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We consider the hydrodynamic stability of homogeneous, incompressible and rotating
ellipsoidal fluid masses. The latter are the simplest models of fluid celestial bodies with
internal rotation and subjected to tidal forces. The classical problem is the stability of
Roche-Riemann ellipsoids moving on circular Kepler orbits. However previous stability
studies have to be reassessed. Indeed they only consider global perturbations of large
wavelength or local perturbations of short wavelength. Moreover many planets and stars
undergo orbital motions on eccentric Kepler orbits, implying time-dependent ellipsoidal
semi-axes. This time dependence has never been taken into account in hydrodynamic
stability studies. In this work we overcome these stringent assumptions. We extend the
hydrodynamic stability analysis of rotating ellipsoids to the case of eccentric orbits.
We have developed two open source and versatile numerical codes to perform global
and local inviscid stability analyses. They give sufficient conditions for instability. The
global method, based on an exact and closed Galerkin basis, handles rigorously global
ellipsoidal perturbations of unprecedented complexity. Tidally driven and libration-driven
elliptical instabilities are first recovered and unified within a single framework. Then we
show that new global fluid instabilities can be triggered in ellipsoids by tidal effects
due to eccentric Kepler orbits. Their existence is confirmed by a local analysis and direct
numerical simulations of the fully nonlinear and viscous problem. Thus a non-zero orbital
eccentricity may have a strong destabilising effect in celestial fluid bodies, which may lead
to space-filling turbulence in most of the parameters range.

1. Introduction

1.1. Physical context

As a result of gravitational tidal forces generated by their orbital partners, most planets
and moons have time-dependent spin rates and ellipsoidal shapes (e.g. Chandrasekhar
1969), which disturb their rotational dynamics. It bears the name of mechanical or har-
monic forcing (Le Bars et al. 2015; Le Bars 2016), such as tides, librations or precession.
Librations are oscillations of the figure axes of a synchronised body with respect to a
given mean rotation axis. Precession refers to the case whereby the instantaneous rotation
vector rotates itself about a secondary axis that is fixed in an inertial frame of reference
(Poincaré 1910). Observations of mechanical forcings of a celestial body can be used to
infer its internal structure (e.g. Dehant & Mathews 2015).

Mechanical forcings also play an important role in the dynamics of planetary and
stellar fluid interiors, extracting a part of the available rotational energy to sustain large-
scale flows (Tilgner 2015). Many orbiting celestial bodies have orbits sufficiently close to
their hosts such that strong tidal interactions are expected. Tides create a tidal bulge,
leading to angular momentum exchange between the orbital motion and the spinning
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bodies, and they also dissipate energy through the induced fluid flows. Therefore tides
may play an important role in the (internal and orbital) dynamics of binary systems
and orbiting extra-solar planets (e.g. Ogilvie & Lin 2004; Cébron et al. 2012a). For
instance we expect tidal interactions to be responsible for the spin synchronisation and
of the circularisation of the orbits in binary systems (e.g. Hut 1981, 1982; Rieutord
2004). However these problems are not yet fully resolved. Many studies are devoted
to understand the mechanisms of tidal dissipation in such systems (e.g. Rieutord &
Valdettaro 2010; Ogilvie & Lin 2007), but uncertainties remain.

Mechanical forcings may also sustain dynamos, such as tidal dynamos (Barker &
Lithwick 2013; Cébron & Hollerbach 2014). Malkus (1963, 1968, 1989) first pointed
out the relevance of harmonic forcings to drive planetary core flows, suggesting that
the Earth’s magnetic field is maintained by luni-solar precession. Using energy and
power considerations, Kerswell (1996) showed that turbulent precession-driven flows
are sufficiently vigorous to potentially sustain a dynamo. Numerical dynamos driven
by precession (Tilgner 2005, 2007; Wu & Roberts 2009; Goepfert & Tilgner 2016; Barker
2016b) have been found.

1.2. Inertial instabilities

The flow stability in ellipsoids is a long standing issue. It dates back to the stability
study of self-gravitating ellipsoids. More than a century ago, Riemann (1860) considered
the stability of ellipsoidal flows with a linear dependence in Cartesian space coordinates.
Hough (1895), Sloudsky (1895) and Poincaré (1910) also assumed that flows depend
linearly on Cartesian space coordinates. This simplifies the mathematical complexity of
the problem, because flows reduce to time-dependent uniform vorticity flows governed
by ordinary differential equations. They are the order zero response of a rotating fluid
enclosed in a rigid ellipsoid undergoing mechanical forcing (Roberts & Wu 2011). It
was first predicted by theoretical studies on precessing flows (Bondi & Lyttleton 1953;
Stewartson & Roberts 1963; Roberts & Stewartson 1965; Busse 1968) and later confirmed
by experiments (Pais & Le Mouël 2001; Noir et al. 2003; Cébron et al. 2010b) and
simulations (Lorenzani & Tilgner 2001; Tilgner & Busse 2001; Noir & Cébron 2013) in
the laminar regime. However a basic flow of uniform vorticity is actually established
only if it is dynamically stable, i.e. if no inviscid perturbation grows upon the basic
state (Kerswell 1993b). Otherwise, the basic flow is dynamically unstable and is prone to
inertial instabilities, as it is the case for precessing flows (Kerswell 1993b; Cébron et al.
2010b; Wu & Roberts 2011).

The basic role of uniform vorticity flows in the hydrodynamic instabilities which are
triggered in precessing flows suggests considering more generally the stability of uniform
vorticity flows. Indeed such flows are also observed for tidal (Cébron et al. 2010a, 2012a,
2013; Grannan et al. 2017) and libration forcings (Zhang et al. 2012; Cébron et al. 2012b;
Grannan et al. 2014; Vantieghem et al. 2015; Favier et al. 2015). Both tidal and librating
basic flows are prone to the elliptical instability (Kerswell 2002), which was discovered in
various contexts (Gledzer & Ponomarev 1978; Bayly 1986; Gledzer & Ponomarev 1992;
Bayly 1986; Pierrehumbert 1986; Waleffe 1990). The elliptical instability may play a
fundamental role in astrophysics. Indeed tidally driven basic flows, associated with the
equilibrium tide (Zahn 1966, 2008), are not an efficient source of dissipation for small
enough molecular viscosity. Yet, the elliptical instability may be a viable alternative as
a strong source of dissipation (Cébron et al. 2010a; Le Bars et al. 2010; Barker 2016a).
The libration-driven elliptical instability also occurs in synchronised moons (Kerswell
& Malkus 1998; Cébron et al. 2012b; Vantieghem et al. 2015). Finally the elliptical
instability is the first ingredient to explain the observed transition towards turbulence
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in experiments and simulations (Grannan et al. 2014; Favier et al. 2015; Grannan et al.
2017; Le Reun et al. 2017).

1.3. Motivations

Previously cited theoretical works have studied inertial instabilities (i) in containers
departing very weakly from spheres; (ii) for a subset of simple mechanical forcings; (iii) for
rigid ellipsoidal containers. However, (i) laboratory experiments and simulations depart
strongly from spherical containers to overcome viscous effects and celestial bodies have
mainly triaxial shapes; (ii) celestial bodies are subject to a combination of mechanical
forcings; (iii) celestial bodies may deform in time to adjust to time-dependent gravita-
tional constraints along their orbits. To relax these three assumptions, we have developed
two open source numerical codes to perform the local and global linear stability analyses
of various mechanically driven basic flows. Both methods give only sufficient conditions
for instability. The local method, first introduced by Bayly (1986); Pierrehumbert (1986)
and later developed by Lifschitz & Hameiri (1991); Friedlander & Vishik (1991), assumes
short-wavelength perturbations which are insensitive to the fluid boundary. The global
method takes into account the ellipsoidal geometry of the fluid boundary. It relies on
a Galerkin expansion of the perturbations onto a basis which satisfies the boundary
conditions. Finding an appropriate basis is a difficult task. Furthermore, bases in complex
geometries often require advanced numerical schemes (Theofilis 2011). Extending the
works of Gledzer & Ponomarev (1978, 1992); Lebovitz (1989); Wu & Roberts (2011),
we use a polynomial basis made of Cartesian monomials generated for any polynomial
degree.

As a result of the complexity of the tidal response in the fluid layers of rotating
planets and stars, we consider a simplified model that captures the most important
physical elements. The problem of tidal flows in ellipsoidal homogeneous bodies orbiting
on eccentric orbits was tackled by Nduka (1971), but calculations were very incomplete.
Indeed the latter study only solved the ellipsoidal shapes. Their physical relevance
remains elusive, since the fluid instabilities that can grow upon the basic state were
not considered. The hydrodynamic stability of ellipsoidal fluid masses has been tackled
by Lebovitz & Lifschitz (1996b,a) for isolated fluid masses and recently by Barker et al.
(2016); Barker (2016a) for circular orbital motions.

The present paper is a step in the direction of completing this picture from a fluid
dynamics point of view. It is a first attempt to understand the case of eccentric orbits.
We relax the assumption of ellipsoidal equilibrium to perform the stability analysis of
basic flows in arbitrary triaxial ellipsoids orbiting on eccentric Kepler orbits.

The paper is organised as follows. In §2 we present the orbitally driven basic flow of
uniform vorticity. In §3, we describe the stability analysis methods. Then in §4 we survey
the hydrodynamic instabilities driven by orbital motions. In addition to tidally driven and
libration-driven elliptical instabilities which are recovered, we find new orbitally driven
elliptical instabilities (ODEI) associated with the eccentric Kepler orbits. We discuss the
physical mechanism responsible for these new instabilities in §5 and we end the paper
with a conclusion in §6.

2. Modelling of the basic state

2.1. Orbital forcing

We are interested in the orbital problem of a companion body of mass m (e.g. a
moon, a gaseous planet or a low mass star), which moves on an eccentric Kepler orbit of
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(a) (b)

Figure 1. Eccentric Kepler orbit for our two-body problem. The companion body rotates
around an attractor at an orbital angular velocity orthogonal to the orbital plane of amplitude
Ωorb(t) > 0. The eccentric Kepler orbit, of eccentricity e (thick black line) and of geometric
centre O, has semi-axes aorb and borb. The perihelion (resp. aphelion) point of the orbit is Π
(resp. A). The dashed black line is the circumscribed circle of radius aorb. The orbital position
vector of the orbiting companion body, relating the centre-of-mass of the attractor to the one of
the companion body, is r(t). We denote the true anomaly θ(t) and the mean anomaly E(t).
Using Cartesian coordinates centred on the attractor, the position of the orbiting body is
xorb = aorb(cosE − e) and yorb = aorb

√
1− e2 sinE. (a) A fluid ellipsoidal companion body

orbiting around a point-source mass attractor. (b) A companion point-source mass orbiting
around a fluid ellipsoidal attractor.

eccentricity e around an attractor of mass M � m. The centre-of-mass of the attractor
coincides with the centre-of-mass of the two-body system, which is also a focus of the
eccentric Kepler orbit described by the companion body.

Depending on the astrophysical configuration, we consider that either the companion
or the attractor is a tidally deformed homogeneous fluid body. The latter has rotating
internal motions of time-dependent uniform vorticity ω(t). The fluid is incompressible,
of uniform density ρ and kinematic viscosity ν. The other celestial body is then modelled
as a rigid point-source mass. The two situations are sketched in figure 1. Under these
circumstances the fluid body experiences its self-gravitating acceleration, the disturbing
tidal acceleration and the centrifugal, Coriolis and Poincaré accelerations. Following
Aizenman (1968); Chandrasekhar (1969); Nduka (1971), we keep only the quadratic
terms in the expansion of the tidal potential generated by a point-source mass. Then
a mathematically exact description of the fluid boundary is achieved by considering a
triaxial ellipsoid, denoting the principal semi-axes (a(t), b(t), c(t)). They depend on time
t because of the time-dependent gravitational force exerted along the eccentric orbit. The
fluid ellipsoid is characterised by its equatorial and polar ellipticities

βab(t) =
|a2 − b2|
a2 + b2

< 1, βac(t) =
a2 − c2
a2 + c2

. (2.1)

The limit βac → 1 corresponds to the limit case of a disk (c = 0), whereas βac → −1
corresponds to an infinite cylinder (c→∞).

