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Two models for yeast cell communication

Vincent Calvez ∗, Thomas Lepoutre †Nicolas Meunier Nicolas Muller ‡.

March 30, 2017

Abstract

We study two separate models for yeast cell-cell communication. Each model consists of a
coupled system of two non-linear, non-local equations in one dimension of space. The first model
describes the two cells in the transversal direction, orthogonal to the membrane, whereas the
second model describes the two cells in the tangential direction, along the membrane. We study
long time dynamics for each model, ranging from convergence to stable steady states (bistability
in model 1), to possible finite time blow-up (formation of singularity in model 2). The biological
interpretation of the mathematical results is discussed.

1 Introduction

In this work we propose and analize two models describing some aspects of yeast cell-cell communi-
cation. Each of the two models is based on a system of coupled non-linear and non-local convection-
diffusion equations. In both cases the convection-diffusion equation, without coupling, was introduced
and studied in previous works to describe protein dynamics in a single yeast cell [12, 4, 2, 16, 20].
Here, from the mathematical viewpoint, in both models, the novelty is the coupling between two
non-linear and non-local convection-diffusion equations.

1.1 The transversal model

Let us start with the first model which writes:

∂tni = ∂xxni + χµ1 µ2 ∂xni , (1)

for i = 1, 2, where ni = ni(t, x) is defined on t ≥ 0, x ≥ 0, with an attachment and detachment
kinetic at the boundaries located at x = 0:

d

dt
µi(t) = ni(t, 0)− µi(t) , t > 0 , (2)

and flux boundary conditions:

d

dt
µi(t) = ∂xni(t, 0) + χµ1(t)µ2(t)ni(t, 0) , t > 0 , (3)
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which ensure the conservation, in each cell, of the following quantity

Mi := µi(t) +

∫ ∞
0

ni(t, x) dx . (4)

We refer to Section 2 for a detailed presentation of the model with biological motivations.
Since the advection is bounded, µi(t) ≤Mi, global existence of solutions to the Cauchy problem

(1)–(2)–(3) holds true. Here, our aim is to precise the long time behaviour. Since there is no compar-
ison principle on equation (1), our method is based on a concentration-comparison principle that is
obtained when equation (1) is integrated in space, see [16]. This principle allows constructing some
remarkable sub/supersolutions and performing a non-linear stability analysis.

Before stating the results, we give some notations. First for simplicity, throughout this work we
will assume that

M1 = M2 = 1 . (5)

Moreover, for i = 1 , 2 and for t ≥ 0, x ≥ 0, let the function Ni(t, x) be defined by

Ni(t, x) = µi(t) +

∫ x

0
ni(t, y) dy , (6)

where (ni, µi)1≤i≤2 is the solution to (1)–(2)–(3) with (5). For µ ∈ (0, 1) let the function Nµ be
defined by

Nµ(x) = µ+ (1− µ)(1− e−χµ2x) . (7)

Furthermore, let P be the polynomial

P (m) = χm2 − χm+ 1 , (8)

whose roots are real numbers µ− < µ+ if χ > 4. Finally, let n+ be the function defined by

n+(x) = χµ2
+e
−χµ2+x . (9)

We start with a linear stability result. In this work we assume that χ ≥ 4, which is the interesting
case for which there exists non trivial stationary states. It is to be noticed that χ is linked to intra-
cellular distance as it is discussed below after the second model.

Proposition 1.1 (Linear stability) If χ ≥ 4, then the system (1)–(2)–(3) and (5) admits a steady
state, denoted by (n̄i, µ̄i)i=1,2. Any steady state satisfies n̄1 = n̄2 and µ̄1 = µ̄2. If χ > 4, then,
there are two steady states (n̄−, µ−) and (n̄+, µ+) with µ− < µ+. Furthermore, (n̄+, µ+) is linearly
stable while (n̄−, µ−) is linearly unstable.

In addition we perform a non-linear stability analysis. For large enough initial conditions, we
prove the convergence of the solution to (1)–(2)–(3) with (5) towards the steady state (n̄+, µ+).

Proposition 1.2 (Non-linear stability of the largest equilibrium) Let
(ni, µi)1≤i≤2 be the solution to (1)–(2)–(3) with (5) and with initial data (n0

i , µ
0
i )1≤i≤2 with finite

entropy
∫∞

0 n0
i (x + log n0

i ) dx < +∞. Assume that χ > 4 and that there exists two real numbers
(µ, µ̄) ∈ (0, 1)2 such that{

µ− < µ < µ+ < µ̄ ,

Nµ(x) ≤ Ni(0, x) ≤ Nµ̄(x) for all x ≥ 0 and i = 1, 2 ,
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and assume in addition that
µ0
i ∈ (µ, µ̄) i = 1, 2 .

Then, for i = 1, 2, the convergence of (ni, µi) towards the steady state (n̄+, µ+) holds true in the
following sense: {

limt→∞ µi(t) = µ+ ,

limt→∞ ‖ni(t, ·)− (1− µ+)n+(·)‖L1(R+) = 0 ,

where n+ is defined by (9).

On the other hand, for small initial conditions we prove the self-similar behaviour of the solution.
Let G be the normalized Gaussian distribution on the half line

G(x) =

√
2

π
e−

x2

2 . (10)

Proposition 1.3 (Non-linear stability of the zero steady state) Assume that χ > 4 and that there
exists µ0 ∈ (0, µ−) such that for i = 1, 2

µi(0) < µ0 and ∀x ≥ 0 , Ni(0, x) ≤ Nµ0(x) ,

and assume in addition that
∫∞

0 x2ni(0, x) dx < +∞. Then, the following convergences hold true:

for i = 1, 2


limt→∞ µi(t) = 0 ,

limt→∞

∥∥∥∥ni(t, .)− 1√
1+2t

G
(

.√
1+2t

)∥∥∥∥
L1(R+)

= 0 ,

with an exponential rate for the second one.

In the context of yeast cell communication, the main interest of this first model is to link the output
of cell communication to protein aggregation on both cell membranes. The next Table summarizes the
long time dynamics results contained in Proposition 1.1 and Proposition 1.2 in a informal way. Notice
the bistability of the communicating state (for large µ) vs. the silent state (for small µ). Alternatively
speaking, when the cells do not invest enough in the communication, they do not respond to each
other, and no dialog can take place between them.

µ 0 < µ < µ− µ− µ− < µ < µ+ µ+ µ+ < µ

Nµ supersolution lin. instable subsolution lin. stable supersol.
steady state steady state

Cv If Ni(0, x) < Nµ−(x), If Nµ−(x) < Ni(0, x),
ni → 0 and µi → 1 ni → (1− µ+)n+

no communication cell communication

Table 1: Summary of the dynamics when χ > 4
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1.2 The tangential model

Let us now present the second model that will be designed as the tangential model since it focuses on
the membrane dynamics. Let Ω1 = (x ∈ R , y ≤ 0), Ω2 = (x ∈ R , y ≥ h), Γ1 = (x ∈ R , y = 0),
Γ2 = (x ∈ R , y = h), and Ψ be the intercellular space, see Fig. 1. For i = 1, 2, µi(t, x) is now a
function of both time and space and it satisfies

∂tµi = ∂xxµi + ∂x (µiH(Sjµi)) , on Γi , (11)

whereH is the Hilbert Transform, whose definition is

H(f)(x) :=
1

π
p.v.

∫
R

f(y)

x− y
dy =

1

π
lim
ε→0

∫
|x−y|>ε

f(y)

x− y
dy , (12)

and where Sj satisfies the following elliptic equation{
−∆Sj + λSj = 0 , on Ψ ,

∇Sj · ej = µj , on Γj ,
(13)

where ej denotes the unit outward normal vector to Γj .

Figure 1: Tangential model for the communication between two cells

In the two dimensional case the solution to (13) can be explicitly computed. For all t > 0 and
x ∈ R, one has on Γi:

Sj(t, x) =
1

π

∫
R
F (
√

(x− x′)2 + h2)µj(t, x
′) dx′, for j ∈ {1, 2} , (14)

where F is a decreasing nonnegative function on R+, vanishing at +∞. Indeed, we know that F (r) =

C
∫∞

0 e−t−
r2

4t dt, see [10], where C is a positive constant whose value is given in the appendix 8.
Let Fh and fh be the functions defined by

Fh(x) = fh(x2) = F
(√

x2 + h2
)
, (15)

then, y → fh(y) is a convex function on R+. Indeed one has fh(u) =
∫∞

0 e−t−
h2

4t e−
u
4t dt and

differentiating twice we obtain

f ′′h (u) =

∫ ∞
0

1

16t2
e−t−

h2

4t e−
u
4t dt ≥ 0 .
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Since Fh, is smooth, let K(h) be defined by K(h) :=
∥∥ d

dxFh
∥∥
∞ < +∞.

For this tangential model, (11)–(13), we can expect blow-up of the solution. This can be seen by
performing a formal computation on the time derivative of the joint second moment defined by

E(t) :=

∫∫
R2

(x− y)2

4M2
µ1(t, x)µ2(t, y) dx dy > 0 , (16)

and by proving that E cannot remain positive for all time, which is an obstruction to global existence.
Such a technique was first used by Nagai [21], then by many authors in various contexts (see [22] and
references therein).

Proposition 1.4 Assume that fh(0) < 2π
M2 , where fh is defined by (15). Assume in addition that

E = E(t = 0) satisfies
M4K(h)

π

√
E − M4

2π
fh(E) ≤ M2fh(0)

2π
− 1 .

Then, there is an obstruction to global existence of the solution (µ1, µ2) to (11)–(13).

Such a criterium is in agreement with biological experiments in which it is observed that above a
threshold-distance, beyond some distance, two cells cannot polarize simultaneously.

We describe the plan of the paper. First in Section 2 we justify the two models from a modelling
point of view. Section 3 deals with notations and mathematical useful inequalities. In Section 4 we
state a comparison principle. Section 5 is devoted to the proof of the non-linear stability of the larger
steady state, Proposition 1.2. In Section 6, in the case of small initial conditions, we prove extinction,
and convergence towards a self-similar profile in the rescaled coordinates, Proposition 1.3. Finally
we study in Section 7 the tangential model and we prove Proposition 1.4. Since this work is focused
on the non-linear stability analysis, we postpone in the appendix the linear stability analysis and the
proof of Proposition 1.1.

2 Motivation

How do cells communicate with each other? This question, which seems simple, has not being an-
swered so far. Cell communication plays fundamental role in many cellular processes including cell
division and differentiation, directional movement as well as morphogenesis. Defects in cell-cell
communication are also implied in the development of cancer.

From the biological point of view, a prototypical model for cell communication is given by yeast
cell mating. Yeast cell communication involves some intra-cellular proteins (Cdc42), the cell cy-
toskeleton and extra-cellular pheromone molecules, Fig. 2.

Several studies have proposed mathematical models that incorporate many aspects of the molecu-
lar mechanisms involved in pheromone-induced protein aggreagtion. Although some of these models
have been tested for their ability to fit quantitative data [9, 24, 11, 19, 7, 18, 6, 15], they have not been
quantitatively assessed for their ability to make accurate predictions with no additional free parameter.
Here we will use a model which was first introduced in [12], then studied in [4, 2] and finally tested
for its ability to predict experimental data in [20]. This model relies on a coarse-grained description
of the cytoskeleton and it is expressed by a non-linear and non-local partial differential equation. In
the present work we enrich this model in order to study cell-cell communication.
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Figure 2: Model for yeast cell communication. On the left, yeast cells of both types secrete some
pheromone (a or α) and bear a pheromone receptor to detect the pheromone produced by the cells
of the opposite type. On the middle and on the right a two-dimensional model of protein dynamics
inside each cell. The middle panel shows a cell, the right a more detailed view. Actin is polymerized
into short filaments, that interact with each other and these are bundled together to form actin cables
(which form the cytoskeleton) that cross the cell. The nucleation of filaments is proportional to both
the local density of Cdc42 (the proteins that are transported by the cell cytoskeleton in each cell) and
to the concentration of pheromone.

