an optimization parameter. The main difference between peSGA and neSGA consists of the fact that peSGA finds a near optimal solution (i.e., a winner) that is maintained as long as other solutions generated from the virtual population (the pool of genes) are not better. In contrast, neSGA further improves the performance of the neSGA by avoiding strong elitism that may lead to premature convergence. The nonpermanent SGA comes with all the benefits of the peSGA. In addition, it maintains genetic diversity as a bonus. In the next section we evaluate the performance of peSGA and neSGA under IEEE CEC2014 functions.

III.

In order to evaluate the performance of the proposed algorithms, we propose a benchmarking under the IEEE CEC2014 benchmark functions [START_REF] Liang | Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization[END_REF]. This black box contains 30 functions including multimodal, unimodal, separable and non-separable functions. The dimension is fixed to D=30, the maximum number of fitness evaluation is set to 300000 as recommended in [START_REF] Liang | Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization[END_REF]. Each test is repeated 25 times. The averaged errors and the standard deviations are reported in Table I.

The proposed peSGA and neSGA are compared to the original SGA [START_REF] Ariff | Selfish Gene Algorithm Vs Genetic Algorithm: A Review[END_REF][START_REF] Corno | The selfish gene algorithm: a new evolutionary optimization strategy[END_REF] and to the most recent SGA variant known as the replace and never penalize selfish gene algorithm (RNPSGA) [START_REF] Tighzert | Realization of Gymnastic Movements on the Bar by Humanoid Robot Using a New Selfish Gene Algorithm[END_REF]. The parameters setting of the compared algorithms are as follow.

ARmax=5; ARmin=10 -10 ; Pov=0.15; Pa=0.01; N=50; η=N/2.

The mean and standard deviation of the function error value (f (x) -f (x*)) were calculated over 25 independent runs for each test function, where x is the best solution returned by the algorithm after 300000 fitness evaluations and x* is the global optimal solution. As the compared algorithms are stochastic and their results differ freom one run to another, a nonparametric test should be used to compare the results. Hence, Wilcoxon's rank sum test, recommended by [START_REF] Derrac | A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[END_REF], at a 0.05 significance level was performed to test the statistical significance of the experimental results between two algorithms. The obtained results are reported in Table II. For each test function the proposed peSGA and neSGA are compared both to peSGA and PSGA. "-", "+", and "≈" denote that the performance of the corresponding proposed algorithm, e.g. peSGA or neSGA, is worse than, better than, and similar to that of the corresponding algorithm, respectively.

In order to rank the compared algorithm, the statistical Freedman test was performed. This test gives a global ranking of the compared algorithms. The results are presented in Table III. From this experimental study, we can conclude that the proposed algorithms are very competitive. They present performance enhancement for both unimodal and multimodal problems. According to Freedman test presented in Table 3, the proposed neSGA is the best algorithm for this experimentation. Thus, the proposed peSGA and neSGA can be used for real word applications. 
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11 21 9 19 "-", "+", and "=" denote that the performance of the corresponding proposed algorithm is worse than, better than, and similar to that of the corresponding RNPSGA and SGA, respectively.

IV. APPLICATION TO HUMANOID ROBOT

A. Robot Model

The humanoid robot considered in this study is the HYDROID robot [START_REF] Ting | Contribution à la commande de robots marcheurs bipèdes[END_REF]. The dynamic parameters of the robot are given in Table IV. The length of each robot link except the feet is denoted li; the distance between the each link mass center is denoted lci; each link mass is denoted mi, the inertia moment of each link is denoted Ii. The robot foot structure is represented in Fig. 5. The vector F1 represent the ground reaction, xZMP represent the position of the zero moment point (ZMP) [START_REF] Vukobratović | Zero-moment point-thirty five years of its life[END_REF]. The hydroid robot is represented in Fig. 5. We consider here the model in the sagittal plane. This seven links robot has 9 degrees of freedom (9 DOF) which are left foot angle (α1), left knee angle (α2), left leg angle (α3), body angle (α4), right foot angle (α5), right knee angle (α6), right leg angle (α7), x body position and the z body position. The geometric, cinematic and the dynamic model of this robot are not reported here in details because of the limited paper pages. HYDROID is described in details in the literature (the lectors can see also [START_REF] Mousavi | Mathematical simulation of a seven link biped robot on various surfaces and ZMP considerations[END_REF]).For simulation, we have created a virtual model of HYDROID robot in SimMechanics on Simscape/Matlab2014. Fig. 5 gives the obtained 3D model. It shows the robot links, their center of mass and their associated frames. The ground contact is also modeled using an approximate model known as springmass-dumper model. Other methods can be found in the literature [START_REF] Jung | Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running[END_REF].