To describe the orbital and fluid motions, we introduce two reference frames. We define
an inertial frame with fixed axes and whose origin is the centre-of-mass of the attractor.
The horizontal plane defines the orbital plane and the vertical axis ẑ is parallel to the
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direction of the orbital angular velocity of the companion body (of amplitude Ωorb(t)).
It is the natural frame for describing the orbital motions. A tractable frame to describe
the fluid motions is the rotating body frame, whose origin is the centre-of-mass of the
fluid ellipsoid (either the attractor or the companion). Its main axes coincide with the
directions of its principal ellipsoidal axes (a(t), b(t), c(t)). The body frame is rotating
at the angular velocity ΩB(t) with respect to the inertial frame. The general problem
with an arbitrary orientation of ω(t) with respect to Ωorb(t)ẑ is of great mathematical
complexity (see the general equations (44) to (52) of Nduka 1971). It could be solved
but it is beyond the scope of the present paper. Instead following Aizenman (1968);
Chandrasekhar (1969); Nduka (1971), we assume a null obliquity such that ω(t) = ω(t)ẑ
and ΩB(t) is along ẑ.

To make the problem dimensionless, we choose L =
√

(a20 + b20)/2 as the length scale,
where (a0, b0) are characteristic hydrostatic semi-axes of the fluid ellipsoid, and Ω−1s as
the time scale, where Ωs is the steady internal fluid spin rate in the inertial frame. For
clarity, the dimensionless variables will be also noted as their dimensional counterparts.

The time dependencies of Ωorb(t) and βab(t) are given by the orbital dynamics (figure
1). We introduce the dimensionless mean orbiting angular velocity Ω0 of the body along
the elliptical orbit. The orbit has main orbital semi-axes (aorb, borb). Following Murray
& Dermott (1999), an elliptical orbit is described by Kepler’s equation at a given time t,

E(t)− e sinE(t) = Ω0t, (2.2)

with E(t) the eccentric anomaly. The orbital rotation rate on the elliptical orbit is

Ωorb(t) =
dθ

dt
= Ω0

[1 + e cos θ(t)]2

(1− e2)
3/2

, (2.3)

where θ(t) is the true anomaly defined by

θ(t) = 2 arctan

[√
1 + e

1− e tan

(
E(t)

2

)]
. (2.4)

The orbital position r(t), describing the position of the centre-of-mass of the companion
with respect to the attractor, is

r(t) = aorb
1− e2

1 + e cos θ(t)
= aorb [1− e cosE(t)] . (2.5)

The fluid ellipsoid may have a relative orientation with respect to the orbital position
vector (2.5). However the relative orientation is extremely small in the null obliquity
case (Nduka 1971). So we assume that the tidal bulge is always aligned with the orbital
position vector (instantaneous bulge response), i.e. ΩB(t) = Ωorb(t)ẑ. We estimate at
first order the equatorial ellipticity (2.1) of the fluid ellipsoid with an hydrostatic balance.
Following Cébron et al. (2012a) it reads

βab(t) =
3

2
(1 + k2)M

(
D

r(t)

)3

= β0

(
1 + e cos θ(t)

1− e2
)3

< 1, (2.6)

with β0 a characteristic equatorial ellipticity, M the ratio between the mass of the
celestial body responsible for the disturbing tidal potential and the mass of the fluid
ellipsoid, D the mean spherical radius of the fluid ellipsoid and k2 the potential Love
number. The latter can be computed with the Clairaut-Radau theory (e.g. Van Hoolst
et al. 2008). A typical value is k2 = 3/2 for an incompressible homogeneous body in
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Figure 2. (Left) Normalised orbital spin rate Ωorb(t)/Ω0 given by formula (2.3) for various
eccentricities e. Kepler’s equation (2.2) is solved with an iterative Newton’s algorithm at each
time step. (Right) Associated power spectral density (PSD) in function of the normalised angular
frequency ω/Ω0 of the Fourier transform.

hydrostatic equilibrium (Greff-Lefftz et al. 2005). To take into account all the possible
triaxial geometries, the polar ellipticity βac(t) is a free parameter.

Note that β0 is the ellipticity of a body with the same mass m but moving on a
circular orbit of radius aorb (dashed circle in figure 1). It is not the time averaged value of
βab(t). The ellipticity β0 refers to the static (tidal) bulge or equilibrium tide (Zahn 1966).
The fluctuations in time superimposed on this equilibrium tide are the dynamical tides
(Zahn 1975), which are excited by the periodic terms of the disturbing tidal potential.
From formula (2.6), minimum and maximum values (βmin, βmax) of the ellipticity at the
aphelion point A (θ = π) and the perihelion point Π (θ = 0) are

βmin = β0(1 + e)−3, βmax = β0(1− e)−3. (2.7)

Because the ellipticity is bounded (βab(t) < 1), the upper bound of the maximum
allowable eccentricity for a given ellipticity β0, denoted emax, is

emax = 1− β1/3
0 . (2.8)

However from a physical ground, the maximum allowable ellipticity is governed by a
balance between the internal cohesion model of the fluid body (e.g. self-gravitation,
molecular. . . ) and the disturbing tidal and centrifugal accelerations. For homogeneous
self-gravitating ellipsoids, the maximum allowable ellipticity is given by the Roche limit
(Aizenman 1968). The classical Roche problem considers an homogeneous self-gravitating
ellipsoidal body moving on a circular orbit. However as long as the eccentric orbit remains
outside the Roche limiting circle, the variations of the ellipsoidal figure are small (Nduka
1971). Therefore in our framework we estimate a lower bound of the orbital eccentricity
eR as the eccentricity of the first orbit crossing the Roche limiting circle. It reads

eR = 1−
(
β0
β∗

)1/3

, (2.9)

where β∗ = 0.59 is the lower bound of the equatorial ellipticity of unstable homogeneous
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ellipsoids moving on circular orbits in the Roche limit (estimated from point B in figure
3 of Aizenman 1968). When 0 6 e 6 eR the ellipsoidal configuration is assumed to be
stable, whereas when eR 6 e < emax some ellipsoidal configurations could be unstable
(and hence physically unrealistic) for self-gravitating bodies.

For a circular orbit (e = 0), the orbital rotation rate is steady Ωorb(t) = Ω0 and
βab(t) = β0. For an eccentric orbit (e 6= 0), we determine Ωorb(t) by solving Kepler’s
equation (2.2) numerically using an iterative Newton’s algorithm (starting with E = 0
as initial guess at t = 0). We show in figure 2 the normalised ratio Ωorb(t)/Ω0 and its
associated power spectral density for different eccentricities. Ωorb(t) has a fundamental
angular frequency ω = Ω0 but, as e is increased, more and more harmonics are required
to properly describe the time dependence of Ωorb(t).

Finally it is worth noting that the case Ω0 = 1 corresponds to a synchronised fluid
body, since the dimensional averaged orbital rate and the averaged fluid spin rate are
equal. When Ω0 6= 1 the fluid body is not synchronised. A mean differential rotation
exists between the elliptical deformation and the fluid spin rate over one spin period.

2.2. Fluid equations

In the body reference frame rotating at the dimensionless angular velocity ΩB(t) =
Ωorb(t) ẑ, the time-dependent fluid boundary is ellipsoidal at any time. It is described
by the equation (

x

a(t)

)2

+

(
y

b(t)

)2

+

(
z

c(t)

)2

= 1. (2.10)

Because the fluid is incompressible, we restrict ourselves (without loss of generality) to
the case a(t)b(t)c(t) = 1, such that fluid ellipsoid has a dimensionless constant volume of
4π/3. To take into account all possible triaxial ellipsoids, we define the semi-axes as

a = R
√

1 + βab(t), b = R
√

1− βab(t) c = 1/(ab), (2.11)

where R is a free parameter governing the polar ellipticity βac(t). Note that many celestial
bodies are flattened at their poles. The flattening condition, valid at each time, leads to
the sufficient condition R > Rm for a given orbit, with

Rm(e) =
[
(1− βmax(e)2)(1− βmax(e))

]−1/6
(2.12)

and βmax(e) defined by the expression (2.7).
For a fluid mechanics study, the knowledge of the axes (a(t), b(t), c(t)), of the forcing

ΩB(t) and of the internal vorticity ω(t) is sufficient to fully determine the internal
dynamics. The basic flow driven by the orbital motions in the fluid ellipsoid, expressed
in the body frame, is

U(r, t) = [1−Ωorb(t)] (−[1 + βab(t)]y x̂ + [1− βab(t)]x ŷ) , (2.13)

with r = (x, y, z)T the position vector in the body frame, (x̂, ŷ, ẑ) the unit Cartesian
basis vectors in that frame and βab(t) the time-dependent equatorial ellipticity defined
by formula (2.6). It is an incompressible (∇·U = 0) and laminar flow of uniform vorticity
ω(t) = 2 [1−Ωorb(t)] in the body frame. It is an exact solution of the dimensionless and
nonlinear Navier-Stokes equation in the body frame

∂U

∂t
+ (U · ∇)U + 2ΩB(t)×U = −∇P + Ek∇2U + r × dΩB

dt
, (2.14)

with Ek = ν/(ΩsL
2) the dimensionless Ekman number and P the modified pressure.

Equation (2.14) is supplemented with the impermeability condition U · n = 0, at
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the boundary with n the unit vector normal to the boundary (2.10). However the
viscous boundary condition (either no-slip or stress-free) is violated. Moreover, the exact
kinematic boundary condition is in factU ·∇F+∂F/∂t = 0, with F (r, t) = 1−(x/a(t))2−
(y/b(t))2−(z/c(t))2. Neglecting the heterogeneous term ∂F/∂t in the boundary condition
is relevant when typically ||U || � ||∂F/∂t||/||∇F ||, i.e. when ||U || � eβ0Ω0. The latter
condition is the astrophysically relevant limit. Indeed, celestial fluid bodies are typically
characterised by e � 1 and β0 � 1. At leading order, the basic flow is made of a solid
body rotation of order O(1) and a tidal correction of order O(β0). Corrections of the
basic flow only appear at the next order O(eβ0)� 1 and are neglected in the following.

In the literature, the stability of basic flows (2.13) has only been studied for steady
values of βab. We relax here this assumption. To investigate whether the basic flow (2.13)
is stable against small perturbations, we perform a linear stability analysis. We expand
the total velocity field into the sum of the basic flow U(r, t) (2.13) and a perturbation
u(r, t). The inviscid (Ek � 1), linearised governing equations for the perturbation in the
body frame are

∂u

∂t
+ (U · ∇)u+ (u · ∇)U + 2ΩB(t)× u = −∇π, (2.15a)

∇ · u = 0, u · n = 0 (2.15b)

with π the modified pressure perturbation. By consistency with the basic flow, we also
neglect ∂F/∂t in the boundary condition for the velocity perturbation. However, because
the stability problem is linear, our results are not affected. Indeed the heterogeneous
term ∂F/∂t in the boundary condition could only generate additional instabilities. Con-
sequently we emphasise that our stability study gives sufficient conditions for instability.
The basic flow U(r, t) is linearly unstable if the amplitude ||u(r, t)|| grows without bound
with time.