Denoting respectively by n and c the concentrations of Cdc42 and actin filaments in the cyto-
plasm of the cell, which is described by a bounded domain Ω ⊂ R2, and denoting by µ the Cdc42
concentration on the boundary of the cell, denoted by Γ, the model is:{

∂tn = ∆n− χ∇ · (n∇c) , on Ω ,

∂tµ = ∂ssn+ n− µ , on Γ ,
(17)

where s is a parametrisation of the boundary Γ.
In this model, active transport of proteins is modeled as the gradient of the concentration of actin

filaments, χ∇c.
Nucleation of new filaments is assumed to occur at the plasma membrane, under the combined

action of Cdc42 and pheromone molecules. After a dimensional analysis, the model that describes the
cytoskeletal density is: {

−∆ c = 0 , on Ω ,

−∇c · e = Sµ , on Γ ,
(18)

where e is the unit outward normal vector and S is the pheromone-generated signal trace on the cell
membrane.

Equations (17) and (18) are complemented by initial conditions and by an additional boundary
condition on the cell membrane which guarantees the conservation of the total Cdc42 pool on each
cell:

(∇n− χn∇c) · e = −∂tµ on Γ . (19)

In the one dimensional case where the cytoplasm of the cell is modelled by the half line x > 0
and the membrane is located at x = 0, the model (17)–(18) simply rewrites as

∂tn = ∂xxn+ Sµ∂xn , t > 0 , x > 0 , (20)

with an additionnal flux boundary condition that assures mass conservation. This latter equation has
been mathematically studied in [4, 2, 16], its dynamics is well understood and is reminiscent of the
Keller-Segel model in two dimensions. The principal result of [2] was to identify regimes in which
non homogeneous stationary states, that were interpreted as polarised states, emerge.
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In the more realistic two dimensional case, numerical simulations, [3], show that for large enough
values of the total cell protein pool, the majority of the Cdc42 molecules are located in the neigh-
borhood of the cell membrane. Hence postulating that

∫
n(t,x) dx⊥ = µ(t, s), the dynamics of µ

can be formally written by integrating equation (17) with respect to the normal coordinate x⊥ to the
membrane Γ. This yields a one dimensional non-linear and non-local convection diffusion equation
in which the advective field is given by the Hilbert transformH, a non-local operator:

∂tµ = ∂ssµ+ χ∂s (µH (Sµ)) , (21)

where, s is a parametrisation of the boundary Γ. This latter equation is known to have a solution
which aggregates in a finite time (blow-up) if χ

∫
Γ µ is large enough as compared to the value of S,

see [5]. In our setting, this analysis means that for small values of the total mass,
∫

Γ µ, the cell remains
unpolarised while for large values it gets polarized.

In nature, the budding yeast, Saccharomyces cerevisiae, exists as haploid cells in two types (a and
α). Cells of both types secrete some pheromone (a or α), Fig. 2, and bear a pheromone receptor
to detect the pheromone produced by the cells of the opposite type, [13]. In the present work we
propose two models where the production of extra-cellular pheromone (a or α) is function of the
concentration of the protein Cdc42 at the membrane. Furthermore according to biological litterature,
[17, 1, 25, 26], we assume that the pheromone contributes to the nucleation of new filaments at the
plasma membrane of the cell of the opposite type, see Fig 2. To describe the protein dynamics on
each cell membrane we use and enrich either the model (17)–(18) in the one-dimensional case or the
tangential model (21). This yields to two systems of two coupled one-dimensional non-linear and
non-local convection-diffusion equations. Throughout this work, for simplicity, we will denote by the
subscript i = 1, 2 the cell type and we will assume that the total protein pool of each cell is equal to 1.

2.1 The transversal model

To simplify, the cytoplasm of each cell is modelled by the half line, the membranes are localized at
the boundaries.

In the one-dimensional version of (17)–(18) the advection field is simply −χµ(t)S(t). According
to the previously described biological scenario, in the cell of type i, we consider that the advection
field is−χµi(t)Sj(t) where Sj is the concentration of pheromone produced by the cell of the opposite
type j. Moreover, in this work we assume that Sj = µj , which means that the pheromone produced
by cell of type i is equal to the concentration of proteins Cdc42 attached at its membrane multiplied
by a damping factor, χ, which depends on the inter-cellular distance. Hence, in both cells the ad-
vection field is −χµ1(t)µ2(t). Hence the first system of coupled equations is (1)–(2)–(3). From the
modelling point of view this first model describes whether, in each cell, proteins Cdc42 are located in
the cytoplasm, the bulk of the cell, or aggregates on the boundary, the cell membrane, this latter case
will be referred as a polarized state. The case where aggregation on the membrane occurs in both cell
will be referred as stable dialog between the two cells.

2.2 The tangential model

We suppose that the two cells occupy respectively the two half-planes Ω1 = (x ∈ R , y ≤ 0),
Ω2 = (x ∈ R , y ≥ h), see Fig. 1, that the two membranes are denoted by Γ1 = (x ∈ R , y = 0) and
Γ2 = (x ∈ R , y = h), and that the intercellular space is Ψ.

In the one-cell case the tangential model writes as (21), the advection field is χH(Sµ). According
to the previously described biological scenario, in the cell of type i, we consider that the advection

7



field is χµiH(Sjµi) where Sj is the concentration of pheromone produced by the cell of the opposite
type, j. Hence the second model is (11) – (13). From the modelling point of view the second model
describes whether, in each cell, proteins Cdc42 have an homogeneous distribution on the membrane
or aggregates on given part of the boundary, this latter case will be referred as a polarized state. Since
both membranes are lines, this model can provide infomation about both polarisomes (places where
proteins aggregates) alignement. The situation where both polarisomes are at the same location will
be referred as co-polarization or stable dialog between the two cells.

3 Notations and inequalities

Let us start by introducing some classical notations.

Definition 3.1 Given two probability measures p, q on R+, we define the relative entropy of p with
respect to q by

H(p|q) =

∫ ∞
0

p(x) log
p(x)

q(x)
dx =

∫ ∞
0

q(x)

(
p(x)

q(x)
log

p(x)

q(x)
− p(x)

q(x)
+ 1

)
dx ≥ 0 .

The Fisher information of p with respect to q is defined as the quantity

I(p|q) =

∫ ∞
0

p(x)

(
∂x log

p(x)

q(x)

)2

dx .

Moreover if p, q have finite second moment, [28], the quadratic Wasserstein distance W (p, q) is de-
fined by

W (p, q) = inf
π∈Π(p,q)

√∫∫
R+×R+

|x− y|2 dπ(x, y) ,

where Π(p, q) denotes the set of probability measures on R+ × R+ with marginals p and q.

There are several results concerning various representations for the quadratic Wasserstein distance
when it is specialized to the real line. In such a case it may considerably be simplified in terms of the
distribution functions F (x) =

∫ x
0 p(y) dy, x ∈ (0,∞), associated to probability measures p, [28].

Theorem 3.2 (Representation for W ) Let p and q be probability measures on R+ with respective
distribution functions F and G. Then

W (p, q) =

∫ 1

0
|F−1(t)−G−1(t)| dt ,

where F−1 is the pseudo-inverse function:

F−1(t) = inf{x ∈ R : F (x) ≥ t , 0 < t < 1} .

In the sequel we will use two important inequalities linking the relative entropy and the Fisher infor-
mation, see [28].

Lemma 3.3 (Log-Sob inequality) Assume q has a Gaussian concentration i.e. q(x) = e−V (x) with
V ′′(x) ≥ c > 0, then the logarithmic Sobolev inequality holds true

I(p|q) ≥ 2cH(p|q) .
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Lemma 3.4 (HWI inequality for exponential measure) Assume that q(x) = λe−λx then the fol-
lowing inequality holds true

I(p|q) ≥
(
H(p|q)
W (p, q)

)2

.

In order to obtain a rate of convergence for the L1 norm we will use the Csiszár-Kullback inequal-
ity, [8, 14].

Proposition 3.5 (Csiszár-Kullback inequality) For any non-negative functions f, g ∈ L1(R+) such
that

∫
R+
f(x) dx =

∫
R+
g(x) dx = M , we have that

‖f − g‖21 ≤ 2M

∫ ∞
0

f(x) log

(
f(x)

g(x)

)
dx . (22)

4 Comparison principle and consequences

We start noticing that there is no comparison principle on (1)–(2)–(3). In this section, we first establish
a concentration comparison principle reminiscent of [16] on the quantities Ni whose definition we
recall now

Ni(t, x) = µi(t) +

∫ x

0
ni(t, y) dy , i = 1 , 2 , (23)

where (ni, µi)i=1,2 is the solution to (1)–(2)–(3) and (5). Then, in a second step we construct some
remarkable sub/supersolutions and in the following two sections we use this principle to perform a
non-linear stability analysis.

4.1 Concentration comparison principle

For i = 1, 2, the integrated equations associated with (1)–(2)–(3) and (5) are
∂tNi(t, x)− ∂xxNi(t, x)− χµ1(t)µ2(t)∂xNi(t, x) = 0 ,

Ni(t, 0) = µi(t) , limx→∞Ni(t, x) = 1 ,
d
dtµi(t) = ∂xNi(t, 0)− µi(t) .

(24)

We now define supersolution and subsolution to (24).

Definition 4.1 A supersolution (resp. subsolution) to (24) is a couple of nondecreasing functions
(N̄1, N̄2) (resp. (N1, N2)) satisfying

∂tN̄i(t, x)− ∂xxN̄i(t, x)− χµ̄1(t)µ̄2(t)∂xN̄i(t, x) ≥ 0 ,

N̄i(t, 0) = µ̄i(t) , limx→∞Ni(t, x) = 1 ,
d
dt µ̄i(t) ≥ ∂xN̄i(t, 0)− µ̄i(t) ,

(25)

with similar definition for a subsolution by changing ≥ into ≤.

We now state the concentration comparison principle.
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Lemma 4.2 (Comparison principle) Let (N̄1, N̄2) and (N1, N2) be respectively smooth super and
subsolution to (24) defined on [0, T ]× R+. Assume that for i = 1 , 2

N̄i(0, x) ≥ Ni(0, x) , ∀x ≥ 0 , and µ̄i(0) > µi(0) .

Then, for all t ∈ (0, T ), for all x ≥ 0, one has

N̄1(t, x) ≥ N1(t, x) and N̄2(t, x) ≥ N2(t, x) .

Proof For i = 1 , 2, denoting Fi = N̄i −N i, one has
∂tFi − ∂xxFi − χµ̄1(t)µ̄2(t)∂xFi ≥ χ

(
µ̄1(t)µ̄2(t)− µ

1
(t)µ

2
(t)
)
∂xN i ,

Fi(t, 0) = µ̄i(t)− µi(t) , limx→∞ Fi(t, x) = 0 ,
d
dt

(
µ̄i(t)− µi(t)

)
≥ ∂xFi(t, 0)− (µ̄i(t)− µi(t)) ,

Fi(0, x) = N̄i(0, x)−Ni(0, x) ≥ 0 .