The relationship between the foot penetration, foot velocity and the ground reaction force (F1) is given in (3)

z C z K F      (3)
Where F represent the reaction force, K and C are constants describing the nature of impact.

is the hypothetic penetration of the foot in the ground. 

B. Dynamic Robot Model

The dynamic model can be obtained by Newton-Euler formalism or by Euler-Lagrange equation [START_REF] Braun | Actuated dynamic walking in a seven-link biped robot[END_REF]. In this paper, the Euler-Lagrange equation is used [START_REF] Tighzert | Realization of Gymnastic Movements on the Bar by Humanoid Robot Using a New Selfish Gene Algorithm[END_REF].

                       i i i q L q L dt d  (4) 
Where i  Corresponds to the force or torque resulting from the dynamics of the i th link. L in the langrangian of the i th link. The obtained dynamic model if given in (5).

2 2 1 1 ) ( ) , ( ) ( F A F A B X Q X X X H X X D           
(5) Where X is the state variable vector composed from the articulations angles and the x and z body position X= [α1, α2, α3, α4, α5, α6, α7, x, y] T ; D(X) is the (9×9) inertia matrix;

H(X, X  ) is the centrifuge and Coriolis matrix of dimension (9×1); Q(X) is the gravitational matrix of dimension (9×1);

B is a ponderation matrix;  is the joint actuators torques at the articulations; F1 is the ground reaction on the left foot; F2 is the ground reaction on the right foot; A1 is the Jacobian matrix of the left foot contact with the ground; and A2 is the Jacobian matrix of the right foot contact with the ground. The dynamic walking can be considered as a hybrid process constituted of 3 phases. The double support phase (two feet on the ground), the simple support phase (one foot on the ground) and the impact phase (when the flying foot bumps the ground surface). The model given in (5) describe the double support phase. In the case of simple support phase, F1 or F2 is equal to zero.

C. The Impact Model

We have chosen to consider impulse impacts. This choice simplify the resolve of contact between the ground and the foot. The detailed impact model is given in (6). )

)( ( F A F A X X X D        (6)
Where  X  and  X  are the velocities after and before the impact, respectively. The constraints associated to impact are given in [START_REF] Goodrich | Foundations and trends in human-computer interaction[END_REF] and [START_REF] Calinon | Incremental learning of gestures by imitation in a humanoid robot[END_REF]. These latter gives the constraints of non-slip and the non-detachment of the feet.

0 ) ( 1   X X A  (7) 0 ) ( 2   X X A  (8) 

D. Stability and ZMP

The stability of humanoid robot is one of the most topics studied. The stability of these articulated machines is assured if and only if the zero moment point (ZMP) is in the sustention polygon. This principle was proposed by Miomir Vukobratović [START_REF] Vukobratović | Zero-moment point-thirty five years of its life[END_REF]. In our case, the ZMP position is given in [START_REF] Eiben | Introduction to evolutionary computing[END_REF]. When this position is in the sustention polygon the robot is stable.

) ( 1 1 0 1 1 x p x z ZMP F h g m s F x     (9)

E. Trajectory generation

The trajectories of each articulation angle is assumed to be spline cubic function. This type of function has been used in several works. The walking period is denoted T. We decompose each robot step into two phases. The mathematical definition of each spline cubic function during each robot forward step is given in [START_REF] Corno | The selfish gene algorithm: a new evolutionary optimization strategy[END_REF] and [START_REF] Dawkins | The selfish gene[END_REF].
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Additional constraints can be imposed to assure on the continuity of the movement, i.e. the velocity and the acceleration at t=T/2. The parameters of the spline functions are calculated depending on the robot kinematic, dynamic and technologic constraints of the movement and an energetic criterion.