3. Inviscid stability analysis methods

3.1. Global method in triaxial ellipsoids

To remove the pressure term in equation (2.15a), we take the curl of equation (2.15a)
and obtain the governing equation for the vorticity of the perturbation ζ = (∇× u)

∂ζ

∂t
+ (U · ∇) ζ + (u · ∇)ω − (ζ · ∇)U =

(
ω + 2ΩB

)
· ∇u. (3.1)

As originally devised by Gledzer & Ponomarev (1978, 1992), if u is a Cartesian poly-
nomial of maximum degree n in the Cartesian coordinates (x, y, z), then each term in
equation (3.1) is a polynomial in the Cartesian coordinates of maximum degree n− 1. It
suggests to look for perturbations u which belong to a finite-dimensional vector space of
Cartesian polynomials.

We consider the finite-dimensional vector space Vn, such that an element v ∈ Vn is
of maximum degree n and satisfies (at any time) v · n = 0 at the ellipsoidal boundary
(2.10) and ∇·v = 0. Elements of Vn represent vortical perturbations that are tangential
to the ellipsoidal boundary at any time. The dimension of Vn is (Lebovitz 1989; Backus
& Rieutord 2017a; Ivers 2017)

NV = n(n+ 1)(2n+ 7)/6. (3.2)

Finding an appropriate basis is a difficult task. Any polynomial basis of Vn is a complete
basis for velocity fields defined over triaxial ellipsoids and meeting the impermeable
boundary condition (Lebovitz 1989; Backus & Rieutord 2017b; Ivers 2017), i.e. any
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velocity field can be projected in theory onto Vn in the limit n → ∞. Ellipsoidal
harmonics, which are the eigenfunctions of the Laplace operator in ellipsoidal coordinates,
are known to form a complete basis (Dassios 2012). Unfortunately, ellipsoidal harmonics
have neither explicit expressions nor known recurrence relationships to generate them.

For a given degree n, alternative bases have been proposed. Vantieghem (2014); Backus
& Rieutord (2017a); Ivers (2017) established that inertial modes, i.e. the eigenmodes of
rotating fluids restored by the Coriolis force, form a basis of Vn in ellipsoids rotating
at steady angular velocities. Hence, the global method describes the dynamics of the
perturbation u in terms of a superposition of inertial (and geostrophic) modes. This
approach has been considered by Kerswell (1993b); Kerswell & Malkus (1998); Zhang
et al. (2010, 2012, 2013, 2014). The latter studies look at the effects of various mechanical
forcings in steady spheroidal containers (a = b), using the explicit formula of spheroidal
inertial modes (Greenspan 1968; Zhang et al. 2004). On the other hand, Vantieghem et al.
(2015) study global instabilities driven by latitudinal libration in triaxial ellipsoids, but
only considering the inertial modes of degree n 6 3 (Vantieghem 2014). The explicit
spatial dependence of inertial modes is not available in triaxial ellipsoids for higher
degrees (Vantieghem 2014; Backus & Rieutord 2017a), and also in spheroidal containers
as soon as the time dependence of the figure axes (2.10) is taken into account.

Instead we build an algebraic polynomial basis of Vn in time-dependent ellipsoids,
denoted {vi(r, t)}. The basis does not required to satisfy any dynamical equation, such
that it holds at any time provided that the boundary (2.10) is ellipsoidal in the body
frame. It is thus an alternative to ellipsoidal harmonics to perform spectral computations
in ellipsoids. This basis has two main advantages over other ellipsoidal harmonics: (i) the
Cartesian coordinate system is easier to tackle than the ellipsoidal one; (ii) the basis is
explicit and can be generated for any polynomial degree n.

We consider linearly independent Cartesian monomials xiyjzk of degree i+i+k 6 n−1.
The number of such independent monomials isN2 = n(n+1)(n+2)/6. Among them, there
are N1 = n(n+ 1)/2 monomials independent of z, denoted gi(r). The other monomials,
denoted hi(r), contain z as factor. We index the set of these polynomials as (Lebovitz
1989; Barker et al. 2016)

{gi(r)} =
{

1, x, y, x2, xy, y2, . . . , xn−1, yn−1
}
, i ∈ [1, N1], (3.3a)

{hi(r)} =
{
z, xz, yz, z2, . . . , zn−1

}
, i ∈ [N1 + 1, N2]. (3.3b)

Next we consider the linearly independent basis elements at each time

vi(r, t) = ∇[gi(r)F (r, t)]× x̂, i ∈ [1, N2], (3.4a)

vN2+i(r, t) = ∇[gi(r)F (r, t)]× ŷ, i ∈ [1, N2], (3.4b)

v2N2+i(r, t) = ∇[hi(r)F (r, t)]× ẑ, i ∈ [1, N1], (3.4c)

with F (r, t) = 1− (x/a(t))2 − (y/b(t))2 − (z/c(t))2. Note that the total number of basis
elements (3.2) satisfies NV = N1 + 2N2. The polynomial set (3.3) ensures that basis
elements (3.4) are linearly independent. It is worth noting that the basis (3.4) is neither
orthogonal nor normalised, which is not necessary to build the stability equations. They
can be a posteriori orthonormalised with the modified Gram-Schmidt algorithm. The
basis (3.4) is explicit and can be built analytically for any degree n.

We have also implemented another algorithm to build the basis of Vn for arbitrary n. It
relies on spherical harmonics, after transforming the triaxial ellipsoid into a sphere with
the Poincaré transform (Poincaré 1910; Wu & Roberts 2011). The method is described
in Appendix A. However the algorithm is less efficient than the above procedure, since
the basis is built numerically.
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We consider perturbations u(r, t) ∈ Vn at any time and expand them as linear
combinations of the NV basis elements

u(r, t) =

NV∑
i=1

αi(t)vi(r, t), (3.5)

where {αi(t)} is a set of arbitrary time-dependent coefficients. In the expansion (3.5) we
emphasise that the basis polynomial elements are also time dependent, since the ellipsoid
in the body frame has time-dependent axes. We substitute the expansion (3.5) into the
stability equation (2.15) and project the resulting equation on the polynomial basis (3.4),
using the (real) inner product defined by the integral over the ellipsoidal volume

〈vi,vj〉(t) =

∫
V

vi(r, t) · vj(r, t) dx dy dz. (3.6)

Then the stability problem (2.15) yields a finite number of ordinary differential equations

NV∑
i=1

Nij
dαj
dt

+

NV∑
i=1

Lijαj(t) =

NV∑
i=1

Mijαj(t), (3.7)

where Nij , Lij and Mij are the time-dependent elements of squares matrices N , L and
M of size NV ×NV . Explicitly these elements are given by

Nij = 〈vi,vj〉(t), Lij(t) = 〈vi,dvj/dt〉(t), (3.8a)

Mij = −〈vi, (U · ∇)vj + (vj · ∇)U + 2ΩB(t)× vj〉(t). (3.8b)

Note that the pressure term does not contribute to (3.8b). We compute the elements
(3.8) explicitly using the formula (misprint corrected from Lebovitz 1989)∫
V

xiyjzk dxdy dz =

{
8π[a(t)]2γ1+1[b(t)]2γ2+1[c(t)]2γ3+1 (γ+1)!(2γ)!

(2γ+3)!γ! if i, j, k all even,

0 if i, j or k odd,

(3.9)
with 2γ1 = i, 2γ2 = j, 2γ3 = k, γ = γ1 + γ2 + γ3 and γ! = γ1!γ2!γ3!. Stability equations
(3.7) are written in canonical matrix form

dα

dt
= N−1 (M −L)α = Jα, (3.10)

with the unknown vector α(t) = (α1(t), α2(t), . . . )
T

and J is the time-dependent
Jacobian matrix of the system.

The basic flow U(r, t) is unstable if the perturbation u(r, t) has at least one modal
coefficient αi(t), governed by the stability equation (3.10), which grows without bound in
time. The most unstable perturbation is associated with the fastest growth rate denoted
σ. Since the basic flow (2.13) is periodic of period T = 2π/Ω0, its stability can be
determined using the Floquet theory. We compute the eigenvalues (Floquet exponents)
{µi} of the fundamental matrix Φ(t) evaluated at time T . The fundamental matrix is
solution of

dΦ

dt
= JΦ, Φ(0) = I, (3.11)

with I the identity matrix. Then the growth rates {σi} and the frequencies {ωi}
associated with the flow perturbations are then

σi =
1

T
<e [ln (µi)] ωi =

1

T
=m [ln (µi)] , (3.12)
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The fastest growth rate, associated with the most dangerous unstable flow, is σ = maxi σi
and its associated angular frequency is ω. Note that in the special case of a circular orbit
(e = 0) the orbital forcing (2.3) is steady, such that the above Floquet analysis reduces
to a classical eigenvalue stability analysis.

A key point of the global method is that the vector space Vn is invariant under
the action of the perturbation stability equation (2.15) (Kerswell 1993b; Lebovitz 1989;
Vantieghem 2014; Backus & Rieutord 2017b; Ivers 2017). Thus the stability equation
(2.15) exactly reduces to equation (3.10) for any finite value of the degree n in the
expansion (3.5). It is not an approximation and it is not necessary to replace n by ∞ in
the expansion (3.5), and then to truncate at finite n, to get the stability equation (3.10).
It is a main difference with classical spectral Galerkin expansions in various geometries
(e.g. spherical harmonics), even in the linear framework. For our purposes, it is another
advantage of our properly chosen polynomial basis over the spectral basis of ellipsoidal
harmonics.

Finally because the expansion (3.5) is exact, the global method at a given degree n
gives only exact sufficient conditions for inviscid instability (to the numerical precision
of the numerical solver). New tongues of instability of the basic flow generally appear in
the parameter space when n increases. The largest growth rate also generally increases
by considering larger and larger n, reaching progressively its asymptotic value. This
phenomenon has already been noticed in previous global analyses performed at lower
degrees n 6 7 (e.g. Kerswell 1993b; Wu & Roberts 2011, 2013; Vantieghem et al. 2015;
Barker et al. 2016). Indeed, more resonances are expected when n increases. So we
conclude that the global method at finite values of n cannot prove the stability of the
basic flow, but it gives sufficient conditions for instability. Finally, it is usually expected
that the upper bounds of global growth rates, in the asymptotic limit n → ∞, coincide
with the growth rates of local perturbations of short wavelength (see §3.2). However no
general mathematical proof is available to justify it.

3.2. Local method in unbounded fluids

To get a complementary physical understanding of fluid instabilities growing upon the
basic flow (2.13), we also perform a local (WKB) stability analysis. It probes the stability
of any inviscid, three-dimensional and time-dependent basic flow in an unbounded fluid,
considering localised plane wave perturbations of small wavelength which are advected
along the basic flow (Lifschitz & Hameiri 1991; Friedlander & Vishik 1991; Friedlander
& Lipton-Lifschitz 2003). Because the orbitally driven basic flow (2.13) is linear in space
coordinates, the short-wavelength perturbations exactly reduce to Kelvin waves (Bayly
1986; Craik & Criminale 1986; Craik 1989; Waleffe 1990)

u(r, t) = a(t) exp[ik(t) · r], (3.13)

with k(t) the time-dependent wavenumber and a(t) the time-dependent amplitude of the
velocity perturbation. Kelvin waves (3.13) are exact inviscid, nonlinear and incompress-
ible solutions upon the basic flow (2.13) in the body frame if

dk

dt
= − (∇U)

T
(t)k, (3.14a)

da

dt
=

[(
2kkT

||k||2 − I
)
∇U(t) + 2

(
kkT

||k||2 − I
)
ΩB(t)×

]
a, (3.14b)

and the incompressibility condition k(t) · a(t) = 0 hold. The latter is always satisfied
if it holds for the initial condition (k0,a0). The existence of an unbounded solution for
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Figure 3. Characteristic CPU time to compute a growth rate for tidally driven and
libration-driven instabilities presented below in section 4 with the different numerical solvers.
To smooth out the variability of computation time between different parameters, we compute
a stability map of 100 points in the plane (βac, Ω0) for tides and in the plane (β0, 2e) for
longitudinal-libration to extract an average time for one iteration. Circle symbols stand for tidal
forcing and square ones for longitudinal libration. The magenta solid line shows the power law
∝ n6, in good agreement with the numerical scaling.

a(t) is a sufficient condition for instability (Lifschitz & Hameiri 1991; Friedlander &
Lipton-Lifschitz 2003).