The bootstrap acts as follows. Since we are dealing with nondecreasing functions Ni, the quantity
χ
(
µ̄1(t)µ̄2(t)− µ

1
(t)µ

2
(t)
)
∂xN i is nonnegative as long as

µ̄1(t)µ̄2(t)− µ
1
(t)µ

2
(t) ≥ 0 ,

holds true. This is in particular the case if

µ̄1(t) ≥ µ
1
(t) and µ̄2(t)) ≥ µ

2
(t) . (26)

Recalling the assumption µ̄i(0) > µ
i
(0), we denote by T > 0 the first time for which an equality in

(26) occurs. Let us say that µ̄1(T ) = µ
1
(T ). Let us define the function z(t) by

z(t) := µ̄1(t)− µ
1
(t) .

Then, for all (t, x) ∈ (0, T )× (0,∞), one has
∂tF1(t, x)− ∂xxF1(t, x)− χµ̄1(t)µ̄2(t)∂xF1(t, x) ≥ 0 ,

F1(t, 0) = µ̄1(t)− µ
1
(t) = z(t) ≥ 0 , limx→∞ F1(t, x) = 0 ,

d
dtz(t) ≥ ∂xF1(t, 0)− z(t) .

Recalling in addition the assumptions Fi(0, x) ≥ 0 for all x ≥ 0 and that the functions are smooth,
we can assume that there exists a nonnegative compactly (in (0,+∞)) supported function f such that
f(x) ≤ F1(0, x) and f(0) = 0. Next, we consider the solution to the parabolic equation

∂tg(t, x)− ∂xxg(t, x)− χµ̄1(t)µ̄2(t)∂xg(t, x) = 0 x ∈ (0,∞) ,

g(t, 0) = 0 ,

g(0, x) = f(x) .

On the first hand, by standard maximum principle, see [10], one deduces that F1 ≥ g on [0, T ] ×
[0,∞). On the second hand by maxmum principle again one can see that g(t, x) > 0 for all (t, x) ∈
(0, T ] × (0,∞). Hence, applying the Hopf Lemma, [10], it follows that ∂xg(T, 0) > 0. Next, from
the equality F1(T, 0) = g(T, 0) = 0, we deduce that ∂xF1(T, 0) ≥ ∂xg(T, 0) > 0. Consequently one
has d

dtz(T ) > 0 which contradicts z > 0 on [0, T ) and z(T ) = 0.
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4.2 Remarkable sub/supersolutions

For µ ∈ (0, 1) and m ≥ 0, the function Nµ,m is defined by

Nµ,m(x) = µ+ (1− µ)(1− e−mx) . (27)

We first establish

Lemma 4.3 (remarkable static sub/supersolutions) Assume that

µi
1− µi

≥ mi ≥ χµ1µ2 , i = 1 , 2 . (28)

Then, (Nµ1,m1 , Nµ2,m2) is a supersolution to (24). Moreover similar result holds true for a subsolu-
tion by changing ≥ into ≤.

Proof Differentiating (27) one obtains{
−N ′′µi,mi(x)− χµ1µ2N

′
µi,mi(x) = (1− µi)e−mix

(
m2
i − χµ1µ2mi

)
,

N ′µi,mi(0)− µi = (1− µi)mi − µi ,

and the result follows from the definition 4.1.

A practical example of supersolution (resp. a subsolution) is the following. For µ ∈ (0, 1) let us
recall the definition of Nµ:

Nµ(x) = µ+ (1− µ)(1− e−χµ2x) . (29)

Lemma 4.4 The couple (Nµ, Nµ) is a supersolution (resp. a subsolution) to (24) if

χµ2 − χµ+ 1 ≥ 0 (resp. ≤ 0) .

If χ > 4, then there are 2 steady states (n̄−, µ−) and (n̄+, µ+) to (1)–(2)–(3) with µ− < µ+,
whose linear stability is described by the Table 1.

4.3 Comparison to specific symmetric solutions

Firstly, we notice that any solution (ni, µi)i=1,2 to (1)–(2)–(3) with identical initial values on both
cells, i.e. such that n0

1 = n0
2 = n0 and µ1(0) = µ2(0), will have identical values for both cells at all

time, i.e. n1(t, x) = n2(t, x) = n(t, x) and µ1(t) = µ2(t) = µ(t). Moreover, n, µ is the solution to
the following system{

∂tn(t, x)− ∂xxn(t, x)− χµ(t)2∂xn(t, x) = 0 , (t, x) ∈ (0,∞)2 ,

∂xn(t, 0) + χµ(t)2n(t, 0) = d
dtµ(t) = n(t, 0)− µ(t) .

(30)

In the sequel we will say that a solution (ni, µi)i=1,2 with identical values on both cells, i.e.
solution to (30), is a symmetric solution to (1)–(2)–(3).

In the next sections we will derive quantitative properties for solutions to system (30) and we will
use the comparison principle with specific symmetric solutions that we describe hereafter.
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Given initial data (n0
i , µi(0))i=1,2, we define Ni(0, x) = µi +

∫ x
0 n

0
i (y) dy as before, the real

numbers µ(0), µ̄(0) and the functions N(0, x), N̄(0, x) by
µ(0) = mini(µi(0)) , N(0, x) = mini(Ni(0, x)) ,

µ̄(0) = maxi(µi(0)) , N̄(0, x) = maxi(Ni(0, x)) ,

n0(x) = d
dxN(0, x) , n̄0(x) = d

dxN̄(0, x) .

(31)

Let us denote by (n(t, x), µ(t)) and (n̄(t, x), µ̄(t)) the solutions to the symmetric system (30) starting
respectively from the initial data (n(0, x), µ(0)) and (n̄(0, x), µ̄(0)). We first note that the initial
relation between µ,N , µ̄, N̄ and µi, Ni stated in (31) do not remain true for t 6= 0: for t > 0, one
might have N̄(t, x) 6= maxi(Ni(t, x)) for instance. However, the comparison principle 4.2 ensures
that

∀i = 1, 2 , N(t, x) ≤ Ni(t, x) ≤ N̄(t, x) for (t, x) ∈ (0,∞)2 .

In particular, we have µ(t) ≤ µi(t) ≤ µ̄(t).

Remark 1 In the sequel, we will have to estimate decays of Lyapunov type functional F of the fol-
lowing form

F (n, µ) =

∫ ∞
0

f(x, n(x)) dx+ g(µ) .

We first note that {µ1(0), µ2(0)} = {µ(0), µ̄(0)} and {n0
1(x), n0

2(x)} = {n0(x), n̄0(x)} for almost
every x > 0, by defintion, hence

2∑
i=1

∫ ∞
0

f(x, n0
i (x)) dx+ g(µi) =

∫ ∞
0

f(x, n0(x)) dx+ g(µ(0))

+

∫ ∞
0

f(x, n̄0(x)) dx+ g(µ̄(0)) .

In particular if f and g take only nonnegative values, then

F (m0, ν(0) ≤ F (n0
1, µ1(0)) + F (n0

2, µ2(0)) ,

for (m0, ν(0)) ∈ {
(
n0, µ(0)

)
,
(
n̄0, µ̄(0)

)
}. We will apply the previous inequality to establish that

initial data with finite entropy can be compared to symmetric solutions with initially finite entropy.

5 Non-linear stability of (n̄+, µ+). Proof of Proposition 1.2

We break the proof in several steps. We first prove the result for symmetric solutions, Proposition 5.1,
and then we extend it to general solutions by using the comparison principle.

5.1 Symmetric solutions

In this section we will prove the following result.

Proposition 5.1 Let (n, µ) be the solution to (30) with M = 1 and with initial data (n0, µ0) with
finite entropy. Assume that χ > 4, that there exists two real numbers (µ, µ̄) ∈ (0, 1)2 such that{

µ− < µ < µ+ < µ̄ ,

Nµ(x) ≤ N(0, x) ≤ Nµ̄(x) for all x ≥ 0 ,

12



and assume in addition that
µ0 ∈ (µ, µ̄) .

Then, (n, µ) converges towards the steady state (n̄+, µ+) of (30) in the following sense:{
limt→∞ µ(t) = µ+ ,

limt→∞ ‖n(t, ·)− (1− µ+)n+(·)‖L1(R+) = 0 ,

where n+ is defined by (9).

We split the proof of this result into several Lemmas. In a first step, in Lemma 5.2, we prove
entropy dissipation. Then, in Lemma 5.3, we provide lower bounds on the terms involved in entropy
dissipation allowing to prove that the Lyapunov functional tends to zero.

For symmetric solutions close to the linearly stable steady state (n̄+, µ+) solution to (69), in order
to prove entropy dissipation, we define the Lyapunov functional L:

L(t) := (1− µ)H(ñ|n+) =

∫ ∞
0

n(t, x) log
ñ(t, x)

n+(x)
dx ≥ 0 , (32)

where n+ is defined by (9) and

ñ(t, x) =
n(t, x)∫∞

0 n(t, x) dx
=

n(t, x)

1− µ(t)
, (33)

since
∫∞

0 n dx = 1− µ. We additionnaly define the function f by

f(µ) = µ log
µ

µ+
+ (1− µ) log

1− µ
1− µ+

+
χµ3

3
− χµ2

+µ+ 2
χµ3

+

3
, (34)

and the polynomial P by
P (x) = χx2 − χx+ 1 . (35)

We notice that the quantity (µ2 − µ2
+)P (µ) is nonnegative for all µ ∈ [µ−, 1].

Lemma 5.2 Let (n, µ) be the solution to (30). The following inequality holds true

d

dt

(
L(t) + f(µ(t))

)
≤ −D2 − χ(µ2 − µ2

+)µP (µ) ,

where f is defined by (34) and

D2 =

∫ ∞
0

n
(
∂x log n+ χµ2

)2
dx = (1− µ)I

(
ñ|χµ2e−χµ

2x
)
.

Proof of Lemma 5.2 We first notice that f(µ+) = 0, and that

f ′(µ) = log
µ(1− µ+)

µ+(1− µ)
+ χ

(
µ2 − µ2

+

)
.

Recalling that P (µ+) = χµ2
+ − χµ+ + 1 = 0, we see that χµ2

+ = µ+
1−µ+ and thereby

f ′(µ) = log
µ

χµ2
+(1− µ)

+ χ
(
µ2 − µ2

+

)
. (36)
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In particular, the function f is nonincreasing on (0, µ+) and nondecreasing on (µ+, 1), hence it is
nonnegative on (0, 1).

Next, we see that

L(t) =

∫ ∞
0

(n log n− n log n+ − n log(1− µ)) dx

=

∫ ∞
0

(n log n− n log n+) dx− (1− µ) log(1− µ) .

Hence, differentiating L

d

dt
L(t) =

∫ ∞
0

∂tn (1 + log n− log n+) dx+ (1 + log(1− µ(t)))
d

dt
µ(t) ,

and using that
∫∞

0 n dx+ µ = 1, we obtain

d

dt
L(t) =

∫ ∞
0

∂tn log
n

n+
dx+ log(1− µ(t))

d

dt
µ(t) .

Next, recalling the definition (9) of n+(x) = χµ2
+e
−χµ2+x and that (n, µ) is solution to (30), an

integration by parts yields that

d

dt
L(t) =

∫ ∞
0

log
n

n+

(
∂xxn+ χµ2∂xn

)
dx+ log(1− µ)

d

dt
µ

= − log
n(t, 0)

n+(0)

d

dt
µ−

∫ ∞
0

n(∂x log n+ χµ2
+)(∂x log n+ χµ2) dx

+ log(1− µ)
d

dt
µ

= − log
n(t, 0)

(1− µ)n+(0)

d

dt
µ−

∫ ∞
0

n(∂x log n+ χµ2)2 dx︸ ︷︷ ︸
D2

+ χ(µ2 − µ2
+)

∫ ∞
0

(∂xn+ χµ2n) dx

= −D2 − log
n(t, 0)

(1− µ)n+(0)

d

dt
µ+ χ(µ2 − µ2

+)(−n(t, 0) + χµ2(1− µ)) .