F. Kinematic and dynamic constraints

Robot walking consists on constrained movements. During footsteps, the stability must be assured. This leads to two constraints given in ( 12) and [START_REF] Liang | Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization[END_REF]. During the movements, the position in the z-axis of toe and heel of the mobile foot must be positive which leads to ( 14) and [START_REF] Derrac | A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[END_REF]. Anthropomorphic constraints on the knees' angles are given in ( 16) and ( 17). The bottom foot, i.e. toe and heel, z-axis velocity must be positive to assure that the fixed foot take off the ground, i.e. obtain a transition to the next footstep. This leads to constraints [START_REF] Mousavi | Mathematical simulation of a seven link biped robot on various surfaces and ZMP considerations[END_REF] and [START_REF] Jung | Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running[END_REF]. The ground reactions are also positive which leads to [START_REF] Braun | Actuated dynamic walking in a seven-link biped robot[END_REF] and (21). Where P is an identity matrix. T is the footstep period.

G. Evolutionary optimization

In order to realize optimal stable walking that minimize (22) and respect the constraints presented above, evolutionary optimization of the walking can be formulated. According to the results exposed in previous section, neSGA is the most competitive algorithm compared to RNPSA, SGA and peSGA. The evolutionary optimization algorithm is summarized in Fig. 6.

Fig. 1 .

 1 Fig. 1. The pseudo code of SGA.

Fig. 2 .

 2 Fig. 2. The pseudo code of peSGA.

Algorithm 3 :

 3 nonpermanent elitism-based SGA (neSGA) ____________________________________________________________ 1. M= optimization problem dimension, K=0; τ=0; 2. VP = uniform initialization of the virtual population 3. P = initialize all probabilities pij to l/N 4. N= initialize the competing gene number for each locus 5. POV= initialize the overwriting probability 6. Pa = initialize adjustment rate 7. η= N/2, / * the predefined inherence length */ 8. Best = select (VP) / * assume the best */ 9. BestFit=evaluate(Best) , K=K+1; 10. Elite = select (VP, P) / * assume an elite */ 11. ElitetFit=evaluate(Elite) , K=K+1; 12. while ( termination condition ) 13. if τ< η 14. G = select-individual ( VP, P) 15.

Fig. 3 .

 3 Fig. 3. The pseudo code of neSGA.

Fig. 4 .Fig. 5 .

 45 Fig.4. Robot foot structure and the hydroid robot[START_REF] Ting | Contribution à la commande de robots marcheurs bipèdes[END_REF] 

-based SGA ________________________________________________ Algorithm2: permanent elitism-based SGA (peSGA) _____________________________________________________________

  

	1. M= optimization problem dimension, K=0;
	2. VP = uniform initialization of the virtual population
	3. P = initialize all probabilities pij to l/N
	4. N= initialize the competing gene number for each locus
	5. POV= initialize the overwriting probability
	6. Pa = initialize adjustment rate
	7. Best = select (VP, P) / * assume the best */
	8. BestFit=evaluate(Best) , K=K+1;
	9. while ( termination condition )
	10.	G = select-individual ( VP, P)
	11.	GFit=evaluate(G) , K=K+1
	12.	Gm=adjust G's genes with probability Pa using (1)
	13.	Reduce rayon adjustment according to (2)
	14.	GmFit=evaluate(Gm) , K=K+1
	15.	if GmFit > GFit	/* ">" means better */
	16.	G=Gm, GFit=GmFit
	17.	End if	
	18.	if (fitness(G) > fitness(Best)) /* ">" means better */
	19.	reward-alleles (G) ;
	20.	penalize-alleles (Best) ;
	21.	Best=G, BestFit=GFit;
	22.	Overwrite Best's genes by G's Genes with probability POV
	23.	else	
	24.	reward-alleles (Best) ;
	25.	penalize-alleles (G) ;
	26.	end if	
	27		

. End while 28. return Best

  

TABLE I .

 I EXPERIMENTAL RESULTS OF SGA, RNPSGA, PESGA, AND NESGA OVER 25 INDEPENDENT RUNS ON 30 TEST FUNCTIONS OF 30 VARIABLES WITH 300,000 FES. "MEAN " AND "STD"INDICATE THE AVERAGE AND STANDARD DEVIATION OF THE FUNCTION ERROR VALUES OBTAINED IN 25 RUNS, RESPECTIVELY.

TABLE II .