Equations (3.14) are independent of the magnitude of k0. So we restrict the initial wave
vector to the spherical surface of unit radius k0 = (sin(θ0) cos(φ), sin(θ0) sin(φ), cos(θ0))T ,
where φ ∈ [0, 2π] is the longitude and θ0 ∈ [0, π] is the colatitude between the spin axis
ẑ and the initial wave vector k0. In practice, the equation (3.14a) is time stepped with
a numerical solver from a range of initial wave vectors. Then we compute the maximum
growth rate σ of equation (3.14b) as the fastest growing solution from all possible initial
wave vectors.

3.3. Numerical implementation

We have developed for the global stability analysis the SIREN code (Stability with
IneRtial EigeNmodes), freely available at https://bitbucket.org/vidalje/siren. It
handles any mechanical forcing and basic flow of uniform vorticity. The matrices N ,
L and M are first computed symbolically with Sympy (http://www.sympy.org/), a
computer algebra system (CAS) for Python, which is used to manipulate the Cartesian
polynomials xiyjzk in a symbolic way. Then they are converted to Fortran subroutines
with the Sympy fcode function and finally wrapped with f2py (Peterson 2009) for fast
numerical evaluation inside Python using Numpy (Van Der Walt et al. 2011). The
Jacobian matrix J is computed numerically, because we cannot compute the symbolic
inverse N−1 for arbitrary n. Because of the difficulty to build the Jacobian matrix for
an arbitrary forcing, previous global studies have only considered less than 200 basis
elements (n 6 7) (Kerswell 1993b; Lebovitz & Lifschitz 1996a; Wu & Roberts 2011;
Vantieghem et al. 2015; Barker 2016a; Barker et al. 2016). In practice, we have built and
solved numerically the stability system (3.10) for degrees as large as n = 25, yielding
more than 6000 basis elements.

For the local stability analysis we have also developed the SWAN code (Short-
Wavelength stability Analysis), freely available at https://bitbucket.org/vidalje/

swan. It gives sufficient conditions for inviscid instability of any basic flow (not necessarily

https://bitbucket.org/vidalje/siren
http://www.sympy.org/
https://bitbucket.org/vidalje/swan
https://bitbucket.org/vidalje/swan
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of uniform vorticity) expressed in Cartesian coordinates. The stability equations (3.14)
are built using Sympy, then converted to a Fortran subroutine with the Sympy fcode
function and finally wrapped with f2py for fast numerical evaluations with Numpy.

Both numerical codes use an explicit Runge-Kutta time step solver with adaptive step
size (available in the Python library Scipy) to integrate the stability differential equations.
Performing a survey in parameter space is an embarrassingly parallel problem, and our
implementation takes full advantage of this situation using mpi4py (http://mpi4py.
scipy.org/).

To validate our codes, we have first considered the precession of a steady spheroid
(a = b 6= c). This benchmark is described in Appendix B. We perfectly recover previous
studies (Kerswell 1993b; Wu & Roberts 2011). We also get a very good agreement between
local and global analyses, because we can reach large enough degrees n with the SIREN
code. Then we assess the performance of our SIREN code in figure 3, which shows the
evolution of CPU time with n for the tidally driven and libration-driven flows considered
below (see §4.1 and §4.2). We observe that the CPU time scales as n6, in agreement with
formula (3.2). Indeed the number of basis elements scales as n3 and so the number of
elements in matrices N , L and M is of order n6. As expected the eigenvalue solver is
faster than the Floquet solver.

4. Orbitally driven elliptical instabilities

In this section, we perform the stability analysis of the orbitally driven basic flow (2.13).
First we consider two particular cases of orbital forcing, namely the tidal forcing in non-
synchronised bodies on circular orbits in §4.1 and the libration forcing in synchronised
bodies on eccentric orbits in §4.2. Then we survey in the whole parameter space the
stability of ellipsoids moving along eccentric orbits in §4.3. In this case, time variations
of the ellipsoidal axes can play a significant role and drive new vigorous instabilities,
called orbitally driven elliptical instabilities (ODEI).

4.1. Tidally driven elliptical instability on circular orbits

We focus here on the effect of the equilibrium tide on a circular orbit (e = 0). The fluid
ellipsoid has steady semi-axes (a, b, c) and rotates at the steady orbital rate Ω0. Basic
flow (2.13) thus reduces to the tidally driven basic flow

U(r) = (1−Ω0) [−(1 + β0)y x̂ + (1− β0)x ŷ] . (4.1)

This flow can be unstable if Ω0 6= 1, leading to the classical tidally driven elliptical
instability (TDEI).

On one hand, the TDEI has been widely studied with a local analysis in unbounded
domains (Bayly 1986; Craik 1989; Waleffe 1990; Cébron et al. 2012a). Note that in the
asymptotic limit β0 → 0, equations (3.14) can be solved analytically using a multiple-
scale analysis in β0 to get a theoretical growth rate (see appendix C.1). Le Dizès (2000)
shows that the TDEI exists in the range (β0 + 1)/(β0 − 1) < Ω0 < 3. Outside this
range, the flow is stable and lies in the classical forbidden zone for β0 � 1, hereafter
denoted FZβ0

.
On the other hand, the global stability analysis of tidal basic flow (4.1) has been mainly

performed for weakly deformed spheroids (Lacaze et al. 2004) or cylinders (Malkus 1989;
Eloy et al. 2003). Triaxial ellipsoids have also been considered (Gledzer & Ponomarev
1978, 1992; Kerswell 2002; Roberts & Wu 2011; Barker et al. 2016; Barker 2016a),
but only disturbed by perturbations of small polynomial degrees (n 6 7). Such large-
wavelength instabilities do not compare well with the aforementioned local stability

http://mpi4py.scipy.org/
http://mpi4py.scipy.org/
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(a) Local analysis (b) Global analysis n = 15

Figure 4. Areas of instability of the tidally driven flow in the (β0, Ω0) plane. Color map shows
log10(σ/[β0|1−Ω0|]). Triaxial geometry a =

√
1 + β0, b =

√
1− β0 and c = 1/(ab) such that the

triaxial container has a constant dimensionless volume 4π/3. On the vertical white line Ω0 = 1
the TDEI does not exist. Black dashed lines Ω0 = (1 + β0)/(1 − β0) and Ω0 = 3 are the
bounds of the forbidden zone FZβ0 .

analyses. Using our framework, we can reach much larger polynomial degrees n. A
comparison between local and numerical analyses is given in figure 4. As expected, the
local results are upper bounds of global results (with expected matches for large enough
polynomial degrees). A more in-depth discussion is given in appendix C.1.

Global stability results at maximum degree n = 15 are shown in figure 5, where the
ratio σ/β0 of the instability is computed for two equatorial ellipticities (β0 = 0.15 and
β0 = 0.6). We always find σ = 0 when Ω0 = 1 as expected, because U = 0 from the
expression (4.1). When β0 increases, the zone of instability extends but it is still outside
of the forbidden zone FZβ0

.
We observe that ellipsoids spinning in the retrograde direction (Ω0 < 0) are more

unstable than the prograde ones (Ω0 > 0). By varying the polynomial degree, we note
that the TDEI for prograde rotation (Ω0 > 0) appears at larger n than the TDEI
for retrograde rotation (Ω0 < 0). As an example the spin-over mode (Kerswell 2002),
associated with the linear basis (n = 1), appears only for Ω0 < 0. Similarly the largest σ
is reached at smaller n for retrograde rotation than for prograde rotation (not shown).
We also observe an effect of βac at large values of |βac|, not predicted by the local
analysis (insensitive to βac). There, higher polynomial degrees may be needed to reach
the asymptotic limit of the local analysis to completely fill in the map with new global
unstable tongues.

In figure 6 we show the most dangerous unstable flows of the TDEI, as varying Ω0

when β0 = 0.15. When β0 = 0.6 the spatial structures of the flows, at the same values of
Ω0, are similar (not shown). In all these flows, the motions seem to be concentrated in
conical layers tilted from the fluid rotation axis. Between these layers, the flow has low
or zero amplitude. Some flows also exhibit one or several nodes in azimuth.

In figure 6 (a) computed at Ω0 = −1, the flow has the particular structure of a
stack of pancakes (SoP). Note that the modal angular frequencyof SoP is ω = 0 in
the body frame, as predicted theoretically by Lebovitz & Lifschitz (1996b); Barker et al.
(2016). SoP structures have also been observed in experiments (Grannan et al. 2014) and
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(a) β0 = 0.15 (b) β0 = 0.6

Figure 5. (a) & (b) Areas of instability of the tidally driven flow in the (βac, Ω0) plane at
degree n = 15. Color map shows log10 (σ/β0). White areas correspond to marginally stable

regions. Triaxial geometry a =
√

1 + β0 and b =
√

1− β0 and c = a
√

(1− βac)/(1 + βac).
Vertical dashed blacks lines represent the lower and upper bounds of the forbidden zone FZβ0 .
The solid black line indicates the synchronized case Ω0 = 1 (no instability). White dashed lines
correspond to the isoline σ/β0 = 0.01 for the stability problem reduced to degree n = 1, such
that the spin-over instability is excited in between (in this case, σ is analytically known, see e.g.
Roberts & Wu 2011).

(a) βac = 0.5, Ω0 = −1, ω = 0 (b) βac = 0.5, Ω0 = −0.5, ω = 0

(c) βac = 0.5, Ω0 = −0.1, ω = 3.27 (d) βac = 0.5, Ω0 = 2, ω = 0

Figure 6. Three-dimensional renderings of the most unstable flows associated with figure 5.
Degree n = 15 and amplitude of equilibrium tide β0 = 0.15. Velocity magnitude ||u|| is shown
in meridional/equatorial planes and at the ellipsoidal surface. The colour map is saturated for
||u|| > 3.
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(a) n = 10, σ = 0.297, ω = 0 (b) n = 15, σ = 0.299, ω = 0

Figure 7. ”Stack of pancakes”-like instability for β0 = 0.15, βac = 0.5 and Ω0 = −1. Magnitude
||u|| and velocity streamlines in the meridional plane at 45 degrees from the long axis where the
stretching is maximum.

in nonlinear direct simulations (Favier et al. 2015; Barker 2016a). For this instability,
each pancake moves horizontally in the direction opposite to its neighbours (horizontal
epicyclic motions), independently of all other heights, in a plane at 45◦ from the main
equatorial axis where the stretching is maximum (Waleffe 1990). SoP structures are
illustrated by the streamlines in figure 7. High amplitudes are located near the poles.
Note also that the number of pancakes increases as n increases, as suggested by figure 7.
However this number seems to be insensitive to the amplitude of the equilibrium tide β0
and to βac (not shown). Such a small-scale flow will undoubtedly lead to turbulence if it
reaches high enough amplitudes.

When Ω0 = −0.5 the unstable flow shown in figure 6 (b) for n = 15 is identical for
degrees n = 10 and n = 6. So we expect the observed flow to be the most unstable
flow when Ω0 = −0.5. It is mostly an equatorially symmetric mode, with high intensities
located on the rotation axis and within a surface band at mid-latitudes. Finally flows in
figures 6 (c) and (d) share a common structure which could evolve with n.

4.2. Libration-driven elliptical instability

We investigate here the stability of a synchronised fluid body (Ω0 = 1) on an eccentric
orbit (0 < e 6 1). The associated forcing, called longitudinal librations, leads to the
libration-driven elliptical instability (LDEI). We distinguish the following two limit cases
of longitudinal librations.