Using now that d
dtµ = n(t, 0)− µ, we deduce that

d

dt
L(t) = −D2 +

(
log

µ

n(t, 0)
+ log

(1− µ)n+(0)

µ

)
d

dt
µ

+ χ(µ2 − µ2
+)(− d

dt
µ− µ+ χµ2(1− µ))

= −D2 + (n(t, 0)− µ) log
µ

n(t, 0)︸ ︷︷ ︸
≤0

+χ(µ2 − µ2
+)µ

(
−χµ2 + χµ− 1

)

+

(
χµ2

+ − χµ2 + log
(1− µ)χµ2

+

µ

)
d

dt
µ ,

and this achieves the proof of Lemma 5.2 by using (36) together with the definition of P .
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Under some assumptions on the initial condition it is posible to find lower bounds onD2 +χ(µ2−
µ2

+)µP (µ) allowing to prove that L + f tends to zero. The keystone is to prove that µ stays away
from µ− in order the term (µ2 − µ2

+)P (µ) to stay nonnegative.

Lemma 5.3 Under the same hypothesis as in Proposition 5.1, one has

d

dt

(
L(t) + f(µ(t)

)
≤ −C

(
L(t) + f(µ(t)

)2

.

Proof of Lemma 5.3 We first note that the assumptions made here correspond to the ones made in
Lemma 4.2, hence the comparison principle applies

∀(t, x) ∈ (0,∞)× R+ , Nµ(x) ≤ N(t, x) ≤ Nµ̄(x) , (37)

and
∀t > 0 , µ ≤ µ(t) ≤ µ̄ . (38)

A consequence of the previous inequality (37) is that the first momentum is bounded, as one has
formally ∫ ∞

0
xn dx = [x(N − 1)]∞0 +

∫ ∞
0

(1−N) dx =

∫ ∞
0

(1−N) dx .

Using (37), we see that the previous computation is in fact rigorous sinceN has an exponential profile
at infinity and one obtains ∫ ∞

0
xn dx ≤ (1− µ−)

χµ2
−

. (39)

Next, let us define the function Ñ by

Ñ(t, x) =
N(t, x)− µ(t)

1− µ(t)
(t, x) ∈ (0,∞)× R+ . (40)

From the inequality (37), it follows that

Nµ − µ
1− µ

≤ Ñ ≤ Nµ̄ − µ
1− µ

.

Hence, recalling the definition (29) of Nµ:

µ− µ+ (1− µ)(1− e−χµ2x)

1− µ
≤ Ñ ≤ µ̄− µ+ (1− µ̄)(1− e−χµ̄2x)

1− µ
,

which becomes

1−
(1− µ)e−χµ

2x

1− µ
≤ Ñ ≤ 1− (1− µ̄)e−χµ̄

2x

1− µ
.

Consequently, looking at the pseudo-inverse, we obtain

Ñ−1(u) = inf{x , Ñ(t, x) ≥ u}

≤ inf{x , 1−
(1− µ)e−χµ

2x

1− µ
≥ u} = − 1

χµ2
log

(1− u)(1− µ)

1− µ

≤ − 1

χµ2
log

(1− u)(1− µ̄)

1− µ
.
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Therfore, using the representation result for W given in theorem 3.2 together with the previous
pseudo-inverse estimation, we deduce that there exists a positive constant CW such that

W
(
ñ, χµ2e−χµ

2x
)
≤ CW .

Applying now the HWI inequality, recalled in lemma 3.4, to the exponential measure χµ2e−χµ
2x

leads to

D2 = (1− µ) I
(
ñ|χµ2e−χµ

2x
)
≥ (1− µ)

H
(
ñ|χµ2e−χµ

2x
)

W
(
ñ, χµ2e−χµ2x

)
2

≥ (1− µ)

H
(
ñ|χµ2e−χµ

2x
)

CW

2

,

hence for all ε ≤ 1/C2
W , the following estimate holds true

D2 ≥ (1− µ)εH
(
ñ|χµ2e−χµ

2x
)2

. (41)

Using now the definition of the relative entropy,H(n|p) =
∫∞

0 n log n/p dx, we see that

H
(
ñ|χµ2e−χµ

2x
)

= H (ñ|n+) +

∫ ∞
0

ñ dx log
µ2

+

µ2
+ χ(µ2 − µ2

+)

∫ ∞
0

xñ dx .

Moreover, from the bounds (38) and (39) on µ and on the first momentum, it follows that

H
(
ñ|χµ2e−χµ

2x
)
≥ H(ñ|n+)−K|µ− µ+| ,

hence, for all ε ≤ 1/C2
W , the contribution of the entropy dissipation satisfies the following inequality

D2 ≥ (1− µ)ε
(
H(ñ|n+)2 −K2|µ− µ+|2

)
. (42)

Furthermore, there exists a positive constant C2 (depending on µ, µ̄), such that

∀µ ∈ [µ, µ̄] , χ(µ2 − µ2
+)µP (µ) ≥ C2(µ− µ+)2 . (43)

Consequently, for all ε ∈ (0, 1/C2
W )

D2 + χ(µ2 − µ2
+)µP (µ) ≥ (1− µ)εH(ñ|n+)2 +

(
C2 − (1− µ)εK2

)
(µ− µ+)2 ,

and adjusting the value of ε, we see that there exists a constant C > 0 such that

D2 + χ(µ2 − µ2
+)µP (µ) ≥ C

(
H(ñ|n+)2 + (µ− µ+)2

)
.

Recalling the definition of f and of its derivative (34) and (36), we deduce that there exists a positive
constant C3 such that (µ−µ+)2 ≥ C3f(µ)2. This achives the proof of Lemma 5.3 with a not explicit
constant.
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Corollary 5.4 Under the same hypothesis as in Proposition 5.1, the following estimates hold

∀t > 0 , 0 ≤
∫ ∞

0
n log

ñ

n+
dx+ (µ− µ+)2 ≤ C

1 + t
,

and
∀t > 0 , ‖ñ− n+‖L1(R+) ≤

C√
1 + t

,

where n+ is defined by (9).

Proof The first inequality is a consequence of lemma 5.3. The second one is obtained by the triangle
inequality:

‖n− (1− µ+)n+‖L1(R+) ≤ (1− µ+)‖ñ− n+‖L1(R+) + |µ− µ+| ,

where we hve used the definition (33) of ñ. We apply Csiszar-Kullback inequality

‖ñ− n+‖L1(R+) ≤

√
2L(t)

1− µ
≤ C√

1 + t
,

and we conclude by using the inequality |µ− µ+|2 ≤ C/
√

1 + t.

5.2 Nonsymmetric data: application of the comparison principle.

In this section, in Lemma 5.5, we give some of the convergence and estimate of Proposition 1.2. The
proof relies on symmetric results stated in the previous section. We postpone in the Appendix 9 the
much technical step in which entropy dissipation is computed in order to obtain a convergence in
entropy.

Lemma 5.5 Let (ni, µi)i=1,2 be the solution to (1)–(2)–(3) with (5), with initial data (n0
i , µ

0
i )1≤i≤2

with finite entropy
∫∞

0 n0
i (x + log n0

i ) dx < +∞. Assume that χ > 4 and that there exists two real
numbers (µ, µ̄) ∈ (0, 1)2 such that{

µ− < µ < µ+ < µ̄ ,

Nµ(x) ≤ Ni(0, x) ≤ Nµ̄(x) for all x ≥ 0 and i = 1, 2 ,

and assume in addition that
µ0
i ∈ (µ, µ̄) i = 1, 2 .

Then, for i = 1, 2, the following convergence and estimate hold true:{
∀x ≥ 0 , Ni(t, x)→ N+(x) as t→∞ ,

|µi − µ+| ≤ C√
1+t

,

for some constant C, where N+(x) = µ+ +
∫ x

0 n+(y) dy.

Proof Given initial data, (n0
i , µ

0
i )i=1,2 satisfying the condition of finite entropy and such that µi(0) ∈

(µ, µ̄), we can define the functionsN0
i as before, and the functions and real numbers N̄0, N0, n̄0, n0, µ̄0

and µ0 by (31). Next, we can build solutions (µ̄, n̄) and (µ, n) to the symmetric system (30) with re-
spective initial data (µ̄0, n̄0) and (µ0, n0). Corollary 5.4 then applies and it provides the result.
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6 Self-similar behaviour for small data. Proof of Proposition 1.3

In this section we establish attraction towards self-similar profile for small data for symmetric solution
and the non-symmetric case is postponed in Appendix 10. In the non-symmetric case the density is
expected to decay in a self-similar way. To catch this asymptotic behaviour we rescale the density
with the classical parabolic rescaling:

n(t, x) =
1√

1 + 2t
u

(
1

2
log(1 + 2t),

x√
1 + 2t

)
=

1√
1 + 2t

u (τ, y) ,

which is mass-preserving∫ ∞
0

u(τ, y) dy =

∫ ∞
0

n

(
e2τ − 1

2
, x

)
dx = 1− µ

(
e2τ − 1

2

)
= 1− µ̃(τ) ,

where we have set µ(t) = µ
(
e2τ−1

2

)
= µ̃(τ). Since (n, µ) is solution to (30), (u, µ̃) satisfies the

boundary value problem:{
∂τu(τ, y)− ∂yyu(τ, y)− ∂y(yu(τ, y))− χµ̃2eτ∂yu(τ, y) = 0 , (τ, y) ∈ (0,∞)2 ,

d
dτ µ̃(τ) = ∂yu(τ, 0) + χµ̃2eτu(τ, 0) = eτu(τ, 0)− e2τ µ̃(τ) ,

(44)

the additionnal left-sided drift ∂y(yu(τ, y)) contributes to confine the mass in the new frame (τ, y).
Our goal is now to prove the two following convergences when τ →∞:{

u(τ, ·)→ G(·) strongly in L1(0,∞) ,

µ̃→ 0 .

We will in fact be more quantitative and will establish in particular that µ̃ behaves like O(e−τ ). As
a first step, for several quantities involving µ̃, µ̃eτ we will study time integrated quantities instead of
directly µ̃, µ̃eτ .

We break the proof in several steps. We start with the symmetric case and we prove the following
result.

Lemma 6.1 Let (n, µ) be a solution to (30) with χ > 4 and let µ− < µ+ be the roots of P . As-
sume that there exists µ0 ∈ (0, µ−) such that µ(0) < µ0 and N(0, x) ≤ Nµ0(x), for x ≥ 0, and
that

∫∞
0 x2n(0, x)dx < +∞. Then, the following convergences hold true: limt→∞ µ(t) = 0 and

limt→∞

∥∥∥∥n(t, .)− 1√
1+2t

G
(

.√
1+2t

)∥∥∥∥
L1(R+)

= 0.

Proof of Lemma 6.1 The assumptions made here correspond to the ones made in lemma 4.2, hence
the comparison principle applies: N(t, x) ≤ Nµ0(x) for all t > 0 and for all x ≥ 0. In particular, we
have µ(t) ≤ µ0 < µ− hence P (µ(t)) > 0 for all times, by definition of µ−.

As a first step we establish that
∫ τ

0 µ̃(τ ′)eτ
′
dτ ′ = O(τ). We start with a useful result.

Lemma 6.2 Let 0 ≤ f ∈ L1
loc([0,+∞[). Assume that there exists C > 0 such that for all τ > 0,∫ τ

0
f(τ ′) dτ ′ ≤ C(1 + τ) .