 II WILCOXON'S RANK SUM TEST RESULTS AT A 0.05 SIGNIFICANCE LEVEL BETWEEN BOTH PESGA AND NESGA AND EACH OF SGA AND RNPSGA.

	Algorithm		peSGA	neSGA	
	Compared to	SGA	RNPSGA	SGA	RNPSGA
	Function		Comparison Results	
	1				
	2				
	3				
	4				
	5				
	6				
	7				
	8				
	9				
	10				
	11				
	12				
	13				
	14				
	15				
	16				
	17				
	18				
	19				
	20				
	21				
	22				
	23				
	24				
	25				
	26				
	27				
	28				
	29				
	30				

TABLE III .

 III ALGORITHMS' RANKING ACCORDINF TO FREEDMAN TEST.

	THE BEST RANKS ARE GIVEN IN BOLD STYLE
	Function	SGA	RNPSGA	peSGA	neSGA
	1	2.0400	3.0800	3.2400	1.6400
	2	2.6800	3.1600	3.1600	1.0000
	3	2.2000	2.4400	2.7200	2.6400
	4	2.9600	2.8800	2.5600	1.6000
	5	2.5200	2.8400	3.5600	1.0800
	6	2.2800	2.4800	2.3200	2.9200
	7	3.2000	2.9600	2.8400	1.0000
	8	1.5600	2.5200	2.8400	3.0800
	9	2.2000	2.2000	2.6400	2.9600
	10	1.0400	2.8400	2.9200	3.2000
	11	2.3200	2.4000	2.1200	3.1600
	12	2.8400	3.0400	3.1200	1.0000
	13	1.1600	2.8000	3.0000	3.0400
	14	2.4000	2.1600	2.6400	2.8000
	15	2.5600	2.8800	2.4000	2.1600
	16	2.8800	2.4400	2.7200	1.9600
	17	2.4800	2.0400	3.0800	2.4000
	18	2.7200	2.7600	2.5600	1.9600
	19	2.7200	2.8400	2.4800	1.9600
	20	2.4000	3.1600	2.2800	2.1600
	21	2.3200	2.1200	2.7600	2.8000
	22	1.9200	2.6000	2.4800	3.0000
	23	2.0000	3.6400	3.3600	1.0000
	24	2.6000	3.0800	2.3200	2.0000
	25	1.7600	2.9600	2.8000	2.4800
	26	2.0800	2.3200	2.8000	2.8000
	27	2.2800	2.6400	2.5200	2.5600
	28	1.3600	2.5600	2.8800	3.2000
	29	2.1600	3.0800	2.2800	2.4800
	30	2.3600	2.7200	3.2800	1.6400
	Rank	2.2667	2.7213	2.7560	2.2560

TABLE IV

 IV 

			.	HYDROID ROBOT PARAMETERS
	Links	Length		Mass	Inertia moment	center of gravity
		[m]		[Kg]	[kg.m 2 ]	[m]
	Foot	Lp=0.207	0.678 0.001	sx=0.135
		lp=0.072				sy=0.321
		hp=0.064			
	Tibia	l1=0.392	2.188 0.028	0.1685
	Shin	l2=0.392	5.025 0.068	0.1685
	Trunk l3=0.543	29.27 0.815	0.01921

