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 

Abstract—The contemporary trend in science and society 

consists of searching for solutions to enhance people life, safety, 

economy, and health while protecting environment. In recent 

years, we have witnessed the arrival of complex machines with 

structures similar to humans known as humanoids robots. The 

combination of these technologies and optimization technics 

may result in robust, safe, reliable, and flexible machines that 

can substitute humans in multiple difficult tasks. In order to 

contribute to this topic, we propose tow new evolutionary 

algorithms based on the selfish gene theory and elitism 

strategies. Therefore, permanent elitism-based selfish gene 

algorithm (peSGA) and nonpermanent elitism based selfish 

gene algorithm (neSGA) are proposed. In order to validate and 

to evaluate the performance peSGA and neSGA, a numerical 

experiment is performed using IEEE CEC 2014 functions. the 

The obtained results show that the proposed algorithms are 

very competitive. Furthermore, evomutionary optimization of a 

walking robot is formulated. The proposed algorithm are 

applied to the generation and control of optimal motion of a 

humanoid robot.  

I. INTRODUCTION 

Humanoid robots are articulated machines with structures 
similar to humans. These robots, with high degrees of 
freedom, are one of the most complex system designed by 
humans. Their control is one the most difficult engineering 
problems. Despite this, scientists and engineers have 
proposed methods, theories, and sophisticated algorithms that 
deal with these problems. Stable walking [1], hopping [2], 
running [3] and gymnastic movements [4, 5] are studied and 
successfully realized. The combination of humanoid robots 
and artificial intelligence technics, like artificial neural 
network, fuzzy reasoning and developmental have allowed 
them to learn [6], to communicate [7] and to mimic several 
human tasks [8].  

Evolutionary computing (EC), e.g. genetic algorithm 
(GA), evolutionary algorithm (EA) etc., is one of the most 
investigated approaches for optimization [9]. Engineers and 
scientists have proposed several algorithms that are inspired 
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from evolution theory. In 1999, Corno et al have proposed a 
new algorithm called selfish gene algorithm (SGA) [10]. This 
later is inspired from the modern theory of evolution, called 
the selfish gene theory (SGT), proposed by the biologist 
Richard Dawkins [11]. In SGT, the evolution is based on 
genes rather than individuals. Thus, the natural selection acts 
on genes rather than individuals. In the point of view of SGT, 
the breeds’ bodies is made by genes only to assure their own 
replication through the reproduction process.  Hence, Species 
are just vehicles that reproduce genes [11]. Unlike other 
evolutionary algorithms that are based on a populations of 
individuals, the SGA proposed by Corno et al. uses the same 
paradigms of Dawkins’s theory of evolution. Therefore, the  
SGA is based on genes and the population is replaced by the 
concept of virtual population (VP) that consists of a pool of 
genes. At each generation, two individuals, denoted G1 and 
G2 respectively, are sampled from VP. The SGA associates 
for each gene a selection probability that measure the chance 
that it have to be selected. The selection probability is tuned 
by a tournament selection, i.e. a completion between G1 and 
G2. The winner’s gene are rewarded by increasing their 
selection probabilities by 1/N and the loser genes are 
punished by decreasing their selection probability by 1/N. 
Note that N is the number of gene competing for each locus.  
One can see that in SGA, the genes are competing for loci. 
The pseudocode of SGA is shown in Fig.1. 

___________________________________________ 

Algorithm1: Selfish Gene Algorithm [10] 

___________________________________________ 
1. VP = uniform initialization of the virtual     population  

2. P = initialize all probabilities pij to l/ni 
3. B = select (VP)  / * assume the best */ 

4. Repeat 

5. / * tournament  */ 
6.      G1 = select-individual ( VP,P) ; 

7.      G2 = select-individual ( VP,P) ; 

8.      if (fitness(G1) > fitness(G2)) then  
9.           reward-alleles (G1) ; 

10.           penalize-alleles (G2) ; 

11.           / * update best */ 

12.            if (fitness(G1) > fitness(B))  then  

a.                 B = G1 ; 

13.            end if  

14.        else  

15.              reward-alleles (G2) ; 