If the fluid is enclosed in a solid container with a strong enough rigidity (e.g. a silicate
mantle), the entire body rigidly rotates with a fixed shape. Dynamical tides can be
neglected with respect to the equilibrium tide, such that βab(t) = β0. The forcing bears
the name of physical librations. A differential rotation exists between the fluid spin rate
and the equilibrium tide, rotating at leading order at the angular velocity (equal to the
orbital angular velocity in our model)

ΩB(t) = (1 + ε sin t) ẑ (4.2)

with ε 6 2e the libration amplitude. This amplitude depends on the rheology of the
celestial body. The LDEI driven by physical librations has been studied amongst others
by Cébron et al. (2012b); Noir et al. (2012); Grannan et al. (2014) and Favier et al. (2015).
Note that the physical libration forcing (4.2) could actually contain multiple frequencies
due to the presence of several attracting bodies (Rambaux & Williams 2011). In the limit
β0 � 1, the local growth rate of this physical LDEI is (Herreman et al. 2009; Cébron
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(a) (b) n = 10, ω = 0.357

Figure 8. Libration-driven elliptical instability (Ω0 = 1) for eccentric Kepler orbits. (a) Ratio
log10(σ/σwkb) with σwkb the local growth rate of LDEI given by the formula (4.3). Color bar
saturated at log10(σ/σwkb) = 1. Larger values (log10(σ/σwkb) 6 2) occur for small enough
β0 when [βmax(e) − βmin(e)]/β0 > 3 (not shown). Solid red line shows the Roche limiting
circular orbit. Ellipsoids moving along orbits located above the Roche limit could be unstable
against free-surface perturbations (not considered in this work). (b) Flow magnitude ||u|| for
β0 = 0.05, e/emax = 0.4. Flow computed at θ(t) = π/2 on the orbit (see figure 1).

et al. 2012b, 2014)

σwkb =
17

64
εβ0. (4.3)

According to the local formula (4.3) the LDEI is triggered for any non-zero ε and β0.
On the other hand, if the fluid spin rate is low enough for the shape of the fluid

body to have time to adapt to the gravitational constraints or is enclosed within a
solid container with a small enough rigidity (e.g. a thin icy shell), the ellipsoidal cavity
always points toward the attractor. Then the container has a time-dependent equatorial
ellipticity given by the expression (2.6). A differential rotation exists between the fluid
spin rate and the dynamical tides (superimposed on the equilibrium tide). In the inviscid
framework of this work, we call this forcing optical librations (because the amplitude
of optical librations is 2e, see e.g. Murray & Dermott 1999). In the limit e → 0, this
forcing simply associates a prescribed time evolution of (a(t), b(t), c(t)) to the forcing
(4.2), rather than considering a constant ellipsoidal shape. At this first order in e, the
time dependence of the dynamical tides is monochromatic, in agreement with numerical
results of figure 2 at small e. Physical librations with maximum amplitude ε = 2e are
recovered if we neglect the dynamical tides, yielding βab(t) = β0.

We consider the general optical LDEI, taking into account the exact orbital motion
(2.3) and associated dynamical tides. We survey in figure 8 (a) the optical LDEI on
eccentric orbits, varying the equilibrium tide β0 and the eccentricity e from the circular
case to e/emax = 0.8. Two distinctive behaviours occur. The transition is associated
with a physical change in the main tidal effect. To compare the effects of dynamical and
equilibrium tides, we introduce the normalised ratio

∆βab/β0 = [βmax(e)− βmin(e)]/β0 = (1− e)−3 − (1 + e)−3, (4.4)

with βmax(e) (respectively βmin(e)) the maximum (respectively minimum) equatorial
ellipticity for a given eccentricity as defined in expressions (2.7). Physically when
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∆βab/β0 � 1 the equilibrium tide β0 is of prime importance compared with dynamical
tides. For weakly eccentric orbits (e→ 0), the growth rates of the optical LDEI coincide
with the ones of the physical LDEI predicted by formula (4.3), as shown by the unit
ratio σ/σwkb = 1. However we observe that new tongues of instability, with normalised
growth rates σ/σwkb > 1, appear when ∆βab/β0 6 1 (e 6 0.15). These new tongues are
not predicted by the local formula (4.3). This phenomenon is already visible at large β0
in figure 8 (a), computed at n = 10. For smaller values of β0, several tongues also appear
but higher degrees (n > 15) are required to catch them all (not shown). Thus the LDEI
can be more vigorous than predicted before, even in the range of small eccentricities
relevant in geo and astrophysics, with growth rates as high as 10σwkb.

On the other hand when ∆βab/β0 > 1, the effects of dynamical tides overcome the ones
of the equilibrium tide. The eccentricity of the orbit (e > 0.15) plays now a fundamental
role in the tidal effects and the fluid body tends to forget its equilibrium tide. In figure
8 (b) we show the most dangerous unstable flow for an equilibrium tide of amplitude
β0 = 0.05 and on an orbit of eccentricity e/emax = 0.4. Violent instabilities occur with
growth rates σ/σwkb > 10 figure 8 (a), whatever the value of β0, and can even reach
extreme values 10 6 σ/σwkb 6 100 when ∆βab/β0 > 3 (not shown in (a)). This latter
effect occurs for small enough β0 and highly eccentric orbits (e > 0.34), a situation
relevant for planets.

4.3. Survey of the orbitally driven elliptical instability

The general case of a fluid ellipsoid orbiting on a Kepler orbit of eccentricity 0 6 e < 1
is now considered. Since the Kepler equation (2.2) is solved at any time step (as in §4.2),
the computational cost is more expensive than for computations done in §4.1. As in §4.2,
we fix the polynomial degree to the value n = 10 to survey the whole parameter space.

We survey the stability of the orbitally driven basic flow in figure 9 as each parameter
in the set (Ω0, e) varies. We arbitrary fix the equilibrium to a small value (β0 = 0.05)
and to a larger one (β0 = 0.3). In figure 9 (a) - (b) we show the average, maximum and
minimum values of the equatorial and polar ellipticities (βab(t), βac(t)) along the orbits.
We consider here only oblate containers (b > c), which typically describe the shapes of
celestial bodies. The maximum value of the orbital angular velocity (normalised by Ω0)
is also shown.

Figure 9 (c,d) shows the maximum growth rates of the most unstable modes. Some of
the associated unstable flows are shown in figure 10. First, the maximum growth rate in
each panel tends to increase when β0 increases from (c) to (d). Then several aspects of
figure 9 (c,d) are worthy of comment.

We recover the TDEI considered in §4.1, corresponding to the horizontal line e = 0.
We also show the bounds of the forbidden zone FZβ0

, i.e. Ω0 = (1 + β0)/(β0 − 1) and
Ω0 = 3 (dashed grey lines). The instability with the largest wavelength (n = 1 basis) is the
spin-over mode (not shown). It is similar to the ”middle-moment-of-inertia” instability of
rigid bodies. The spin-over develops on any circular orbits (e = 0) for retrograde rotations
−1 6 Ω0 6 0, as expected from previous global analyses (e.g. Roberts & Wu 2011; Barker
et al. 2016), but also for any eccentric orbit (0 6 e) with an almost constant growth rate
(see figure 19 in appendix D). Then an increasing region of the parameter space becomes
unstable as the polynomial degree n is increased from n = 1 to n = 10, within the
expected allowable range (1+β0)/(β0−1) < Ω0 < 3 where the classical TDEI develops on
circular orbits. We observe that the eccentricity has little effect on the growth rates of the
TDEI for retrograde orbits (exceptions occur for large eccentricities) within the allowable
range (1 + β0)/(β0 − 1) 6 Ω0 6 0. For instance we recover the SoP unstable modes at
Ω0 = −1 in figure 10 (b). For other values of Ω0, the exact flow structure of the unstable
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Figure 9. Survey of the orbitally driven elliptical instability (ODEI). (a) & (b) Range of values
of βab (solid blue line) and βac (dashed red line) for the various eccentric orbits considered. Blue
thick (resp. red dashed) line shows the mean value of βab (resp. βac) along the orbits. The second
vertical axis shows the maximum of ratio Ωorb/Ω0 (green dotted line). (c) & (d) Growth rates σ
of the ODEI in the plane (e/emax, Ω0) for degree n = 10. The color bar is saturated at σ > 0.2
in (c) and σ = 0.6 in (d). White areas correspond to marginally stable regions. The containers
considered are oblate ellipsoids with R = Rm + 0.05. Vertical black line corresponds to the
synchronised case (Ω0 = 1) driving the LDEI (see §4.2). The horizontal line e = 0 corresponds
to the TDEI (see §4.1). Vertical dashed black lines are the bounds of the forbidden zone FZβ0
of the classical TDEI, valid for e = 0 and βab = β0. Horizontal magenta line is eR/emax, with
eR defined by formula (2.9). In (a) the line is outside of the plot (eR/emax = 0.89).

modes depends on the triaxial shape. So it prevents from directly comparing with flows
in figure 6 (also obtained at larger n), although showing broad common patterns. This
first unexpected result justifies a posteriori the validity of TDEI mechanism in tidally
disturbed planets or stars, since it can be extended to eccentric retrograde orbits within
the classical allowable range of the TDEI ((1 + β0)/(β0 − 1) < Ω0 6 0).

However, our survey also shows that dynamical tides strongly enhance two instability
tongues for prograde eccentric orbits. The growth rates are indeed much larger than the
ones predicted on circular orbits. The first one is associated with the LDEI at Ω0 = 1 as
previously discussed in §4.2. The second tongue seems to be centred on Ω0 = 2+β0. The
most unstable flow at n = 10 is shown in figure 10 (f). It exhibits intense motion localised
in patches around the equator. It is very different from the TDEI flow at Ω0 = 2 in figure
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(a) Ω0 = −2, ω = 0.326 (b) Ω0 = −1, ω = 0

(c) Ω0 = −0.49, ω = 0.227 (d) Ω0 = −0.1, ω = 0.03

(e) Ω0 = 0.5, ω = 0, 142 (f) Ω0 = 2.05, ω = 0.347

Figure 10. Velocity magnitude ||u|| of several unstable flows of the figure 11 (c). n = 10,
e/emax = 0.4 and β0 = 0.05. ||u|| is shown in meridional/equatorial planes and at the outer
ellipsoidal surface. The color map is saturated for ||u|| > 3. Flows are computed at θ(t) = π/2
on the orbit (see figure 1).

6 (d). We expect this localisation to increase as n is increased further. The enhancing of
the growth rate first appears at degree n = 2, for large enough e (not shown). So it is not
associated with the spin-over mode (n = 1). Then the instability band moves towards
smaller eccentricities as n increases (not shown), even when the effects of dynamical tides
are a priori small (∆βab/β0 6 1).

Another striking result is observed in figure 9 (c) - (d). We uncovers new violent
instabilities within the forbidden zone FZβ0 for both retrograde (Ω0 6 (1 +β0)/(β0−1))
and prograde eccentric orbits (Ω0 > 3). The unstable tongue for retrograde orbits appears
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Figure 11. Growth rates of the ODEI for eccentric Kepler orbits at e/emax = 0.4 compared to
the growth rates of the TDEI (red thick solid line). Shaded areas represent the forbidden zone
FZβ0 for the TDEI (Ω0 6 (1 + β0)/(β0 − 1) and Ω0 > 3).

first at large enough eccentricities and it is not initially associated with the spin-over mode
(see figure 19 in appendix D). Then increasing the degree n shows that this new tongue
is replaced by more unstable tongues which merge with the tongue of the TDEI near
Ω0 = (1 + β0)/(β0 − 1). The latter tongue also spreads towards more retrograde orbits
for large enough eccentricities (when n is large enough). An example of an unstable flow
in this tongue at Ω0 = −2 and β0 = 0.05 is shown in figure 10 (a). It displays vertical
stripes that seem similar to the SoP observed at Ω0 = −1 (but here stacked along an
equatorial axis). For Ω0 = −3 and β0 = 0.3, the unstable flow is instead a SoP flow (see
the discussion of figure 12 in §5 below). For prograde eccentric orbits (Ω0 > 3), these
new instabilities are initially associated with an unstable tongue of degree n = 3. Then,
there is also a merging between this tongue and the one appearing near Ω0 = 2 + β0
at n = 2, which spreads out towards more and more prograde orbits (Ω0 > 3) for large
eccentricities when n increases. Note that these new unstable tongues exist for orbits
of eccentricities e 6 eR in figure 9. So these new instabilities may physically exist in
astrophysical fluid bodies.