Then, the following upper bound holds true:

∀λ > 0,

∫ ∞
0

e−λτ
′
f(τ ′) dτ ′ < +∞ .
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The proof is a consequence of the following computations∫ n

0
e−λτ

′
f(τ ′) dτ ′ ≤

n−1∑
k=0

e−λk
∫ k+1

k
f(τ ′) dτ ′ ≤ C

n−1∑
k=0

e−λk(1 + k)

≤ C
∞∑
k=0

e−λk(1 + k) < +∞ .

Lemma 6.3 There exist two constants M1 and M2 depending only on∫∞
0 y2u(0, y) dy such that

∀τ > 0 ,

∫ ∞
0

yu(τ, y) dy ≤M1 and
∫ ∞

0
y2u(τ, y) dy ≤M2 .

Moreover, one has ∫ τ

0
(µ̃(τ ′) + µ̃2(τ ′))eτ

′
dτ ′ ≤ C(1 + τ) ,

and
∀α > 0 ,

∫ ∞
0

µ̃(τ)e(1−α)τ dτ < +∞ , (45)

and
∀τ > 0 ,

∫ τ

0
µ̃(τ ′)2eτ

′
∫ ∞

0
yu(τ ′, y) dy dτ ′ ≤ C(1 + τ) , (46)

for some C > 0.

Proof of Lemma 6.3 We first see that

d

dτ

∫ ∞
0

y2u(τ, y) dy = 2(1− µ̃(τ))− 2χµ̃(τ)2eτ
∫ ∞

0
yu(τ, y) dy − 2

∫ ∞
0

y2u(τ, y) dy , (47)

from which it follows that∫ ∞
0

y2u(τ, y) dy ≤ 1 + e−2τ

(∫ ∞
0

y2u(0, y) dy − 1

)
,

hence we can choose M2 = max
(
1,
∫∞

0 y2u(0, y) dy
)
. Using the Cauchy-Schwarz inequality, we

deduce that ∫ ∞
0

yu(τ, y) dy ≤
√

1− µ̃(τ)
√
M2 ≤

√
M2 =: M1 .

Consequently
∫∞

0 (e−τ + y)u(τ, y) dy is uniformly bounded and

d

dτ

∫ ∞
0

(e−τ + y)u(τ, y) dy = µ̃(τ)eτP (µ̃)−
∫ ∞

0
(e−τ + y)u(τ, y) dy ,

therefore ∫ ∞
0

(e−τ + y)u(τ, y) dy +

∫ τ

0

∫ ∞
0

(e−τ
′
+ y)u(τ ′, y) dy dτ ′

=

∫ ∞
0

(1 + y)u(0, y) dy +

∫ τ

0
µ̃(τ ′)eτ

′
P (µ̃(τ ′) dτ ′.
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Since
∫∞

0 (e−τ + y)u(τ, y) dy is uniformly bounded and recalling that P (µ̃) ≥ P (µ0) > 0, we have

P (µ0)

∫ τ

0
µ̃(τ ′)eτ

′
dτ ′ ≤

∫ τ

0
µ̃(τ ′)eτ

′
P (µ̃(τ ′)) dτ ′ ≤ C(1 + τ) ,

hence the first bound (45) by lemma 6.2.
Estimate (46) then follows from the uniform bounds µ̃(τ) ≤ µ0 and

∫∞
0 yu(τ, y) dτ ≤M1.

Let us now prove entropy dissipation. To do so, we compare the solution u to the normalized
gaussian G on the half line. We consider the following Lyapunov functional L:

L(τ) = (1− µ̃(τ))

∫ ∞
0

G(y)H

(
u(τ, y)

(1− µ̃(τ))G(y)

)
dy︸ ︷︷ ︸

L1

+H(1− µ̃(τ))︸ ︷︷ ︸
L2

+G(0)e−τH

(
µ̃(τ)

G(0)e−τ

)
︸ ︷︷ ︸

L3

, (48)

where H(x) = x log x − x + 1 and where we have separated the various contributions L1, L2 and
L3 that we will study separatly. Since H is non-negative, L is also non-negative. Moreover, L can be
rewritten as

L(τ) =

∫ ∞
0

(
u(τ, y) log

(
u(τ, y)

G(y)

)
− u(τ, y)

)
dy (49)

+1 + µ̃(τ) log
µ̃(τ)

G(0)e−τ
− µ̃(τ) +G(0)e−τ .

Recalling the expression of the Fisher information:

I(u|G) =

∫ ∞
0

u(τ, y) (∂y log u(τ, y) + y)2 dy ≥ 0 , (50)

I(u|Gµ) =

∫ ∞
0

u(τ, y)
(
∂y log u(τ, y) + y + χµ̃(τ, y)2eτ

)2
dy ≥ 0 , (51)

we can derive upper bounds on d
dτL(τ) in two different ways.

Lemma 6.4 The following upper bounds on d
dτL(τ) hold true:

d

dτ
L(τ) ≤ −I(u|G) + µ̃(τ)−G(0)e−τ + χµ̃(τ)3e2τ

+
d

dτ

χµ̃(τ)3

3
− χµ̃(τ)2eτ

∫ ∞
0

yu(τ, y) dy , (52)

and

d

dτ
L(τ) ≤ −I(u|Gµ) + µ̃(τ)−G(0)e−τ − d

dτ

χµ̃(τ)3

3

+ χµ̃(τ)2eτ
∫ ∞

0
yu(τ, y) dy − χµ̃(τ)3e2τP (µ̃(τ)) , (53)

where P is defined by (35).
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Proof of lemma 6.4 Differentiating (49), we obtain

d

dτ
L(τ) =

∫ ∞
0

log
u(τ, y)

G(y)
∂τu(τ, y) dy + log

µ̃(τ)

G(0)e−τ
d

dτ
µ̃(τ) + µ̃(τ)−G(0)e−τ

= − log
u(τ, 0)

G(0)

d

dτ
µ̃(τ) + log

µ̃(τ)

G(0)e−τ
d

dτ
µ̃(τ) + µ̃(τ)−G(0)e−τ

−
∫ ∞

0
u(τ, y) (∂y log u(τ, y) + y)

(
∂y log u(τ, y) + y + χµ̃(τ)2eτ

)
dy

= − log
u(τ, 0)

µ̃(τ)eτ
d

dτ
µ̃(τ) + µ̃(τ)−G(0)e−τ (54)

−
∫ ∞

0
u(τ, y) (∂y log u(τ, y) + y)

(
∂y log u(τ, y) + y + χµ̃(τ)2eτ

)
dy .

On the first hand, recalling (44), it follows that − d
dτ µ̃(τ) log u(τ,0)

µ̃(τ)eτ ≤ 0, hence, using the defini-
tion (50) of I(u|G), it yields

d

dτ
L(τ) ≤ −I(u|G) + µ̃(τ)−G(0)e−τ

− χµ̃(τ)2eτ
∫ ∞

0
u(τ, y) (∂y log u(τ, y) + y) dy

≤ −I(u|G) + µ̃(τ)−G(0)e−τ + χµ̃(τ)2eτu(τ, 0)

− χµ̃(τ)2eτ
∫ ∞

0
yu(τ, y) dy

≤ −I(u|G) + µ̃(τ)−G(0)e−τ + χµ̃(τ)3e2τ +
d

dτ

χµ̃(τ)3

3

− χµ̃2eτ
∫ ∞

0
yu(τ, y) dy ,

which is exactly (52).
On the other hand, starting again from (54) and using the definition (51) of I(u|Gµ), we have as

well

d

dτ
L(τ) ≤ −I(u|Gµ) + µ̃(τ)−G(0)e−τ

+ χµ̃(τ)2eτ
∫ ∞

0
u(τ, y)

(
∂y log u(τ, y) + y + χµ̃(τ)2eτ

)
dy

≤ −I(u|Gµ) + µ̃(τ)−G(0)e−τ − χµ̃(τ)2eτu(τ, 0)

+ χµ̃(τ)2eτ
∫ ∞

0
yu(τ, y) dy +

(
χµ̃(τ)2eτ

)2
(1− µ̃(τ))

≤ −I(u|Gµ) + µ̃(τ)−G(0)e−τ − χµ̃(τ)3e2τ − d

dτ

χµ̃(τ)3

3

+ χµ̃(τ)2eτ
∫ ∞

0
yu(τ, y) dy +

(
χµ̃(τ)2eτ

)2
(1− µ̃(τ))

≤ −I(u|Gµ) + µ̃(τ)−G(0)e−τ − d

dτ

χµ̃(τ)3

3

+ χµ̃(τ)2eτ
∫ ∞

0
yu(τ, y) dy − χµ̃(τ)3e2τP (µ̃(τ)) ,
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which is the second estimate (53).

We establish some bounds that will be used later on.

Lemma 6.5 The following quantities are finite:∫ ∞
0

µ̃(τ ′)3e2τ ′ dτ ′ < +∞, (55)∫ ∞
0

µ̃(τ ′)2eτ
′
dτ ′ < +∞ . (56)

Proof of Lemma 6.5 Integrating (53) and using the nonnegativity of L(τ) + χ µ̃(τ)3

3 , we obtain

−
(
L+ χ

µ̃3

3

)
(0) ≤

∫ τ

0

(
µ̃(τ ′)−G(0)e−τ

′
)

dτ ′

+χ

∫ τ

0
µ̃(τ ′)2eτ

′
∫ ∞

0
yu(τ ′, y) dy dτ ′ − χ

∫ τ

0
µ̃(τ ′)3e2τ ′P (µ̃(τ ′)) dτ ′ .

Moreover, recalling the estimate (45) in lemma 6.3, we know that µ̃ − G(0)e−τ is integrable, hence
there exists a constant C > 0 such that

χ

∫ τ

0
µ̃(τ ′)3e2τ ′P (µ̃(τ ′)) dτ ′ ≤ C + χ

∫ τ

0
µ̃(τ ′)2eτ

′
∫ ∞

0
yu(τ ′, y) dy dτ ′ .

Using the lower bound P (µ̃) ≥ P (µ0) and the upper bound
∫∞

0 yu ≤M1, this leads to∫ τ

0
µ̃(τ ′)3e2τ ′ dτ ′ ≤ C

(
1 +

∫ τ

0
µ̃(τ ′)2eτ

′
dτ ′
)
.

Moreover, by Cauchy-Schwarz inequality, we have∫ τ

0
µ̃(τ ′)2eτ

′
dτ ′ ≤

(∫ τ

0
µ̃ dτ ′

)1/2(∫ τ

0
µ̃(τ ′)3e2τ ′ dτ ′

)1/2

≤
(∫ ∞

0
µ̃ dτ ′

)1/2(∫ τ

0
µ̃(τ ′)3e2τ ′ dτ ′

)1/2

,

hence ∫ τ

0
µ̃(τ ′)3e2τ ′ dτ ′ ≤ C

(
1 +

√∫ τ

0
µ̃(τ ′)3e2τ ′ dτ ′

)
,

which implies

∀τ > 0 ,

∫ τ

0
µ̃(τ ′)3e2τ ′ dτ ′ ≤ C ,

and consequently ∫ τ

0
µ̃(τ ′)2eτ

′
dτ ′ ≤

(∫ ∞
0

µ̃(τ) dτ

)1/2√
C ,

which achieves the proof of Lemma 6.5.

We can now state the first major intermediate result.
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Lemma 6.6 The functional L is bounded and tends to 0 as τ goes to∞.

Proof of Lemma 6.6 We break the proof in two steps. First, we prove that L has a limit and then that
this limit is 0.