16.              penalize-alleles (G1) ; 
17.              / * update best */ 

18.               if (fitness(G2 > fitness(B)) then   

19.                   B = G2 ; 

20.                end if 

21.            end if 

22.  end while 
23. return B  

Fig. 1. The pseudo code of SGA. 
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L. Tighzert and B. Mendil have proposed recently a new 
variants called the replacing and never penalizing selfish 
gene algorithm (RNPSGA) that replace the loser’s genes by 
those of the winner rather than penalizing them [4]. The 
authors have demonstrated its performance under several 
benchmark functions and have applied it to the realization of 
gymnastic movements of a humanoid robot. In this paper, we 
propose the reconciliation of SGA with elitism strategies. 
Permanent elitism-based selfish gene algorithm (peSGA) and 
nonpermanent elitism-based selfish gene algorithm (neSGA) 
are proposed and analyzed. The proposed elitisms strategies 
make selection pressure that is good enough to allow global 
convergence. Thus, the SGA performance are improved. The 
rest of this paper is organized as follow.  

In next section, we present the proposed algorithms, i.e. 
peSGA and neSGA. Third section presents the validation of 
the proposed algorithms on the IEEE CEC2014 benchmark 
functions. In section four, we give an application of the 
proposed algorithms to optimization of bipedal waking of 
seven links humanoid robot. Section 5 concludes this paper.       

II. ELITISM-BASED SELFISH GENE ALGORITHM  

In order to enhance the performance of SGA, we propose 

two elitism strategies.  

A. Permanent elitism-based SGA 

________________________________________________ 

Algorithm2: permanent elitism-based SGA (peSGA) 

_____________________________________________________________ 
1. M= optimization problem dimension, K=0; 

2. VP = uniform initialization of the virtual  population  

3. P = initialize all probabilities pij to l/N 
4. N= initialize the competing gene number for each locus 

5. POV= initialize the overwriting  probability 

6. Pa = initialize adjustment rate 
7. Best = select (VP, P)  / * assume the best */ 

8. BestFit=evaluate(Best) , K=K+1; 

9.  while ( termination condition ) 
10.      G = select-individual ( VP, P)  

11.      GFit=evaluate(G) ,   K=K+1 

12.      Gm=adjust G’s genes with probability Pa using (1) 
13.      Reduce rayon adjustment according to (2)  

14.      GmFit=evaluate(Gm) ,  K=K+1 

15.      if GmFit > GFit          /* “>” means better */ 
16.         G=Gm,     GFit=GmFit 

17.      End if 

18.      if (fitness(G) > fitness(Best))  /* “>” means better */ 
19.           reward-alleles (G) ; 

20.           penalize-alleles (Best) ; 

21.           Best=G, BestFit=GFit; 
22.           Overwrite Best’s genes by G’s Genes with probability POV 

23.      else    

24.           reward-alleles (Best) ; 
25.           penalize-alleles (G) ; 

26.      end if 

27. End while 

28. return Best 

 

Fig. 2. The pseudo code of peSGA. 

In this subsection, we propose permanent elitism selfish 
gene algorithm (peSGA). This strategy is inspired from the 
works of Ahn Chang Wook and Rudrapatna S. Ramakrishna 
[12]. The idea is to apply a selection pressure to accelerate 
the convergence while avoiding local convergence. In 
peSGA, at each generation only one individual, denoted G, is 

generated from VP. Then, a tournament is done between the 
elite (best) individual and G. The winner’s gene are reworded 
and the loser’s gene are penalized. Furthermore, the sampling 
mechanism is done differently than in the classical SGA. An 
adjustment procedure is added. During the sampling proves, 
each generated gene can be adjusted with a probability Pa. 
The adjustment formula is given in (1).   

Gi
K+1

= Gi
K +ARK+1 × randn(-1,1)                    (1) 

Where Gi
k+1 is the value of gene of locus I at the iteration 

K+1, Gi
k is the value of gene of locus I at the iteration K, 

ARK is the adjustment rayon at iteration K.   

 The Adjustment rayon is decreased using formula (2).  

ARK= ARmax+ ( ARmax- ARmin)*K/Maxiter.             (2) 

Where ARmax is the maximum value AR, ARmin is the 
minimum value of AR, K is the currant iteration index and 
Maxiter in the maximum number of iteration. The 
pseudocode of the proposed peSGA is given in Fig.2. 