We compare now more quantitatively the strength of these instabilities in figure 11 by
pushing the degree to n = 15. We show the growth rates of the TDEI on circular orbits
(red solid curve) and the ones of orbitally driven instabilities on eccentric Kepler orbits
for a finite value of the eccentricity (e/emax = 0.4). When (β0 + 1)/(β0 − 1) < Ω0 6 1,
the growth rate of the ODEI has almost the same value as for the classical TDEI at
e = 0. We note that increasing the degree n yields small variations in σ. The maximum
σ is well predicted by the local WKB analysis of the TDEI (see formula C 1 in appendix
C.1), showing a scaling in β0. Around Ω0 = 1 we see the peak corresponding to the
LDEI, previously computed for various β0 in figure 8 (a) at n = 10. The largest growth
rates are obtained for the instability located at Ω0 = 2 + β0 (in the limit e � 1). Its
growth rates are approximatively ten times larger than the ones predicted by the classical
TDEI circular orbits at the same values of Ω0. This instability becomes stronger as n is
increased from n = 6 to n = 15, suggesting a rather small-scale instability. We expect
its growth rate σ to reach an upper bound for large enough n. However we recall that
the global method gives only sufficient conditions for instability. So even though the
growth rate has not reached yet its asymptotic value, it does not physically rule out
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−10 −5 0 5 10

Ω0

0

0.2

0.4

0.6

0.8

1

σ

Global (n = 15)

Local

(a)

−10 −5 0 5 10

Ω0

0

30

60

90

θ 0
[d

eg
]

SoPSoP

e/emax = 0.4

TDEI+LDEI

(b)

Figure 12. Comparison between local and global stability analyses of orbitally driven flows
(2.13) for β0 = 0.3 and e/emax = 0.4. We compute the local maximum growth rate as the fastest
growing solution from a range of initial wave vectors k0 = (sin θ cosφ, sin θ sinφ, cos θ), with 0.5
degree spacing in θ ∈ [0, 90◦]. The initial azimuthal angle of the local wave vector φ = π/4. The
latter maximises the growth rate of the classical TDEI (Le Dizès 2000). We have checked that
the largest growth rates are insensitive to the value of φ. (a) Local (dashed blue line) and global
n = 15 (solid red line) growth rates σ in function of Ω0. (b) Numerical angle θ0 of the initial
local wave vector leading to the maximum growth rate as varying Ω0. Thin green line shows the
classical destabilizing angle leading to the TDEI and the LDEI.

the enhanced strength of this instability. The new instabilities driven by the non-circular
Kepler orbits within the classical forbidden zone of the TDEI are also clearly visible. The
unstable tongues extend deeply inside the forbidden zone, even at low β0. The growth
rate is almost insensitive to the chosen n from n = 10 to n = 15. It suggests that the
asymptotic growth rates have already been (at least at e/emax = 0.4).

To sum up, we have found new sufficient conditions for inviscid instability (for the
values of n considered here). They show that the orbitally driven basic flow (figure
9) can be unstable in the allowable region of the classical TDEI, but also inside the
classical forbidden zone for both retrograde and prograde eccentric orbits. We also show in
appendix D that these instabilities are recovered in three-dimensional viscous numerical
simulations. Therefore we expect this phenomenon to hold in astrophysical bodies.

5. Physical mechanisms

5.1. Local approach

In this section, we discuss the physical mechanism responsible for the orbitally driven
instabilities. First we perform a local (WKB) stability analysis by solving equations
(3.14) in unbounded fluids. Indeed the nature of an unstable tongue is be related to the
colatitude θ0 of the initial wave vector k0 (see §3.2) leading to the largest growth rate.

We aim at solving analytically the stability equations in the limit of weakly eccentric
orbits (e� 1). We expand at first order in e the orbital forcing (2.3) and (2.6) to get

Ωorb(t) = Ω0 [1 + 2e cos(Ω0t)] , βab(t) = β0 [1 + 3e cos(Ω0t)] . (5.1)

At this order, the time dependence of βab(t) is monochromatic, in agreement with
numerical results of figure 2 at small e. When e = 0, the basic state is a pure solid-
body rotation and it admits plane inertial wave perturbations (e.g. Greenspan 1968).
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They have periodic wave vectors which are orthogonal to the local velocity vector. Plane
inertial waves exist when −1 < Ω0 < 3, which is the allowable range of the classical
TDEI on circular orbits when e→ 0.

The basic mechanism of the elliptical instability is a parametric resonance between
a pair of inertial waves and the basic flow, provided that certain resonance conditions
are met (e.g. Le Dizès 2000; Kerswell 2002). This mechanism also applies here. Indeed
when e → 0, two inertial waves can resonate with the orbitally driven basic flow (2.13)
to drive an instability. The latter is governed by an Hill-Schrödinger equation, which can
be readily obtained following Naing & Fukumoto (2009). It is not written here for the
sake of clarity. However the forcing term in the Hill-Schrödinger equation is not strictly
periodic, as for tidally driven and libration-driven basic flows. Instead it is quasi-periodic
with multiple forcing frequencies, such that many resonances are possible. For a given
forcing frequency f , the condition of perfect resonance yields

2
(

1 + Ω̃0

)
cos θ0 =

f

2
, (5.2)

where the left hand side is actually the inertial waves pulsation (Doppler shifted in the

rotating frame) and Ω̃0 = Ω0/(1−Ω0). The forcing frequencies are f = 1, 2, Ω̃0 . . . and
possible combinations of them (through cosine and sine products). The nature of the
unstable tongues, determined by θ0, depends on the considered forcing frequency f . The
frequency f = 2 is associated with the classical TDEI on circular orbits (Waleffe 1990;
Le Dizès 2000) and f = 1 with the LDEI on weakly eccentric orbits (Herreman et al.
2009; Cébron et al. 2012b, 2014). For the TDEI, SoP instabilities have for instance wave
vectors aligned with the spin axis θ0 = 0 (Lebovitz & Lifschitz 1996a; Barker et al. 2016).

Equation (5.2) shows that resonances associated with a given frequency f only occur

for values of Ω0 located outside of the forbidden band |f/(4(1 + Ω̃0))| > 1. We recover
the existence of the classical TDEI (f = 2) inside the allowed region −1 < Ω0 < 3. When

f = Ω̃0, the forbidden band is |Ω0| > 4. However for finite values of β0, the unstable
tongues have finite widths of order O(β0) in the limit 0 6 e � 1. Hence it is possible
to excite imperfect resonances by geometric detuning, even though the condition (5.2)
is not strictly satisfied. A wider range of the parameter space is thus unstable when β0
increases, as observed in §4.1, §4.2 and §4.3. For instance the classical TDEI is excited
inside the allowable range (β0 + 1)(β0− 1) < Ω0 < 3 for finite values of β0 (see figure 4).
Therefore considering all the possible frequencies, the resonance condition (5.2) shows
that the orbitally driven instabilities may a priori be triggered well outside the allowed
region of the TDEI.

We further simplify the orbital forcing (5.1) to consider two limiting simplified configu-
rations. Firstly we neglect the dynamical tides (i.e. β(t) = β0) to isolate the modulation of
the background rotation (i.e. Ωorb(t) = Ω0 [1 + 2e cos(Ω0t)]). Such a forcing refers to the
tidal forcing of a telluric (i.e. rigid) planet moving on an eccentric Kepler orbit. At leading
order in e, the associated forcing frequency is f = 2 and the resonance gives the classical
growth rate of the TDEI (see appendix C.1). It shows that the time modulation of the
background rotation does not destabilise further the tidal basic flow (at leading order in
e). Higher-order terms in e may be necessary to handle possible new effects. Secondly we
disable the Coriolis force (Ωorb(t) = 0), but retains the time dependence of the ellipticity
along the orbit. In this case, we obtain that the angle θ0 = π/3 is the most destabilising
one for rapidly oscillating tides (|Ω0| � 1), leading to σ/β0 = 9/16 (as confirmed by
solving numerically equations (3.14) in this configuration). The latter formula is identical
to the growth rate of the classical TDEI without background rotation (see appendix
C.1). It shows that dynamical tides are the key physical mechanism responsible for the
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(a) First order physical librations (b) First order optical librations

Figure 13. Survey of the libration-driven elliptical instability for physical librations (4.2) and
first order optical librations in the plane (β0, 2e). Polynomial degree n = 10. Color map shows
the ratio σ/σwkb with σwkb given by formula (4.3). White areas correspond to marginally stable

regions. Triaxial geometry a(t) =
√

1 + βab(t), b(t) =
√

1− βab(t) and c(t) = [a(t)b(t)]−1. (a)
βab(t) = β0 and ε = 2e. (b) βab(t) = β0(1 + 3e cos t).

instabilities located outside of the allowable range of the classical TDEI, as observed in
figures 9 and 11. However we note that the associated growth rates are overestimated
with respect to the growth rates obtained numerically for the full problem, suggesting
that the Coriolis force has a stabilising effect.

To get quantitative local predictions in agreement with the global results, we consider
the combined effect of rotation and dynamical tides. However obtaining a growth rate
formula for any possible resonance, predicted by the equation (5.2), is not of practical
interest. Indeed resonances may appear or be modified when the full orbital forcing is
considered (even at small e), possibly leading to more unstable tongues. Consequently
we solve numerically the local stability equation (3.14) with the SWAN code, taking into
account the full orbital forcing (2.3) - (2.6). We show the comparison between local and
global analyses in figure 12 for β0 = 0.3 and e/emax = 0.4. Results obtained at smaller
β0 are similar and do not change the interpretation. We first note in figure 12 (a) a good
agreement between local and global growth rates for retrograde orbits (−4 6 Ω0 6 0) and
for prograde orbits within the forbidden zone (Ω0 > 3). When (β0+1)/(β0−1) < Ω0 6 0,

the angle cos θ0 = [2(1 + Ω̃0)]−1 in figure 12 (b) shows that the ODEI reduces to the
classical TDEI, which is not modified by the orbital eccentricity. We also recover the SoP
instabilities (θ0 = 0) when −2 6 Ω0 6 −1.5 for β0 = 0.3. Within the forbidden zone
of the classical TDEI for retrograde orbits, we find two new tongues of instability not
predicted by the TDEI resonance. The modulation of the global rotation is responsible
for these instabilities when −3 6 Ω0 6 −2 (not shown). These instabilities were not
obtained analytically in the asymptotic limit e → 0, because they are due to higher-
order terms. When Ω0 = −3 we find a SoP instability, which is also obtained in the
global analysis and direct numerical simulations (see appendix D).