STD 8.8391e+006 5.9489e+006 3.0021e+007 3.5475e+007 6.1453e+003 5.5397e+003 5.1538e+001 1.5675e+001 2.0093e+001 5.3231e-002 4.7183e+000 1.3987e+000 1.2749e+000 3.3043e-001 5.4338e+000 2.1343e+000 1.6187e+001 4.7513e+000 3.4264e+001 4.0662e+001 6.6327e+002 2.5548e+002 5.6671e-001 1.8193e-001 2.2917e-001 6.8267e-002 3.3928e-001 6.3867e-002 4.2601e+000 2.3018e+000 3.1788e+00 3.0139e-001 1.0812e+006 1.1697e+006 1.6340e+005 6.1673e+005 2.9898e+000 1.2102e+000 5.6601e+003 5.9977e+003 2.7184e+005 3.7984e+005 8.4679e+001 6.4120e+001 3.3494e+002 6.8668e+000 1.5606e+002 2.8575e+001 1.8789e+002 2.1699e+001 1.0140e+002 2.9798e+000 4.0278e+002 3.7082e+001 4.9379e+002 6.6058e+001 4.7815e+004 1.2608e+005 2.3169e+003 1.1451e+003 1.0998e+005 7.2818e+004 1.8399e+003 2.1664e+003 5.3290e+003 5.4175e+003 3.5803e+000 2.1576e+000 1.9201e+001 3.9164e+000 3.8869e+000 1.5154e+000 1.6336e-001 8.0134e-002 1.0825e+001 4.7535e+000 2.0098e+001 9.1924e+000 3.1268e+002 1.1674e+002 6.8359e+002 2.2289e+002 1.0878e-001 6.0947e-002 5.6372e-001 1.7779e-001 4.4715e-001 2.1789e-001 1.5945e+000 1.0458e+000 2.9497e+000 5.1414e-001 3.9386e+004 4.3241e+004 6.2094e+003 6.2300e+003 1.6216e+000 9.4023e-001 3.7832e+003 4.6321e+003 1.7304e+004 1.0660e+004 1.7066e+002 5.0939e+001 3.2945e+002 7.6936e-005 1.4621e+002 2.4652e+001 2.02426e+02 4.06186e+00 1.1627e+002 3.6552e+001 4.0532e+002 9.2968e+001 6.8643e+002 1.4203e+002 2.1025e+002 9.4819e+000 1.1709e+003 2.7562e+002 1.6953e+006 1.4220e+006 2.6658e+003 2.8912e+003 5.6906e+003 4.6509e+003 1.5174e+001 1.8683e+001 1.9999e+001 1.6783e-003 4.5043e+000 1.4108e+000 1.6520e-001 1.0558e-001 1.0546e+001 4.3505e+000 1.9248e+001 9.1792e+000 2.8065e+002 1.0261e+002 6.6865e+002 2.6422e+002 1.1815e-001 8.6073e-002 4.5187e-001 1.6304e-001 5.6759e-001 2.8138e-001 3.1908e+000 1.9813e+000 2.8185e+000 4.6450e-001 6.1347e+005 5.1031e+005 6.2715e+003 7.0412e+003 1.6717e+000 1.0542e+000 3.1857e+003 5.8837e+003 5.6421e+005 7.3073e+005 1.8277e+002 1.0888e+002 3.2945e+002 6.4674e-005 1.4306e+002 2.7629e+001 2.0266e+002 1.2439e+000 1.0833e+002 2.7038e+001 4.0654e+002 3.9069e+001 6.7349e+002 1.2378e+002 7.8504e+005 1.0499e+006 1.3910e+003 3.7766e+002 2.0293e+006 1.4482e+006 4.1337e+003 3.4341e+003 7.4229e+003 4.8457e+003 1.8634e+001 2.1433e+001 2.0000e+001 6.8063e-004 5.1598e+000 1.5977e+000 1.3037e-001 6.8026e-002 1.2178e+001 4.7615e+000 2.3839e+001 8.8700e+000 3.7919e+002 1.4329e+002 8.5289e+002 2.7343e+002 1.5126e-001 1.1456e-001 5.6223e-001 1.9712e-001 4.5673e-001 2.6867e-001 2.7588e+000 1.1566e+000 2.8998e+000 4.3076e-001 1.0057e+006 6.0329e+005 7.3055e+003 8.1281e+003 1.9974e+000 8.1092e-001 2.5409e+003 2.8518e+003 6.0261e+005 7.6800e+005 1.9536e+002 1.0623e+002 3.2945e+002 2.7065e-005 1.3960e+002 1.4609e+001 2.0305e+002 1.1586e+000 1.2428e+002 4.2572e+001 4.1369e+002 4.6694e+001 6.7465e+002 2.0022e+002 4.2333e+005 8.4798e+005 1.6133e+003 2.9799e+002

________________________________________________

H. Results and discussions

We present in Fig. 7 the obtained optimal trajectory using neSGA. A proportional derivative control law is used to control articulations' trajectories. Despite the high complexity of this task, the humanoid robots are hybrid highly nonlinear under actuated machine with nine DOF, a satisfying results are obtained. neSGA assures stability and minimal energy consumption.

Hence, the proposed algorithms including neSGA, peSGA can be used in realworld applications. In the future works we can focus on the parameters adaptation of neSGA and peSGA.