B. Nonpermanent  elitism-based SGA  

________________________________________________ 

Algorithm 3: nonpermanent elitism-based SGA (neSGA) 

____________________________________________________________ 
1. M= optimization problem dimension, K=0; τ=0; 

2. VP = uniform initialization of the virtual  population  

3. P = initialize all probabilities pij to l/N 

4. N= initialize the competing gene number for each locus 

5. POV= initialize the overwriting  probability 

6. Pa = initialize adjustment rate 

7. η= N/2,  / * the predefined inherence length */  

8. Best = select (VP)  / * assume the best */ 

9. BestFit=evaluate(Best) , K=K+1; 

10. Elite = select (VP, P)  / * assume an elite  */ 

11. ElitetFit=evaluate(Elite) , K=K+1; 

12. while ( termination condition ) 

13.    if  τ< η 

14.        G = select-individual ( VP, P)  

15.         GFit=evaluate(G) ,   K=K+1 

16.         Gm=adjust G’s genes with probability Pa using (1) 

17.         Reduce rayon adjustment according to (2)  

18.         GmFit=evaluate(Gm) ,  K=K+1 

19.        if GmFit > GFit          /* “>” means better */ 

20.              G=Gm,     GFit=GmFit 

21.        end if 

22.         if (fitness(G) > fitness(elite))  /* “>” means better */ 

23.               reward-alleles (G) ; 

24.               penalize-alleles (elite) ; 

25.               Elite=G, EliteFit=GFit; 

26.               Overwrite elite’s genes by Elite’s Genes with probability POV 

29.                       τ= 0 

30.                       if  (fitness(G) > fitness(Best))  /* “>” means better */ 

31.                    Best=G, BestFit=GFit; 

27.               end 

28.           else  

29.               reward-alleles (Elite) ; penalize-alleles (G) ; 

30.               τ= τ+1  

31.           end if 

32.     else 

33.           Elite = select (VP, P)  / * assume an new elite  */ 

34.           ElitetFit=evaluate(Elite) , K=K+1; 

35.           τ= 0 

36.     End if            

37. end while 

38. return Best 

 

Fig. 3. The pseudo code of neSGA. 

One of the drawbacks of peSGA may that the applied 
selection pressure made by keeping the elite as long as 
possible. This high selection pressure may result in premature 
convergence. In nonpermanent elitism based selfish gene 
algorithm (neSGA), the elite is guarded for a given number 



  

of cycles in which is not surpassed. This means that the elite 
is updated after a predefined inherence length denoted η. For 
the rest, peSGA is similar to neSGA. The pseudocode of 
neSGA is given in Fig.3.     

TABLE I.  EXPERIMENTAL RESULTS OF SGA, RNPSGA, PESGA, AND 

NESGA OVER 25 INDEPENDENT RUNS ON 30 TEST FUNCTIONS OF 30 

VARIABLES WITH 300,000 FES. “MEAN ” AND “STD”INDICATE THE 

AVERAGE AND STANDARD DEVIATION OF THE FUNCTION ERROR VALUES 

OBTAINED IN 25 RUNS, RESPECTIVELY.  

We note that the VP and the probability selection in the 
proposed peSGA and neSGA are matrix of size (N×M), 
where N in the number of genes competing for each locus 
and M is the dimension of the optimization problem. Hence, 
each gene contains one allele and represents an optimization 

parameter. The main difference between peSGA and neSGA 
consists of the fact that peSGA finds a near optimal solution 
(i.e., a winner) that is maintained as long as other solutions 
generated from the virtual population (the pool of genes) are 
not better. In contrast, neSGA further improves the 
performance of the neSGA by avoiding strong elitism that 
may lead to premature convergence. The nonpermanent SGA 
comes with all the benefits of the peSGA. In addition, it 
maintains genetic diversity as a bonus. In the next section we 
evaluate the performance of peSGA and neSGA under IEEE 
CEC2014 functions.   

III. VALIDATION 

In order to evaluate the performance of the proposed 
algorithms, we propose a benchmarking under the IEEE 
CEC2014 benchmark functions [13]. This black box contains 
30 functions including multimodal, unimodal, separable and 
non-separable functions. The dimension is fixed to D=30, the 
maximum number of fitness evaluation is set to 300000 as 
recommended in [13].  Each test is repeated 25 times. The 
averaged errors and the standard deviations are reported in 
Table I.    