Summing (52) and (53), and using lemma 6.5, we obtain that

d

dτ
L(τ) ≤ g(τ) ,

where g is nonnegative and belongs to L1(R+). Since L is nonnegative, the previous inequality
implies that L is bounded by L(0) +

∫∞
0 g(τ) dτ . To summarize, we have proved that

∀τ > 0 , L(τ) ≥ 0 , and
(

d

dτ
L
)

+

∈ L1(R+) .

Using now Lemma 6.7 p171 of [23] we deduce that L belongs to BV (R+) and that it admits a limit
L∞.

Let us now prove that the limit L∞ is 0. To do so let us treat the different contributions L1,L2

and L3 of L, defined by (48), in a suitable way.
On the first hand, we consider the contribution L2 and we see that

∀µ̃ ∈ [0, 1] , 0 ≤ L2(τ) = H(1− µ̃) ≤ µ̃ , (57)

hence L2 ∈ L1(R+).
On the second hand, we see that

L3(τ) = G(0)e−τH

(
µ̃(τ)

G(0)e−τ

)
= µ̃(τ) log µ̃(τ)− µ̃(τ) logG(0) + τ µ̃(τ)− µ̃(τ)

+G(0)e−τ

≤ −µ̃(τ) logG(0) + τ µ̃(τ) +G(0)e−τ . (58)

Since the right hand side of the previous inequality belongs to L1(R+), so does L3.
Let us now consider the term L1. Recalling the definition (50) of I(u|G), the Fisher information

I and the logarithmic Sobolev inequality (since G is the standard Gaussian function), we obtain

I(u|G) = (1− µ̃)I
(

u

1− µ̃

∣∣∣∣G)
≥ 2(1− µ̃)H

(
u

1− µ̃

∣∣∣∣G) = 2L1(τ) .

Using inequality (52), the nonnegativity of L and the integrability of the other contributions involved
in (52), we deduce that ∫ ∞

0
I(u|G) dτ < +∞ .

Consequently, L, written as (48), is the sum of three nonnegative integrable functions. Since L
has a limit when τ tends to∞, we have

lim
τ→∞

L(τ) = 0 and ∀i ∈ {1, 2, 3} , lim
τ→∞

Li(τ) = 0 .

This ends the proof of lemma 6.6. In particular, it implies that limτ→∞ µ̃(τ) = 0.
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Let us now prove that convergence of L towards zero is exponential. The crucial step is to prove
that L(τ)eατ is bounded.

Lemma 6.7 For all α < 1, L(τ)eατ is uniformly bounded.

Proof of Lemma 6.7 In order to cancel out the terms µ̃(τ)3e2τ in d
dτL(τ), we make a convex com-

bination with cofficients P (µ̃)/(1 + P (µ̃)) and 1/(1 + P (µ̃)) of the two inequalities (52) and (53)
stated in Lemma 6.4 and we obtain

d

dτ
L(τ) ≤ − P (µ̃)

1 + P (µ̃)
I(u|G)− 1

1 + P (µ̃)
I(u|Gµ) + µ̃(τ)−G(0)e−τ

+
P (µ̃)− 1

P (µ̃) + 1

d

dτ

χµ̃(τ)3

3
+

1− P (µ̃)

P (µ̃) + 1
χµ̃(τ)2eτ

∫ ∞
0

yu(τ, y) dy .

Let g be a function such that its derivative satisfies

g′(µ̃) =
χµ̃2(1− P (µ̃))

1 + P (µ̃)
. (59)

Since µ̃ ∈ (0, µ−), it follows that P (µ̃) ∈ (0, 1), hence

g′(µ̃) ≥ 0 .

Moreover g(0) = 0 so that g is a nonnegative increasing function on the domain of interest.
Recalling the definition of P together with the upper bound of the first momentum we first deduce

that
1− P (µ̃)

P (µ̃) + 1
χµ̃(τ)2eτ

∫ ∞
0

yu(τ, y) dy ≤ χ2µ̃3eτM1 ,

hence, using the logarithmic Sobolev inequality we have

d

dτ
(L(τ) + g(µ̃(τ))) ≤ − 2P (µ̃)

1 + P (µ̃)
L1(τ) + µ̃(τ)−G(0)e−τ + χ2µ̃3eτM1 .

Consequently, from the definition of Li, we deduce that

d

dτ
(eατL(τ) + eατg(µ̃(τ))) ≤

(
α− 2P (µ̃)

1 + P (µ̃)

)
eατL1(τ) (60)

+µ̃(τ)eατ −G(0)e(α−1)τ + χ2µ̃3e1+ατM1

+αeατ (g(µ̃(τ)) + L2(τ) + L3(τ)) .

Since we have already established that limτ→∞ µ̃(τ) = 0, it follows that

∀α < 1 , lim
τ→+∞

(
α− 2P (µ̃(τ))

1 + P (µ̃(τ))

)
< 0 .

Therefore the first contribution in the right-hand side of inequality (60) is controlled. It remains to
prove that the other contributions of (60) belong to L1. For the second line of the right hand side it
is an immediate consequence of (45) and (55) together with the fact that α < 1. For the third line,
recalling the definition (59) of g′ together with g(0) = 0, we deduce that g(µ̃) = O(µ̃4) and therefore
using (55) we have

∀α < 2 ,

∫ ∞
0

eατg(µ̃(τ)) dτ < +∞ .
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Finally the two following inequalities

L2(τ)eατ ≤ µ̃(τ)eατ ,

L2(τ)eατ ≤ −µ̃(τ)eατ logG(0) + τ µ̃(τ)eατ +G(0)e−(1−α)τ ,

ensure that for α < 1 ∫ ∞
0

eατ (L2(τ) + L3(τ)) dτ < +∞ .

Summing up alltogether, for τ ≥ τα, where τα is such that α− 2P (µ̃)
1+P (µ̃) < 0, we obtain that there exists

h ∈ L1 such that
d

dτ
(eατL(τ) + eατg(µ̃(τ))) ≤ h .

Therefore, eατL(τ) + eατg(µ̃(τ)) is bounded and since g(µ̃) ≥ 0, so is eατL(τ), this achieves the
proof of Lemma 6.7.

7 A tangential model for two cells mating

In this section we first study the tangential model (21) and then we enrich it to study cell-cell commu-
nication.

In this part for simplicity we will denote
∫
µdx for

∫
Γ µ(t, x) dx. We recall that M =

∫
µdx is

a preserved quantity.

7.1 Global existence for small data for model (21)

In this paragraph we study global existence for small data for model (21) when S is a bounded function
in time and space. It is worth noticing that this model does not present any generic nor immediate
blow up. We perform log type estimate with subcritical mass. For simplicity we assume here that
χ = 1.

Lemma 7.1 Assume that
∫
µ0| logµ0|dx+

∫
x2µ0 dx < +∞,C2M‖S‖∞ < 1 and that S is globally

uniformly Lipschitz, then there exists a global solution to (21).

Proof We differentiate
∫
µ logµdx and prove that it decreases. Recalling that H is an isometry on

L2, see [27], we have

d

dt

∫
µ logµdx = −

∫
|∂xµ|2

µ
dx−

∫
H(Sµ)∂xµdx

≤ −
∫
|∂xµ|2

µ
dx+ ‖√µ‖∞

∥∥∥∥∂xµ√µ
∥∥∥∥

2

‖H(Sµ)‖2

≤ −
∫
|∂xµ|2

µ
dx+ ‖µ‖1/2∞

∥∥∥∥∂xµ√µ
∥∥∥∥

2

‖Sµ‖2

≤ −
∫
|∂xµ|2

µ
dx+ ‖µ‖1/2∞

∥∥∥∥∂xµ√µ
∥∥∥∥

2

‖S‖∞‖µ‖1/21 ‖µ‖
1/2
∞ .
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Using next that ‖µ‖∞ ≤ ‖∂xµ‖1 and that ‖µ‖1 = M , we obtain

d

dt

∫
µ logµdx ≤ −

∫
|∂xµ|2

µ
dx+ C2

∥∥∥∥∂xµ√µ
∥∥∥∥

2

‖S‖∞M1/2‖∂xµ‖1

≤ −
∫
|∂xµ|2

µ
dx+ C2

∥∥∥∥∂xµ√µ
∥∥∥∥2

2

‖S‖∞M

= (C2‖S‖∞M − 1)

∫
|∂xµ|2

µ
dx . (61)

In order to obtain equiintegrability, we need a bound on the second moment. Since all the computa-
tions can be performed by imposing firstly that |x− x′| ≥ ε and |y − y′| ≥ ε and then by letting ε go
to 0, for simplicity we will omit to write the principal value in the definition of the Hilbert transform,
(12). Hence, we obtain

1

2

d

dt

∫
x2µ dx = M −

∫
xµH(Sµ) dx

= M − 1

2π

∫∫
xS(y)− yS(x)

x− y
µ(t, x)µ(t, y) dx dy

= M − 1

2π

∫∫ (
S(y) + y

S(y)− S(x)

x− y

)
µ(t, x)µ(t, y) dx dy

≤M +
M2‖S‖∞

2π
− 1

2π

∫∫
y
S(y)− S(x)

x− y
µ(t, x)µ(t, y) dx dy

≤M +
M2‖S‖∞

2π
+
‖S′‖∞M3/2

2π

√∫
x2µ dx , (62)

which provides an upper bound on
∫
x2µ. Combining the two estimates (61) and (62), we obtain

equiintegrability of the solution.

7.2 Blow up of the joint second moment. Proof of Proposition 1.4

Here we give general condition under which blow up can be established for the system (11)–(13). Let
us define I by

I(t) :=
1

2

∫∫
(x− y)

(
H(S2µ1)(t, x)−H(S1µ2)(t, y)

)
µ1(t, x)µ2(t, y)

M2
dx dy . (63)

Recalling the definition (16) of E , we see that

d

dt
E(t) =

∫∫
(x− y)2

4M2
(µ1(t, x)∂tµ2(t, y) + ∂tµ1(t, x)µ2(t, y)) dx dy ,

hence
d

dt
E(t) = 1− I(t) .

Before stating a useful Lemma, let us give some notation. For simplicity, we omit the principal
value in the definition (12) of the Hilbert transform H but all the computations can be performed by
imposing firstly that |x− x′| ≥ ε and |y− y′| ≥ ε and then by letting ε go to 0. We also omit to write
the t variable. Moreover for brevity we will sometimes denote∫∫∫∫

x,y,x′y′
f(x, y, x′, y′) dy′ dx′ dy dx =

∫∫∫∫
f .
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Lemma 7.2 Assume that S1 = S2 = 1. As long as the solution (µ1, µ2) to (11)–(13) is smooth
enough to perform the computations, the following equality holds true:

I(t) =
M

2π
.

Proof of Lemma 7.2 With the previous notations, a first computation yields that

I =
1

2π

∫∫
(x− y)

(∫
x′

µ1(x′)

x− x′
dx′ −

∫
y′

µ2(y′)

y − y′
dy′
)
µ1(x)µ2(y)

M2
dx dy

=
1

2πM3

∫∫∫∫
(x− y)

(
1

x− x′
− 1

y − y′

)
µ1µ

′
1µ2µ

′
2

=
1

4πM3

∫∫∫∫
(x− y − x′ + y′)

(
1

x− x′
− 1

y − y′

)
µ1µ

′
1µ2µ

′
2

=
M4

2πM3
− 1

4πM3

∫∫∫∫ (
y − y′

x− x′
+
x− x′

y − y′

)
µ1µ

′
1µ2µ

′
2 ,

where we have used that
∫∫∫∫

µ1µ
′
1µ2µ

′
2 = M4. Using next the symmetry of y, y′ and x, x′, it

follows that ∫∫∫∫
y − y′

x− x′
µ1µ

′
1µ2µ

′
2 =

∫∫∫∫
x− x′

y − y′
µ1µ

′
1µ2µ

′
2 = 0 .