Then we find a new tongue of instability within the classical forbidden zone for both
rapidly oscillating prograde orbits Ω0 > 3 and retrograde orbits Ω0 6 −4. Dynamical
tides are responsible for these instabilities. The numerical local growth rates are in much
closer agreement to the global ones than the analytical growth rate σ/β0 = 9/16 obtained
without background rotation. We conclude that the Coriolis force has a stabilising effect
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on these instabilities. Angle θ0, initially θ0 = π/3 without background rotation (i.e. for
Ωorb(t) = 0), is modulated by the rotation. It explains the observed linear trend with Ω0

in figure 12 (b).
The last striking result in figure 12 is that the local analysis does not predict the

enhancing of growth rates at Ω0 = 1 (LDEI) and Ω0 = 2+β0. For any finite value of e, no
local instability is found. A possible explanation is that we find numerical wavenumbers
k(t) with secular growths, which challenge the validity of the local analysis. Indeed, local
instabilities are generally obtained under the assumption of bounded and asymptotically
non-decaying periodic or quasi-periodic wavenumbers (e.g. Eckhardt & Yao 1995). We
also recall that the local analysis gives only sufficient conditions for instability. Finally
it has already been observed that a local analysis can be in disagreement with a
global analysis. For instance, global radiative instabilities in compressible Rankine vortex
(Broadbent & Moore 1979) are not predicted by a local WKB analysis (Le Duc 2001).

5.2. Global approach

The enhancing of the growth rates when Ω0 = 1, 2+β0 is left unexplained by the local
analysis. Nevertheless, the global analysis provides an explanation for this phenomenon.
In ellipsoids, the elliptical instability is also a parametric resonance between a pair of
inertial modes and the basic flow, provided certain resonance conditions are met (e.g.
Kerswell 2002; Lacaze et al. 2004; Le Bars et al. 2010). However the present orbital
forcing challenges this classical instability mechanism. Indeed, we cannot define properly
inertial modes in our time-dependent fluid ellipsoids. So identifying the possible resonant
couplings is a difficult task. We have to isolate the most unstable modes from the
computations and to try to relate them to some inertial modes of a well-chosen ellipsoidal
shape (for instance the one associated with the equilibrium tide β0). Such an approach
relies on an empirical modal decomposition (e.g. Schmid 2010; Sieber et al. 2016), which
is beyond the scope of the present study.

The key phenomenon is the time-dependent ellipticity β(t), even in the limit e� 1. To
illustrate this point we focus on the first-order optical libration forcing, making use of the
forcing (5.1) with Ω0 = 1. In the asymptotic local (WKB) analysis of the LDEI on weakly
elliptical orbits (e → 0), β0 and e are supposed to be of the same order of magnitude
in the asymptotic expansion (Herreman et al. 2009; Cébron et al. 2012b, 2014). So the
leading order-effect is the physical libration forcing (4.2), whereas the time-variable tidal
effect (of order eβ0) is a priori of second order. However the latter effect can become of
primary importance if it is large enough, which cannot be probed by the local analysis
for the coupled forcing (as explained before).

We compare in figure 13 physical librations (a) with optical librations (b), assuming
an amplitude ε = 2e for physical librations. We consider only perturbations of maximum
degree n = 10. Perturbations of higher degrees are not essential for this comparison. We
show the ratio σ/σwkb to compare the global growth rates σ with the local ones σwkb

predicted by the formula (4.3). The global growth rates in figure 13 (a) do not reach
yet the asymptotic local growth rates (4.3) for all the values of β0, as expected with a
global analysis at n = 10. In figure 13 (b) the unstable tongues generated by physical
librations coincide with the unstable tongues generated by optical librations in the limit
e→ 0. However for finite values of e (even small), we observe that the tongues in figure
13 (b) are much wider because of the dynamical tides. Moreover new violent instabilities
are triggered, with growth rates much larger than those predicted by formula (4.3). It
clearly illustrates the enhancing of the LDEI. Note that a similar behaviour is obtained
for the unstable tongue appearing at Ω0 = 2 + β0 (not shown).

Finally for the libration forcing it is possible to partially remove the effect of dynamical
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Figure 14. Growth rates of instabilities obtained for synchronised bodies Ω0 = 1 and
pseudo-synchronised bodies with Ω0(e) given by the formula (5.3). Ratio σ/σwkb with σwkb

given by formula (4.3). Triaxial geometry a(t) = R
√

1 + βab(t), b(t) = R
√

1− βab(t) and

c(t) = [a(t)b(t)]−1 with R = Rm + 0.05.

tides. The tidal torque averaged over weakly eccentric orbits (e→ 0) vanishes for Ω0 = 1.
However it no longer holds for eccentric orbits. Following Hut (1981), the tidal torque
averaged over an eccentric orbit of eccentricity e vanishes when

Ω0(e) =
(1 + 3e2 + 3

8e
4)(1− e2)3/2

1 + 15
2 e

2 + 45
8 e

4 + 5
16e

6
= 1− 6e2 +O(e3). (5.3)

When Ω0 is given by the expression (5.3), the body has reached a pseudo-synchronised
state. Pseudo-synchronisation is an important process in the dynamics of binary systems
(e. g Hut 1981, 1982). Indeed pseudo-synchronisation proceeds much faster than circular-
isation of the orbits (Zahn 2008). So the fluid spin rate of a celestial body in an eccentric
orbit would tidally evolve towards pseudo-synchronisation (5.3), while the orbit remains
eccentric of orbital period 2π/Ω0.

We show in figure 14 the growth rates σ, normalised by the growth rates of the classical
LDEI given by the local formula (4.3). We consider both the synchronised case Ω0 =
1 and the pseudo-synchronised case Ω0(e) given by formula (5.3). When the pseudo-
synchronisation is reached, the growth rates remain bounded within the range σ/σwkb 6 3
for β0 6 0.3. A normalisation with respect to the TDEI (see the formula C 2 in appendix
C.1) leads to erroneous growth rates for pseudo-synchronised bodies. So we conclude
that the LDEI formula (4.3) gives a good estimate of the growth rates of orbitally driven
instabilities in pseudo-synchronised bodies. Instead for synchronised states (Ω0 = 1) the
instabilities can be much more vigorous than those predicted by the local formula (4.3),
with σ/σwkb > 10 if ∆βab/β0 > 1 (as previously discussed in §4.2).

Therefore the net non-zero tidal torque operating along eccentric Kepler orbits is
responsible for the enhancement of the instabilities at Ω0 = 1. A similar effect also
exists at Ω0 = 2 + β0. So it proves that the dynamical tides are essential to explain the
observed enhancing of the growth rates. For the particular case of pseudo-synchronised
orbits (5.3), the effects of dynamical tides do not overcome the ones of equilibrium tide
on the fluid instabilities, as shown in figure 14. The onset of instabilities in pseudo-
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synchronised bodies is well predicted by the local analysis of the LDEI (4.3). So the
quantitative predictions of Cébron et al. (2013) for the onset of the elliptical instability
in bloated pseudo-synchronised hot Jupiters, based upon the formula C 2), may have to
be reassessed.

6. Conclusion and perspectives

6.1. Physical implications

Rotating fluid ellipsoids have been the subject of many works, going back to Riemann
(1860). Their stability is affected by free-surface perturbations, associated with surface
gravity modes, and internal hydrodynamic perturbations. Surprisingly, free-surface per-
turbations weakly affect the stability of fluid ellipsoids (Lebovitz & Lifschitz 1996a;
Barker et al. 2016; Barker 2016a). Thus their stability is mainly governed by flow
instabilities. Because the viscosity is extremely small in astrophysical bodies, an inviscid
analysis is physically relevant. Previous hydrodynamic studies have to be completed,
because Lebovitz & Lifschitz (1996b,a) consider isolated ellipsoidal fluid masses and
Barker et al. (2016); Barker (2016a) ellipsoids moving on circular orbits.

To simplify the problem, we have considered only the case where the mass of the
attractor is much larger than the mass of the companion body. It is the simplest
framework to model two-body systems such as synchronised moons around planets,
gaseous extrasolar planets (Hot Jupiters) around stars or low massive stars orbiting
around massive attractors. The general two-body problem could also be tackled (e.g. a
binary stellar system), solely by changing the hydrostatic estimation of the equatorial
ellipticity in formula (2.6). The radius r(t) has to be replaced by the time-dependent
distance between the centres of mass of the two bodies, which are both moving on
eccentric orbits. We are confident that our main findings will not change qualitatively in
that configuration.

We have revisited the hydrodynamic instabilities of homogeneous, incompressible and
rotating ellipsoidal fluid masses subjected to a disturbing tidal potential. Several studies
are devoted to the stability of fluid ellipsoids subjected to a tidal potential generated by
orbital motions on circular orbits (Aizenman 1968; Cébron et al. 2012a, 2013; Barker
et al. 2016). Thus our primary purpose was to study how the hydrodynamic stability of
fluid ellipsoids is modified by considering a tidal potential generated by orbital motions
on eccentric Kepler orbits. Our study is complementary to the hydrodynamic stability
analysis of Barker (2016a) of Roche-Riemann ellipsoids on circular orbits. We recover
all the limiting cases of ellipsoidal flow instability (Lebovitz & Lifschitz 1996b,a; Cébron
et al. 2013; Barker 2016a) and unify them into a global framework.

We may summarise our rather unexpected results in the following way. First, the
classical TDEI is unaffected by the dynamical tides for retrograde eccentric orbits for
(1 + β0)(β0 − 1) < Ω0 6 0 (outside of the forbidden zone). Second, instabilities excited
on moderately eccentric orbits can have larger growth rates than those on nearly circular
orbits. Indeed dynamical tides are responsible for the enhancing of the vigour of the
TDEI near the 2:1 spin-orbit resonance (Ω0 ' 2) and of the LDEI (Ω0 = 1). Finally,
fluid ellipsoids exhibit new fluid instabilities which are triggered within the forbidden
zone of the classical TDEI for retrograde (Ω0 6 (1 + β0)(β0− 1)) and prograde (Ω0 > 3)
orbits. All these findings show that dynamical tides can drive new instabilities in fluid
bodies moving on eccentric Kepler orbits.

We have updated the picture of the linear stability of tidally disturbed fluid ellipsoids.
A complete view emerges now. They are prone to various local and global inviscid
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Stars e Ps [d] Porb [d] Ω0 = Ps/Porb ∆βab/β0

WASP-17 0.028 10 -3.73 -2.68 0.17
WASP-10 0.057 11.90 3.09 3.85 0.35
GJ 674 0.07 34.80 4.69 7.42 0.43
HAT-P-1 0.067 26.60 4.46 5.96 0.41
WASP-14 0.087 13.5 2.24 6.03 0.54

Table 1. Orbital parameters of some stars with companions orbiting on eccentric Kepler orbits.
Ps = 2π/Ωs is the spin period (in days) and Porb = 2π/Ωorb the orbital period (in days).
The last column ∆βab/β0 is defined by formula (4.4). The given stars are located within the
forbidden zone FZβ0 of the classical TDEI. Adapted from Cébron et al. (2013). Data have been
updated from http://exoplanet.eu/.

instabilities. On one hand, spheroids are only unstable against free-surface perturbations,
associated with surface gravity modes (Lebovitz & Lifschitz 1996a; Barker et al. 2016).
Considering tidal effects generated by orbital motions on circular orbits, all ellipsoids
(the Roche-Riemann ellipsoids) are unstable against the elliptical instability when (1 +
β0)(β0−1) < Ω0 < 3, as predicted by previous analyses (Cébron et al. 2012a, 2013; Barker
2016a). Taking into account instabilities of all possible spatial complexity handled by the
local and global theories, the parameter space of fluid ellipsoids subjected to a varying
tidal torque (eccentric orbits) is unstable against orbitally driven instabilities for both
retrograde and prograde eccentric orbits within the range −10 6 Ω0 6 10 (see figure 12).
Although not considered in our computations, we also expect them to be intrinsically
unstable on a wider range of |Ω0| (at least for large enough eccentricities).