The proposed peSGA and neSGA are compared to the 
original SGA [14, 10] and to the most recent SGA variant 
known as the replace and never penalize selfish gene 
algorithm (RNPSGA) [4]. The parameters setting of the 
compared algorithms are as follow.  

ARmax=5; ARmin=10-10; Pov=0.15; Pa=0.01; N=50; η=N/2.   

The mean and standard deviation of the function error 

value (f (x) − f (x*)) were calculated over 25 independent 

runs for each test function, where x is the best solution 

returned by the algorithm after 300000 fitness evaluations 

and  x* is the global optimal solution. As the compared 

algorithms are stochastic and their results differ freom one 

run to another, a nonparametric test should be used to 

compare the results. Hence, Wilcoxon’s rank sum test, 

recommended by [15],  at a 0.05 significance level was 

performed to test the statistical significance of the 

experimental results between two algorithms. The obtained 

results are reported in Table II. For each test function the 

proposed peSGA and neSGA are compared both to peSGA 

and PSGA. “−”, “+”, and “≈” denote that the performance of 

the corresponding proposed algorithm, e.g. peSGA or 

neSGA,     is worse than, better than, and similar to that of the 

corresponding algorithm, respectively. 

In order to rank the compared algorithm, the statistical 

Freedman test was performed. This test gives a global 

ranking of the compared algorithms. The results are 

presented in Table III.  From this experimental study, we can 

conclude that the proposed algorithms are very competitive. 

They present performance enhancement for both unimodal 

and multimodal problems. According to Freedman test 

presented in Table 3, the proposed neSGA is the best 

algorithm for this experimentation. Thus, the proposed 

peSGA and neSGA can be used for real word applications.  

Function SGA RNPSGA peSGA neSGA 

1      Mean 
STD 

2      Mean 
STD 

3      Mean 
STD 

4      Mean 
STD 

5      Mean 
STD 

6      Mean 
STD 

7      Mean 
STD 

8      Mean 
STD 

9     Mean 
STD 

10    Mean 
STD 

11    Mean 
STD 

12    Mean 
STD 

13    Mean 
STD 

14    Mean 
STD 

15    Mean 
STD 

16    Mean 
STD 

17    Mean 
STD 

18    Mean 
STD 

19    Mean 
STD 

20    Mean 
STD 

21    Mean 
STD 

22    Mean 
STD 

23    Mean 
STD 

24    Mean 
STD 

25    Mean 
STD 

26    Mean 
STD 

27    Mean 
STD 

28    Mean 
STD 

29    Mean 
STD 

30    Mean 
STD 

8.8391e+006 
5.9489e+006 
3.0021e+007 
3.5475e+007 
6.1453e+003 
5.5397e+003 
5.1538e+001 
1.5675e+001 
2.0093e+001 
5.3231e-002 
4.7183e+000 
1.3987e+000 
1.2749e+000 
3.3043e-001 
5.4338e+000 
2.1343e+000 
1.6187e+001 
4.7513e+000 
3.4264e+001 
4.0662e+001 
6.6327e+002 
2.5548e+002 
5.6671e-001 
1.8193e-001 
2.2917e-001 
6.8267e-002 
3.3928e-001 
6.3867e-002 
4.2601e+000 
2.3018e+000 
3.1788e+00 
3.0139e-001 
1.0812e+006 
1.1697e+006 
1.6340e+005 
6.1673e+005 
2.9898e+000 
1.2102e+000 
5.6601e+003 
5.9977e+003 
2.7184e+005 
3.7984e+005 
8.4679e+001 
6.4120e+001 
3.3494e+002 
6.8668e+000 
1.5606e+002 
2.8575e+001 
1.8789e+002 
2.1699e+001 
1.0140e+002 
2.9798e+000 
4.0278e+002 
3.7082e+001 
4.9379e+002 
6.6058e+001 
4.7815e+004 
1.2608e+005 
2.3169e+003 
1.1451e+003 