The result then follows.

Using the previous Lemma 7.2, for any constant S̄, to be chosen later, for any solution (µ1, µ2) to
(11) and (14) we have

d

dt
E(t) = 1− MS̄

2π
(64)

− 1

2

∫∫
(x− y)

(
H((S2 − S̄)µ1)(x)−H((S1 − S̄)µ2)(y)

)
µ1(x)µ2(y)

M2
dx dy︸ ︷︷ ︸

=:R

.

Let us choose S̄ = MFh(0), where we recall that Fh(x) = fh(x2) are defined by (16) and fh(·) is a
convex function. Then, we have

Si(x)− S̄ =

∫
R

(Fh(x− x′)− Fh(0))µi(x
′) dx′ .

Recalling the expression of H((S2 − S̄)µ1) together with the fact that the function Fh is even and
omitting the principal value, we deduce that

H((S2 − S̄)µ1)(x) =
1

π

∫
R

S2(x′)− S̄
x− x′

µ1(x′) dx′

=
1

π

∫∫
R2

Fh(x′ − y′)− Fh(0)

x− x′
µ1(x′)µ2(y′) dy′ dx′ .

Consequently R, defined by (64), can be rewritten as

R =
1

2πM2

∫∫∫∫
(x− y)

(
Fh(x′ − y′)
x− x′

− Fh(y′ − x′)
y − y′

)
µ1µ

′
1µ2µ

′
2 . (65)
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Using the symmetry of the variables, we obtain∫∫∫∫
(x− y)

Fh(x′ − y′)
x− x′

µ1µ
′
1µ2µ

′
2

=
1

2

∫∫∫∫
(x− y)Fh(x′ − y′)− (x′ − y)Fh(x− y′)

x− x′
µ1µ

′
1µ2µ

′
2

=
1

2

∫∫∫∫ (
(x− y)

Fh(x′ − y′)− Fh(x− y′)
x− x′

+ Fh(x− y′)
)
µ1µ

′
1µ2µ

′
2 ,

and similarly,

−
∫∫∫∫

(x− y)
Fh(x′ − y′)
y − x′

µ1µ
′
1µ2µ

′
2

=
1

2

∫∫∫∫ (
(x− y)

Fh(x′ − y)− Fh(x′ − y′)
y − y′

+ Fh(x′ − y′)
)
µ1µ

′
1µ2µ

′
2 .

Hence, R defined by (64), writes as

R =
1

2πM2

∫∫∫∫
Fh(x− y)µ1µ

′
1µ2µ

′
2 (66)

+
1

4πM2

∫∫∫∫
(x− y)

(
Fh(x′ − y)− Fh(x′ − y′)

y − y′
+
Fh(x′ − y′)− Fh(x− y′)

x− x′

)
µ1µ

′
1µ2µ

′
2 .

It remains to prove that R = O(
√
E). Recalling that the potential Fh is smooth, we have in particular∥∥∥∥ d

dx
Fh

∥∥∥∥
∞

= K(h) < +∞ .

Using the mean value theorem, this allows controlling the second term in the expression (66) of R:

1

4π

∣∣∣∣∫∫∫∫ (x− y)

(
Fh(x′ − y)− Fh(x′ − y′)

y − y′
+
Fh(x′ − y′)− Fh(x− y′)

x− x′

)
µ1µ

′
1µ2µ

′
2

∣∣∣∣
≤ K(h)

2π

∫∫∫∫
|x− y|µ1µ

′
1µ2µ

′
2 .

Moreover using the Cauchy-Schwarz inequality, it follows that∫∫∫∫
|x− y|µ1µ

′
1µ2µ

′
2 = M2

∫∫
|x− y|µ1µ2 ≤ 2M4

√
E .

Let us now consider the first term in (66). Recalling that Fh(x) = fh(x2) with fh convex and
using Jensen’s inequality, we obtain

1

2π

∫∫∫∫
Fh(x′ − y′)µ1µ

′
1µ2µ

′
2 =

M4

2π

∫∫
fh((x− y)2)

µ1µ2

M2

≥ M4

2π
fh

(∫∫
(x− y)2µ1µ2

M2

)
=
M4

2π
fh(E) .

Finally, this leads to

−M
4K(h)

π

√
E ≤ −R ≤ M4K(h)

π

√
E − M4

2π
fh(E)

This gives the blow up result for instance under the (not very explicit) condition: M2Fh(0) < 2π and
E(t = 0) satisfies M4K(h)

π

√
E − M4

2π fh(E) ≤ M2Fh(0)
2π −1. This achieves the proof of Proposition 1.4.
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of the dynamics of molecular markers involved in cell polarisation. In Integral methods in
science and engineering, progress in numerical and analytical studies, pages 75–89. Birkhauser
Boston, 2013.
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Appendix

8 Computation of the normalisation constant

In order to compute the normalisation constant C in the expression of the function F of equation (14)
and to prove that C = −4π, let us introduce the auxiliary function H defined by

H(x, y) =

∫ ∞
0

∫
R

e−t−
y2+(x−x′)2

4t

t
µj(x

′) dx′ dt ,
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then,
∂

∂y
H|y=0 = lim

y→0
−
∫ ∞

0

∫
R

y

2t2
e−t−

y2+(x−x′)2
4t µj(x

′) dx′ dt .

In order to fix the multiplicative constant C let us compute the value of the following expression:

I(y) = −
∫ ∞

0

∫
R

y

2t2
e−t−

y2+(x−x′)2
4t dx′ dt ,

which rewrites as

I(y) = −
∫ ∞

0

y

2t3/2
e−t−

y2

4t

∫
R

e−
(x−x′)2

4t

√
t

dx′ dt

= −2
√
π

∫ ∞
0

e−
y2

u2
−u

2

4 du

→
y→0

−4π .

where we have performed the change of variable u = y/
√
t for y > 0. Consequently one obtains that

∂

∂y
H|y=0 + 4πµj(x) = lim

y→0
−
∫ ∞

0

∫
R

y

2t2
e−t−

y2+(x−x′)2
4t (µj(x

′)− µj(x)) dx′ dt

= lim
y→0
−
∫ ∞

0

∫
R

y

2t3/2
e−t−

y2+z2

4t (µj(x+ z)− µj(x))
dz√
t

dt

= lim
y→0
−
∫ ∞

0

∫
R

y

2t3/2
e−t−

y2

4t
−z2(µj(x+

√
tz)− µj(x)) dz dt

= lim
y→0
−
∫ ∞

0

∫
R
e
−u

2

y2
−u

2

4
−z2

(
µj

(
x+

yz

u

)
− µj(x)

)
dz du

= 0 .

9 From symmetric solution to nonsymmetric solutions

In this section we briefly describe the steps to prove quantitative convergence for nonsymmetric initial
data as stated in Proposition 1.2.

We first introduce the Lyapunov functional

L(t) =
∑
i=1,2

(1− µi)H(ñi|n+) .

For i = 1, 2, we denote by D2
i = (1 − µi)I(ñi|χµ1µ2e

−χµ1µ2x) the dissipations and, performing
similar computations as in the symmetric case, we obtain that

d

dt
L(t) = −

∑
i=1,2

(
D2
i + log

µi
n(t, 0)

d

dt
µi︸ ︷︷ ︸

≤0

+ log
(1− µi)n+(0)

µi

d

dt
µi

+ χ(µ1µ2 − µ2
+)(−ni(t, 0) + χµ1µ2(1− µi))

)
. (67)
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Let the function flog be defined by

flog(µ+) = 0 , f ′log(µ) = log
µ

(1− µ)n+(0)
= log

µ(1− µ+)

(1− µ)µ+
.

Since f ′log(µ+) = 0 and the second derivative satisfies f ′′log(µ) > 0 for µ ∈ (0, 1), locally in the
neighborhood of µ+, the function flog behaves as (µ− µ+)2. Next, we see that

χ(µ1µ2 − µ2
+)(n1(t, 0) + n2(t, 0)) = 2

d

dt
f

(
µ1 + µ2

2

)
+ χ

((
µ1 + µ2

2

)2

− µ2
+

)
(µ1 + µ2)− χ

(
µ2

1 + µ2
2

)
4

(n1(t, 0) + n2(t, 0)) ,

where the function f is defined by

f(µ) = χ

(
µ3

3
− µ2

+µ+ 2
µ3

+

3

)
= χ

(
(µ− µ+)2(µ+ 2µ+)

3

)
.

Let us define the functional L̃ by

L̃(t) = L(t) + flog(µ1) + flog(µ2) + 2f

(
µ1 + µ2

2

)
.

From the comparison principle and the HWI inequality, it follows that D2
1 +D2

2 ≥ cL2(t), hence (67)
reads

d

dt
L̃(t) ≤− cL(t)2 + g(µ1, µ2) + χ

(µ2
1 + µ2

2)

4
(n1(t, 0) + n2(t, 0)) ,

where g is defined by

g(µ1, µ2) = χ2µ1µ2(µ1µ2 − µ2
+)(2− µ1 − µ2)− χ

((
µ1 + µ2

2

)2

− µ2
+

)
(µ1 + µ2) .

Since
g(µ+, µ+) = 0 , ∇g|(µ+,µ+) = 0 ,

and the matrix ∇2g|(µ+,µ+) is symmetric definite negative, then, locally in the neighborhood of
(µ+, µ+), there exists a positive constant still denoted by c such that

g(µ1, µ2) ≤ −c
(
(µ1 − µ+)2 + (µ2 − µ+)2

)
.

Therefore, for t ≥ t0 large enough, so that the µi are close enough to µ+, up to a change of the
value of the constant c > 0, we have

d

dt
L̃(t) ≤ −cL̃(t)2 + χ

(µ2
1 + µ2

2)

4
(n1(t, 0) + n2(t, 0)) .

Note that in the symmetric case, we were able to conclude here. In the non-symmetric case, by using
the comparison principle, we deduce that

d

dt
L̃(t) ≤ −cL̃(t)2 +

C

1 + t
(n1(t, 0) + n2(t, 0)) , (68)
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from which it follows that L̃ is bounded. Indeed, let us denote F (t) = (1 + t)L̃(t), then the previous
inequality reads

F ′(t) ≤ L̃(t)− c(1 + t)L̃(t)2︸ ︷︷ ︸
≤1/(4c)

+C(n1(t, 0) + n2(t, 0)) ,

which becomes after integration and recalling that d
dtµi = ni(t, 0)− µi:

F (t) ≤ F (0) +
t

4c
+ C(µ1 + µ2) + C

∫ t

0
(µ1 + µ2) ≤ F (0) + 2C + t

(
1

4c
+ 2C

)
,

hence dividing back by 1 + t

L̃(t) ≤ L̃(0) + 2C +

(
1

4c
+ 2C

)
= L∞ .

Furthermore, for t ≥ t′ ≥ t0, after an integration by parts we have∫ t

t′

ni(s, 0)

1 + s
ds =

[
µi

1 + s

]t
t′

+

∫ t

t′

µi
(1 + s)2

ds+

∫ t

t′

µi
1 + s

ds

≤ 1

1 + t
+

1

1 + t′
+ log

1 + t

1 + t′

≤ 2

1 + t′
+ log

1 + t

1 + t′
,

hence integrating (68) for t ≥ t′ ≥ t0, it follows that

L̃(t)− L̃(t′) + c

∫ t

t′
L̃(s)2 ds ≤ C

1 + t′
+ C log

1 + t

1 + t′
.