1.0998e+005 
7.2818e+004 
1.8399e+003 
2.1664e+003 
5.3290e+003 
5.4175e+003 
3.5803e+000 
2.1576e+000 
1.9201e+001 
3.9164e+000 
3.8869e+000 
1.5154e+000 
1.6336e-001 
8.0134e-002 
1.0825e+001 
4.7535e+000 
2.0098e+001 
9.1924e+000 
3.1268e+002 
1.1674e+002 
6.8359e+002 
2.2289e+002 
1.0878e-001 
6.0947e-002 
5.6372e-001 
1.7779e-001 
4.4715e-001 
2.1789e-001 
1.5945e+000 
1.0458e+000 
2.9497e+000 
5.1414e-001 
3.9386e+004 
4.3241e+004 
6.2094e+003 
6.2300e+003 
1.6216e+000 
9.4023e-001 
3.7832e+003 
4.6321e+003 
1.7304e+004 
1.0660e+004 
1.7066e+002 
5.0939e+001 
3.2945e+002 
7.6936e-005 
1.4621e+002 
2.4652e+001 
2.02426e+02 
4.06186e+00 
1.1627e+002 
3.6552e+001 
4.0532e+002 
9.2968e+001 
6.8643e+002 
1.4203e+002 
2.1025e+002 
9.4819e+000 
1.1709e+003 
2.7562e+002 

1.6953e+006 
1.4220e+006 
2.6658e+003 
2.8912e+003 
5.6906e+003 
4.6509e+003 
1.5174e+001 
1.8683e+001 
1.9999e+001 
1.6783e-003 
4.5043e+000 
1.4108e+000 
1.6520e-001 
1.0558e-001 
1.0546e+001 
4.3505e+000 
1.9248e+001 
9.1792e+000 
2.8065e+002 
1.0261e+002 
6.6865e+002 
2.6422e+002 
1.1815e-001 
8.6073e-002 
4.5187e-001 
1.6304e-001 
5.6759e-001 
2.8138e-001 
3.1908e+000 
1.9813e+000 
2.8185e+000 
4.6450e-001 
6.1347e+005 
5.1031e+005 
6.2715e+003 
7.0412e+003 
1.6717e+000 
1.0542e+000 
3.1857e+003 
5.8837e+003 
5.6421e+005 
7.3073e+005 
1.8277e+002 
1.0888e+002 
3.2945e+002 
6.4674e-005 
1.4306e+002 
2.7629e+001 
2.0266e+002 
1.2439e+000 
1.0833e+002 
2.7038e+001 
4.0654e+002 
3.9069e+001 
6.7349e+002 
1.2378e+002 
7.8504e+005 
1.0499e+006 
1.3910e+003 
3.7766e+002 

2.0293e+006 
1.4482e+006 
4.1337e+003 
3.4341e+003 
7.4229e+003 
4.8457e+003 
1.8634e+001 
2.1433e+001 
2.0000e+001 
6.8063e-004 
5.1598e+000 
1.5977e+000 
1.3037e-001 
6.8026e-002 
1.2178e+001 
4.7615e+000 
2.3839e+001 
8.8700e+000 
3.7919e+002 
1.4329e+002 
8.5289e+002 
2.7343e+002 
1.5126e-001 
1.1456e-001 
5.6223e-001 
1.9712e-001 
4.5673e-001 
2.6867e-001 
2.7588e+000 
1.1566e+000 
2.8998e+000 
4.3076e-001 
1.0057e+006 
6.0329e+005 
7.3055e+003 
8.1281e+003 
1.9974e+000 
8.1092e-001 
2.5409e+003 
2.8518e+003 
6.0261e+005 
7.6800e+005 
1.9536e+002 
1.0623e+002 
3.2945e+002 
2.7065e-005 
1.3960e+002 
1.4609e+001 
2.0305e+002 
1.1586e+000 
1.2428e+002 
4.2572e+001 
4.1369e+002 
4.6694e+001 
6.7465e+002 
2.0022e+002 
4.2333e+005 
8.4798e+005 
1.6133e+003 
2.9799e+002 



  

TABLE II.  WILCOXON’S RANK SUM TEST RESULTS AT A 0.05 

SIGNIFICANCE LEVEL  BETWEEN BOTH PESGA AND NESGA AND EACH OF 

SGA AND RNPSGA.  

Algorithm peSGA neSGA 

Compared to SGA RNPSGA SGA RNPSGA 

Function Comparison Results  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

+ 
+ 
= 
+ 
+ 
= 
+ 
- 
= 
- 
= 
+ 
- 
- 
+ 
+ 
= 
+ 
+ 
= 
= 
- 
+ 
= 
= 
- 
= 
- 
= 
+ 

- 
= 
= 
= 
+ 
= 
= 
= 
= 
= 
= 
= 
= 
- 
- 
= 
- 
= 
= 
= 
- 
= 
- 
+ 
= 
= 
= 
= 
- 
= 

+ 
+ 
= 
+ 
+ 
= 
+ 
- 
- 
- 
- 
+ 
- 
= 
+ 
+ 
= 
= 
+ 
= 
= 
- 
+ 
= 
- 
- 
= 
- 
- 
+ 

- 
= 
= 
= 
- 
- 
= 
= 
= 
= 
- 
= 
= 
= 
- 
= 
- 
= 
= 
= 
- 
= 
- 
+ 
= 
= 
= 
= 
- 
- 

+ 12 2 11 1 

- 7 7 10 10 

= 11 21 9 19 

“−”, “+”, and “=” denote that the performance of the corresponding proposed algorithm is 

worse than, better than, and similar to that of the corresponding RNPSGA and SGA, 

respectively. 

IV. APPLICATION TO HUMANOID ROBOT 

A. Robot Model  

The humanoid robot considered in this study is the 

HYDROID robot [16]. The dynamic parameters of the robot 

are given in Table IV. The length of each robot link except 

the feet is denoted li; the distance between the each link 

mass center is denoted lci; each link mass is denoted mi, the 

inertia moment of each link is denoted Ii. The robot foot 

structure is  represented in Fig. 5. The vector F1 represent the 

ground reaction, xZMP represent the position of the zero 

moment point (ZMP) [17].  The hydroid robot is represented 

in Fig.5.  We consider here the model in the sagittal plane. 

This seven links robot has 9 degrees of freedom (9 DOF) 

which are left foot angle (α1), left knee angle (α2), left leg 

angle (α3), body angle (α4), right foot angle (α5), right knee 

angle (α6), right leg angle (α7), x body position and the z 

body position.  The geometric, cinematic and the dynamic 

model of this robot are not reported here in details because 

of the limited paper pages.  HYDROID is described in details 

in the literature (the lectors can see also [18]).For simulation, 

we have created a virtual model of HYDROID robot in 

SimMechanics on Simscape/Matlab2014. Fig.5 gives the 

obtained 3D model. It shows the robot links, their center of 

mass and their associated frames. The ground contact is also 

modeled using an approximate model known as spring-

mass-dumper model. Other methods can be found in the 

literature [19].  The relationship between the foot 

penetration, foot velocity and the ground reaction force (F1) 

is given in (3)  

zCzKF                                     (3) 

Where F represent the reaction force, K and C are constants 

describing the nature of impact.   is the hypothetic 

penetration of the foot in the ground. 

TABLE III.  ALGORITHMS’ RANKING ACCORDINF TO FREEDMAN TEST. 
THE BEST RANKS ARE GIVEN IN BOLD STYLE 

Function SGA RNPSGA peSGA neSGA 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

   2.0400 
    2.6800 
    2.2000 
    2.9600 
    2.5200 
    2.2800 
    3.2000 
    1.5600 
    2.2000 
    1.0400 
    2.3200 
    2.8400 
    1.1600 
    2.4000 
    2.5600 
    2.8800 
    2.4800 
    2.7200 
    2.7200 
    2.4000 
    2.3200 
    1.9200 
    2.0000 
    2.6000 
    1.7600 
    2.0800 
    2.2800 
    1.3600 
    2.1600 
    2.3600 

    3.0800 
    3.1600 
    2.4400 
    2.8800 
    2.8400 
    2.4800 
    2.9600 
    2.5200 
    2.2000 
    2.8400 
    2.4000 
    3.0400 
    2.8000 
    2.1600 
    2.8800 
    2.4400 
    2.0400 
    2.7600 
    2.8400 
    3.1600 
    2.1200 
    2.6000 
    3.6400 
    3.0800 
    2.9600 
    2.3200 
    2.6400 
    2.5600 
    3.0800 
    2.7200 

    3.2400 
    3.1600 
    2.7200 
    2.5600 
    3.5600 
    2.3200 
    2.8400 
    2.8400 
    2.6400 
    2.9200 
    2.1200 
    3.1200 
    3.0000 
    2.6400 
    2.4000 
    2.7200 
    3.0800 
    2.5600 
    2.4800 
    2.2800 
    2.7600 
    2.4800 
    3.3600 
    2.3200 
    2.8000 
    2.8000 
    2.5200 
    2.8800 
    2.2800 
    3.2800 