We already know that L̃(t) ≥ 0 for all t ≥ t0. Let us now prove that lim supt→∞ L̃(t) = 0. Firstly,
for all h > 0 such that t ≥ t0(1 + h), we have

L̃(t)− L̃
(

t

1 + h

)
≤ C(1 + h)

1 + t
+ C log(1 + h) ≤ C

(
(1 + h)

1 + t
+ h

)
.

hence,

L̃

(
t

1 + h

)
≥ L̃(t)− C(1 + h)

1 + t
− Ch .

Assume that lim supt→∞ L̃(t) > 0, then there exists ε > 0 and a sequence tn → +∞ such that
L̃(tn) ≥ ε > 0. In such a case applying the previous inequality with t = tn with n large enough and
with 0 ≤ h ≤ ε

4C , it yields that

∀t ∈ [
tn

1 + ε
4C

, tn] , L̃(t) ≥ ε/2 ,

hence, denoting by t′n = tn
1+ ε

4C
, we have

c
ε2

4
(tn − t′n) ≤ L̃(tn) + c

∫ tn

t′n

L̃(s)2 ds ≤ ε/2 + L∞ + C log(1 + t′n) .

In particular we see that

tn × c
ε3

4
≤ ε/2 + L∞ + C log(1 + tn),

which contradicts tn → +∞.
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10 Self similar convergence

For the extension of the results of section 6 to nonsymmetric initial data, we first notice that some
results are immediate consequence of the comparison principle. Moreover we see that

∀α < 1 ,

∫ ∞
0

µ̃ie
ατ dτ < +∞ .

We use the same notations than before except that now

L = L1 + L2 ,

the superscript denoting the fact that ui, µ̃i replaces u, µ̃. Similarly, the bounds on the moments remain
valid. Then, we have

∀j = 1, 2 , i = 2, 3 , sup
τ
Ljie

ατ < +∞ .

Therefore, following the lines of the computations (52), by replacing µ̃2 by µ̃1µ̃2, we obtain

d

dτ
L(τ) ≤ −

∑
i=1,2

(
1

2
(I(ui|G) + I(ui|Gµ)) +O(µ̃2

i e
τ + µ̃3

i e
2τ )

)
.

As a consequence, using again the logarithmic Sobolev inequality, it yelds that

d

dτ
(eατL(τ)) ≤ (α− 1)(L1

1 + L2
1) + h ,

where h denotes the rest which belongs to L1. Consequently, we conclude that

sup
τ
eατL(τ) < +∞ , ∀α < 1 .

11 Linear stability. Proof of Proposition 1.1

In this section we prove Proposition 1.1. We first compute the steady states and then we perform a
linear stability analysis.

Lemma 11.1 The steady states (n̄i, µ̄i)i=1,2 of the system (1)–(2)–(3) with (5) satisfy n̄i = n̄ and
µ̄i = µ̄, for i = 1, 2, where (n̄, µ̄) is solution to{

n̄(x) = µ̄ exp
(
−χ µ̄2 x

)
, x ≥ 0 ,

0 = χ µ̄2 − χ µ̄+ 1 .
(69)

Such a steady state exists iff χ ≥ 4. Moreover, in the case where χ > 4, there are two steady states,
(µ−e

−χµ2−x, µ−) and (µ+e
−χµ2+x, µ+) with 0 < µ− < µ+ < 1.

Proof The only part to prove is that any steady state has identical values for the two cells. A straight-
forward computation yields that (n̄i, µ̄i)i=1,2 satisfies, for i = 1 and 2, the following system:{

n̄i(x) = µ̄i exp (−χ µ̄1µ̄2 x) , x ≥ 0 ,

0 = χ µ̄1µ̄2 − χ µ̄i + 1 .

From the second equation in the previous system it follows that µ̄1 = µ̄2, hence it yields to (69) which
admits a real solution µ̄ iff χ ≥ 4.
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Lemma 11.2 Assume that χ > 4, and let µ̄ ∈ {µ−, µ+}. The linearized system associated to (1)–
(2)–(3) with (5) does not admit 0 as an eigenvalue. Moreover, a complex λ 6= 0 satisfying Re(λ) ≥ 0
is an eigenvalue of the linear system if and only if it satisifies

(
χ µ̄2 + β1

) (
λ+ 2

χ2 µ̄4

λ
+ 1

)
+ 2χ µ̄2 − λ = 0 , (70)

where β1 is the unique root of the equation X2 + χµ̄2X − λ = 0 satisfying Re(β1) < −χµ̄2.

Proof of Lemma 11.2 Let us consider zero mass perturbations around the steady state (n̄, µ̄) solution
to (69). For i = 1 or 2, we define

ni(t, x) = n̄(x) + ñi(x) exp (λ t) , x ≥ 0 ,

µi(t) = µ̄+ µ̃i exp (λ t) ,

0 =

∫ +∞

0
ñi(t, x) dx+ µ̃i exp (λ t) ,

(71)

where we assume that λ ∈ C. We linearize (1)–(2)–(3) and we obtain two systems for i = 1, 2:
λ ñi(x) = ñ′′i (x) + χ µ̄2 ñ′i(x)− χ2 µ̄4 exp

(
−χ µ̄2 x

)
(µ̃1 + µ̃2) ,

λ µ̃i = ñi(0)− µ̃i ,
λ µ̃i = ñ′i(0) + χ µ̄2 (ñi(0) + µ̃1 + µ̃2) .

(72)

We first investigate the condition for having Re(λ) ≥ 0 (linear instability). In the case where χ > 4,
the roots of X2 + χ µ̄2X − λ = 0 are

β1 =
−χ µ̄2 −

√
(χ µ̄2)2 + 4λ

2
and β2 =

−χ µ̄2 +

√
(χ µ̄2)2 + 4λ

2
.

Here we have abusively denoted by
√

(χ µ̄2)2 + 4λ the only complex number with positive real part

satisfying z2 =
(
χ µ̄2

)2
+ 4λ. With these notations, we have Re(β1) ≤ −χµ̄2, Re(β2) ≥ 0, the

inequalities being strict as soon as we have λ 6= 0. Hence, the solution to (72) can be written as:

ñi(x) = Ci exp(β1 x) +Di exp(β2 x)− χ2 µ̄4

λ
exp

(
−χ µ̄2 x

)
(µ̃1 + µ̃2) . (73)

The case λ = 0 leads immediately to µ̃1 + µ̃2 = 0 and ñi(x) = µ̃ie
−χµ̄2x so that the constraint on

the mass leads to µ̃i(1 + 1
χµ̄2

) = 0 and therefore µ̃i = 0. Consequently 0 is not an eigenvalue for the
linearized system. From now on, we can assume that

Re(λ) ≥ 0, λ 6= 0, Re(β1) < −χµ̄2 .

Firstly, one can notice that, since we consider integrable perturbations we deduce that Di = 0. The
last two equations of (72) now read as the two systems{

(λ+ 1) µ̃i − Ci = −χ2 µ̄4

λ (µ̃1 + µ̃2) ,

λ µ̃i −
(
χ µ̄2 + β1

)
Ci = χ µ̄2 (µ̃1 + µ̃2) .

(74)
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Since χµ̄2β1 + β2
1 = λ, we notice that

det

(
λ+ 1 −1
λ −(χµ̄2 + β1)

)
= (χµ̄2 + β1)︸ ︷︷ ︸

6=0

(−λ− 1 + β1)︸ ︷︷ ︸
Re<−χµ̄2−1

6= 0 .

We are led to the constraint C1 = C2 = C and µ̃1 = µ̃2 := µ̃. Writing back system (74) in terms
of C, µ only, the existence of a nonzero solution to (74) is then equivalent to the degeneracy of the
obtained system i.e. (70) is fullfilled.

Lemma 11.3 There exists a positive real eigenvalue for the linearized system if and only if χµ̄2 < 1.

Proof of lemma 11.3 Denoting by x = λ
χ2 µ̄4

and γ = χ µ̄2 and recalling the expression of β1, we
obtain

γ

2

((
1−
√

1 + 4x
) (

γ2 x+
2

x
+ 1

)
+ 4− 2 γ x

)
= 0 ,

hence, after multiplication by 2/γ, we look for a positive root x to

f(x) := (1−
√

1 + 4x)(γ2x+
2

x
+ 1) + 4− 2γx .

We first note that f(0) = 0. Differentiating f we obtain:

f ′(x) = − 2√
1 + 4x

(γ2x+
2

x
+ 1) + (1−

√
1 + 4x)(γ2 − 2

x2
)− 2γ ,

and we see that f ′(x) ∼ 2 − 2γ when x → 0. The function is decreasing from 0 in the case where
γ ≥ 1 while it increases initially and then goes to −∞ in the case γ < 1. There exists a positive root
if and only if γ < 1.

Lemma 11.4 Assume that χµ̄2 > 1, then there does not exist λ ∈ {z 6= 0 , Re(z) ≥ 0} satisfying
(70).

Proof of Lemma 11.4 We keep the notation γ = χµ̄2 and x = λγ−2. The function f can be extended
on {z 6= 0, Re(z) ≥ 0} keeping the (abusive) notation z =

√
1 + 4x in the definition of f (since there

is a unique root of z2 = 1 + 4x with Re(z) ≥ 1). We notice that cancelling f implies cancelling

A(z) = (1− z)
(
γ2 z

2 − 1

4
+

8

z2 − 1
+ 1

)
+ 4− γ z

2 − 1

2
.

Since we are looking only for roots in {z 6= 1 , Re(z) ≥ 1} it is easier to look for zeros of the function

B(z) := (z + 1)A(z) = −
(
γ2 (z2 − 1)2

4
+ 8 + z2 − 1

)
+ 4(z + 1)− γ (z2 − 1)(z + 1)

2
.

B is a four degree polynomial. As f does for x = 0, B vanishes for z = 1.

B(X) = (X − 1)

(
−γ

2

4
(X − 1)(X + 1)2 − (X + 1) + 4− γ

2
(X + 1)2

)
=: (X − 1)C(X) . (75)

Now, finding an eigenvalue with positive real part is equivalent to finding a root z 6= 1 of C with
Re(z) ≥ 1.
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Lemma 11.5 Assume γ > 1, then the polynomialC, defined by (75), does not have any root satisfying
Re(z) > 1.

Proof of lemma 11.5 Since γ > 1, we already know that such a root cannot be real. It has to be
complex. It might be convenient to rewrite the polynome C as C(X) = D(X + 1) where

D(X) = −γ
2

4
(X − 2)X2 −X + 4− γ

2
X2 = −γ

2

4
X3 + (

γ2

2
− γ

2
)X2 −X + 4 .

Finding a root z of C such that Re(z) > 1 is equivalent to finding a root z of D such that Re(z) > 2.
We already know that no real root can satisfy this property. Therefore, we assume that D, which is
of degree 3, has two complex conjugate roots and one real one, which we denote respectively by z, z̄
and x. Since D(0) = 4 and D < 0 on [2,∞), we know that x ∈ (0, 2). Using the relations between
roots and coefficients, we obtain

2Re(z) + x = 2− 2

γ
, Re(z) = 1− x

2
− 1

γ
< 2 .

This ends the proof of lemma 11.5, hence the proof of lemma 11.4.

To achieve the proof of the proposition 11.1, we only need now to notice the following property

γ− = χµ2
− < 1 < γ+ = χµ2

+ .

The stability results stated in Proposition 1.1 are deduced from Lemma 11.1 and Lemma 11.5.
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