    1.6400 
    1.0000 
    2.6400 
    1.6000 
    1.0800 
    2.9200 
    1.0000 
    3.0800 
    2.9600 
    3.2000 
    3.1600 
    1.0000 
    3.0400 
    2.8000 
    2.1600 
    1.9600 
    2.4000 
    1.9600 
    1.9600 
    2.1600 
    2.8000 
    3.0000 
    1.0000 
    2.0000 
    2.4800 
    2.8000 
    2.5600 
    3.2000 
    2.4800 
    1.6400 

Rank  2.2667 2.7213         2.7560 2.2560 

  
Fig. 4. Robot foot structure and the hydroid robot [16] 

 
Fig.5. HYDROID robot model in Simscape/Matlab  

TABLE IV.  HYDROID ROBOT PARAMETERS 

Links Length 

[m] 

Mass 

[Kg] 

Inertia moment 

[kg.m2] 

center of gravity 

[m] 

Foot Lp=0.207 

lp=0.072 

hp=0.064 

0.678 0.001 sx=0.135 

sy=0.321 

Tibia l1=0.392 2.188 0.028 0.1685 

Shin  l2=0.392 5.025 0.068 0.1685 

Trunk l3=0.543 29.27 0.815 0.01921 



  

B. Dynamic Robot Model  

The dynamic model can be obtained by Newton-Euler 

formalism or by Euler-Lagrange equation [20].  In this 

paper, the Euler-Lagrange equation is used (4).   




























ii

i
q

L

q

L

dt

d


                             (4) 

Where i  Corresponds to the force or torque resulting 

from the dynamics of the ith link. L in the langrangian of the 

ith link.   The obtained dynamic model if given in (5). 

2211)(),()( FAFABXQXXXHXXD             (5) 

Where X is the state variable vector composed from the 

articulations angles and the x and z body position X= [α1, α2, 

α3, α4, α5, α6, α7, x, y] T
; D(X) is the (9×9) inertia matrix; 

H(X, X ) is the centrifuge and Coriolis matrix of dimension 

(9×1); Q(X) is the gravitational matrix of dimension (9×1); 

B is a ponderation matrix;  is the joint actuators torques at 

the articulations; F1 is the ground reaction on the left foot; F2 

is the ground reaction on the right foot; A1 is the Jacobian 

matrix of the left foot contact with the ground; and A2 is the 

Jacobian matrix of the right foot contact with the ground.        

The dynamic walking can be considered as a hybrid 

process constituted of 3 phases. The double support phase 

(two feet on the ground), the simple support phase (one foot 

on the ground) and the impact phase (when the flying foot 

bumps the ground surface). The model given in (5) describe 

the double support phase. In the case of simple support 

phase, F1 or F2 is equal to zero.  

C. The Impact Model  

We have chosen to consider impulse impacts. This 

choice simplify the resolve of contact between the ground 

and the foot. The detailed impact model is given in (6).  

2211))(( FAFAXXXD                (6) 

Where X  and X are the velocities after and before the 

impact, respectively.  The constraints associated to impact 

are given in (7) and (8).  These latter gives the constraints of 

non-slip and the non-detachment of the feet.  

0)(1 XXA                                (7) 

0)(2 XXA                               (8) 

D.  Stability and ZMP 

The stability of humanoid robot is one of the most topics 

studied. The stability of these articulated machines is assured 

if and only if the zero moment point (ZMP) is in the 

sustention polygon. This principle was proposed by Miomir 

Vukobratović [17]. In our case, the ZMP position is given in 

(9). When this position is in the sustention polygon the robot 

is stable.  

)(
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101
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xpx

z

ZMP Fhgms
F

x                    (9) 

E. Trajectory generation   

The trajectories of each articulation angle is assumed to 

be spline cubic function. This type of function has been used 

in several works. The walking period is denoted T. We 

decompose each robot step into two phases. The 

mathematical definition of each spline cubic function during 

each robot forward step is given in (10) and (11). 

k

k

i

ki tat 



3

1

)(  ,       2/0 Tt      (10) 

k

k

i

ki tbt )1()(
3

1




 ,   TtT 2/     (11) 

Additional constraints can be imposed to assure on the 

continuity of the movement, i.e. the velocity and the 

acceleration at t=T/2. The parameters of the spline functions 

are calculated depending on the robot kinematic, dynamic 

and technologic constraints of the movement and an 

energetic criterion.   

F. Kinematic and dynamic constraints  

Robot walking consists on constrained movements. 

During footsteps, the stability must be assured. This leads to 

two constraints given in (12) and (13).  During the 

movements, the position in the z-axis of toe and heel of the 

mobile foot must be positive which leads to (14) and (15). 

Anthropomorphic constraints on the knees’ angles are given 

in (16) and (17). The bottom foot, i.e. toe and heel, z-axis 

velocity must be positive to assure that the fixed foot take 

off the ground, i.e. obtain a transition to the next footstep. 

This leads to constraints (18) and (19). The ground reactions 

are also positive which leads to (20) and (21).  

01  pZMP lxC                          (12) 

02  PpZMP LlxC                          (13) 

03  tzC                          (14) 

04  hzC                          (15) 

025  C                          (16) 

066  C                         (17) 

07  tzC                         (18) 

08  hzC                         (19) 

019  zFC                        (20) 

0210  zFC                       (21) 

The optimization criterion is given in (22)  

dtPC

T

T

 
0

                  (22) 

 

Where P is an identity matrix. T is the footstep period.  

 

G. Evolutionary optimization 

In order to realize optimal stable walking that minimize 

(22) and respect the constraints presented above, 

evolutionary optimization of the walking can be formulated. 

According to the results exposed in previous section, neSGA 

is the most competitive algorithm compared to RNPSA, 

SGA and peSGA. The evolutionary optimization algorithm 

is summarized in Fig. 6. 

 



  

________________________________________________ 
Algorithm 4: neSGA applied to optimal walking problem 

_____________________________________________________________________ 

1. Initialize VP, P, N,  POV , Pa, η, K.  

2. Best = select (VP),  Elite = select (VP, P) / * assume the best and elite */ 

3. BestFit=evaluate(Best) , ElitetFit=evaluate(Elite) K=K+2; 

4. while ( termination condition ) 

5.    if  τ< η 

6.       G = select-individual from VP that verify the movement constraints 

7.       GFit=evaluate(G) ,   K=K+1 Gm=adjust G’s  

8.       Reduce rayon adjustment according to (2)  

9.       GmFit=evaluate(Gm) ,  K=K+1 

10.    if GmFit < GFit        G=Gm,     GFit=GmFit end if 

11.       if (fitness(G) < fitness(elite))  /* “>” means better */ 

12.          reward-alleles (G) ; penalize-alleles (elite) ; Elite=G, EliteFit=GFit;  τ=0 

13.                if  (fitness(G) < fitness(Best)) then Best=G, BestFit=GFit; end if 

14.        else reward-alleles (Elite) ; penalize-alleles (G) ;  τ= τ+1 end if         

15.     else Elite = select (VP, P), ElitetFit=evaluate(Elite) , K=K+1;  τ= 0   end if                 

16. end while 

17. return Best 

 

Fig. 6. Application of neSGA to Humanoid robot. 

H. Results and discussions  

We present in Fig.7 the obtained optimal trajectory using 

neSGA.  A proportional derivative control law is used to 

control articulations’ trajectories. Despite the high 

complexity of this task, the humanoid robots are hybrid 

highly nonlinear under actuated machine with nine DOF, a 

satisfying results are obtained. neSGA assures stability and 

minimal energy consumption.  Hence, the proposed 

algorithms including neSGA, peSGA can be used in real-

world applications. In the future works we can focus on the 

parameters adaptation of neSGA and peSGA.     

 

 
Fig.7. Optimal Trajectory of the articulations during four 

footsteps   

V. CONCLUSION   

In this paper two new evolutionary algorithms, neSGA 

and peSGA, are developed and presented. peSGA and 

neSGA are based on the selfish gene theory an use elitism 

strategies to assure selection pressure. The proposed 

algorithms are benchmarked on IEEE CEC2014 functions. 

Their performance are compared to the SGA stat-of-art 

variants. The obtained results show that the proposed 

approaches leads to performance enhancement. The 

proposed neSGA is than applied to a constrained multimodal 

nonlinear real word problem. The objective is to realize  

optimal walking of HYDROID robot. The obtained results 

are very satisfying.           
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