Our findings may have important consequences for the tidal dissipation responsible for
the circularisation and synchronisation of two-body systems. Some stars, located within
the forbidden zone FZβ0 of the classical TDEI and with companions orbiting on eccentric
Kepler orbits, are reported in table 1 as example. The effects of dynamical tides are not
negligible (∆βab/β0 ∼ 0.54 for WASP-14). Consequently we expect these stars to be
unstable for the orbitally driven instability (in spite of their presence in the classical
forbidden zone). Two tidal dissipation processes have received most attention, namely
tidal friction of the equilibrium tide (Zahn 1966) and tidal friction of eigenmodes forced
by dynamical tides (Zahn 1975; Ogilvie & Lin 2004; Wu 2005a,b; Ogilvie & Lin 2007;
Goodman & Lackner 2009; Ogilvie 2009; Rieutord & Valdettaro 2010). The elliptical
instability is thus an alternative and promising mechanism (Rieutord 2004, 2008).

6.2. Perspectives

The nonlinear outcome of these fluid instabilities remains elusive in astrophysical
bodies. Indeed it is not clear whether turbulent flows can develop and sustain an effective
mixing in fluid interiors. A parameter survey of their nonlinear behaviours, using efficient
numerical simulations, is necessary. For instance Le Reun et al. (2017) show that the
saturation of the elliptical instability generates turbulence exhibiting many signatures
of inertial wave turbulence, a regime possibly expected in planetary interiors. Barker
(2016a) also suggests that the elliptical instability may explain the spin synchronisation
and circularisation of the shortest period hot Jupiters.

Future work is also required to adopt more realistic interior models. In particular the
behaviour of these instabilities when a stable stratification (like a stellar radiative zone) is

http://exoplanet.eu/
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present is almost unknown, as well as the role of compressibility. For instance stars of mass
larger than 1.8 solar mass are stably stratified in their outer layers. Circularisation and
synchronisation are also effective for these stars (e.g. Giuricin et al. 1984). Depending on
the considered density profile, the stratification does favour or not the elliptical instability
(Kerswell 1993a; Miyazaki 1993; Le Bars & Le Dizés 2006; Cébron et al. 2010c; Clausen
& Tilgner 2014). However a unifying theory is still missing and has to be addressed.
In addition, the capability of tidal effects to drive self-sustained magnetic field is still
controversial. Tidal dynamos were first addressed by Barker & Lithwick (2013); Cébron
& Hollerbach (2014), neglecting density effects.

Finally we have developed two open source numerical codes that may be useful for
future linear stability studies of incompressible fluids. They are quite general and can
be applied to several other situations. They are freely available for the community at
https://bitbucket.org/vidalje/. On one hand with the SWAN code, local stability
analyses of any time-dependent basic flow in unbounded fluids can be performed. On
the other hand, global stability analyses of any mechanically driven flow of uniform
vorticity in ellipsoids can be carried out with the SIREN code. Unlike previous studies,
our code also handles arbitrary (time-dependent) ellipsoidal shapes (not limited to small
departures from the sphere). Indeed, it handles ellipsoidal perturbations of unprecedented
small wavelengths. We have considered in the present study polynomial degrees as large
as n = 25. It corresponds to more than 6000 basis elements.

A fork of the SIREN code has been used to compute (i) the tilted hydromagnetic
eigenmodes of a fluid in a corotating ellipsoid (Vidal et al. 2016) and (ii) the viscous
decay factors of inertial modes (Lemasquerier et al. 2017). Computing the inertial modes
is the first step towards a complete and self-contained viscous stability analysis of inertial
instabilities in arbitrary rotating ellipsoids. Indeed, viscous effects can be introduced as
a correction of inviscid inertial modes. This viscous correction is required to compare
theoretical predictions with simulations or experiments, all performed at finite values of
viscosity and deformation.
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Appendix A. Polynomial basis of Vn

Wu & Roberts (2011) have proposed an algorithm to build the basis elements of Vn.
We outline here the method. We consider first a spherical container (a = b = c). The
vorticity field is decomposed into poloidal Pw(r) and toroidal Tw(r) scalars as

∇× u = ∇× (Twr) +∇×∇× (Pwr) . (A 1)

such that it obeys the solenoidal condition. Vorticity ∇ × u is then projected onto
the finite-dimensional vector space Wn−1, made of Cartesian homogeneous monomials
xiyjzk of degree n − 1 = i + j + k (Vantieghem 2014). Note that an element of Wn

is solenoidal but does not necessarily satisfy the impermeability condition. Pw(r) is a

https://bitbucket.org/vidalje/
http://matplotlib.org/
http://matplotlib.org/
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homogeneous polynomial of degree n while Tw(r) is a homogeneous polynomial of degree
n−1. Similarly the velocity field u(r) is expanded into poloidal Pu(r) and toroidal Tu(r)
scalars as

u(r) = ∇× (Tur) +∇×∇× (Pur) . (A 2)

Since there is an isomorphism between vector spaces Wn−1 and Vn (Vantieghem 2014),
we expand u onto Vn such that velocity scalars are related to the vorticity scalars by

Tu = Pw (A 3)

and

∇2Pu = −Tw with L2Pu = 0 at r = 1, (A 4)

where L2 is the angular momentum operator

L2 =

(
y
∂

∂z
− z ∂

∂y

)2

+

(
z
∂

∂x
− x ∂

∂z

)2

+

(
x
∂

∂y
− y ∂

∂x

)2

. (A 5)

The difficult part of the above algorithm is to solve equations (A 4). However any
homogeneous polynomial of degree p can be decomposed into harmonic homogeneous
polynomials of maximum degree p, which are spherical harmonics (Backus et al. 1996).
So we project Tw(r) of degree n− 1 onto spherical harmonics as

Tw(r) = rn−1
n−1∑
l=1

l∑
m=−l

tml Yml , (A 6)

where Yml are normalised spherical harmonics of degree l and order m and {tml } the set of
spherical harmonics coefficients. The degree l = 0 is omitted because of the incompressible
condition. Poloidal scalar solution of (A 4) is of the form

Pu = PP + PH , (A 7)

with PP a particular solution of (A 4) and the general solution of the homogeneous
Laplace equation ∇2PH = 0. From the expansion (A 6), a particular solution of equation
(A 4) in spherical harmonics expansion is

PP (r) = rn+1
n−1∑
l=1

l∑
m=−l

−tml
(n+ 2)(n+ 1)− l(l + 1)

Yml . (A 8)

The homogeneous solution has the general form

PH(r) = rn+2
n+2∑
l=1

l∑
m=−l

pml Yml , (A 9)

where the set of coefficients {pml } is determined by the boundary condition

L2PP = −L2PH . (A 10)

Once the coefficients are known we can transform the spherical harmonics expansion
back into a Cartesian form. Finally, the Poincaré transform (Poincaré 1910)

(x, y, z)←
(x
a
,
y

b
,
z

c

)
and (ux, uy, uz)←

(ux
a
,
uy
b
,
uz
c

)
(A 11)

is used to convert the solutions in spheres to solutions in ellipsoids of axes (a, b, c).
The implementation of Wu & Roberts (2011) relies on symbolic computations of (A 6),

(A 8) and (A 9). Basis elements up to degrees n = 5 are explicitly given in their Appendix
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A. However, their symbolic algorithm breaks down for degrees n > 6, because their
algorithm seems to fail to compute the spherical harmonic coefficients tml for higher
degrees. We have extended their method to build the basis for degrees n > 6. It is
achieved by combining symbolic and numerical calculus in Python. The algorithm is
also parallelised to reduce the computation time. With our implementation we can reach
degrees n > 6, because spherical harmonics coefficients are only computed numerically
with the open-source library SHTNS (Schaeffer 2013). The comparison between (3.4)
and the elements obtained above shows that the two sets are equivalent, changing only
by linear combinations of the basis elements.

In practice, the generation of basis elements is not restricted to a particular degree but
we found that the generation of symbolic matrices M , N and L becomes impractical for
degrees n > 18 because of high memory usage (' 200 GB). Consequently we have
adopted the algorithm of Lebovitz (1989) for high degrees numerical computations,
reaching degrees as high as n = 25 (. 20 GB). The limiting factor is then the CPU
time to solve the stability problem.

Appendix B. Precessing flow in spheroidal containers

We revisit here the precession-driven instabilities in spheroidal geometry (a = b 6= c),
studied by Kerswell (1993b) and Wu & Roberts (2011). We use this case as a cross-
benchmark for our global and local analyses. We work in the precessing frame, where
the vertical axis coincides with the spheroidal axis of symmetry. We assume a precession
angle of π/2, such that the body rotation vector is ΩB = ε x̂, with ε the dimensionless
amplitude of the precession forcing (Poincaré number). The precession-driven basic flow
is (Kerswell 1993b; Wu & Roberts 2011)

U = −y x̂+ [x− µ(1 + η)z] ŷ + µy ẑ, (B 1)

with η = 1/c2 − 1 the polar flattening and µ = 2ε/η a parameter which measures the
ratio of the elliptical distortion over the shearing of the streamlines.

As shown by Kerswell (1993b), no instability is associated with the linear basis (n = 1).
Wu & Roberts (2011) extended the work of Kerswell (1993b) by considering basis up to
degree n = 6. Results for the n = 2 and n = 6 bases are shown in figures 15 (a) and
(b), which survey the stability of (B 1) in the plane (η, ε). The stability maps are in
perfect agreement with the previous studies. Tongues of instabilities emerge from the η
axis. Tongues are associated with two types of instability, namely elliptical and shear
instabilities (Kerswell 1993b). The former have growth rates proportional to ε2 and the
latter to ε. Showing isocontours of σ/ε makes the elliptical tongues thicker than the
shearing ones. When n increases, the maximum growth rate of oblate spheroids (η > 0)
first increases quickly. When n is large enough (n > 10) the increase slows down and the
growth rates reach constant values when n increases further. On the other hand prolate
spheroids (η < 0) have already large growth rates close to 1 for large ε and the maximum
values do not really evolve with n. As noticed by Wu & Roberts (2011), the progression
of unstable tongues for oblate spheroids (η > 0) toward the spherical case η = 0 is quicker
than for prolate spheroids (η < 0) when n increases.

Global analysis at maximum degree n = 15 is shown in figure 15 (c). In comparison
with n = 6, new tongues of instabilities appear almost everywhere, filling the map and
making the identification of the nature of the unstable tongues difficult. Valleys of less
unstable modes are found for prolate and oblate ellipsoids (white dashed lines). Global
analysis is in excellent agreement with the local analysis shown in figure 15 (d). This
benchmark cross-validates our two numerical codes.
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(a) Basis n = 2 as in Kerswell (1993b) (b) Basis n = 6 as in Wu & Roberts (2011)

(c) Basis n = 15 (d) Numerical local analysis

Figure 15. Survey of the stability of the precessing basic flow (B 1) in the (η, ε) plane. Color
map shows the ratio σ/ε. The same color scale is used for the four plots. White areas correspond
to marginally stable regions. However the precessing basic flow (B 1) is divergent for η = 0
(resonance). Hence its stability has not been studied for η = 0 (horizontal white solid line). In
(c,d), tilted white dashed lines are given by η = ±2ε.

Finally figures 15 (c,d) draws the possible existence of global instabilities for the limit
of very small oblateness relevant in geophysics. For instance the Earth’s liquid core has
a flattening of η ' 0.005. We push up the maximum degree to n = 25 in figure 16 and
zoom in on the geophysical range of parameter space. We observe instability for oblate
spheroid of oblateness as small as the one of the Earth’s core. The amplitude of precession
ε is still rather large to be consistent with geophysical values (ε ' 10−7), but it is likely
that an unstable area appears for smaller ε when n is further increased as predicted by
the local analysis in the weak forcing limit (Kerswell 1993b).

Appendix C. Tidally driven elliptical instability

C.1. Asymptotic growth rate

Le Dizès (2000) uses a multiple-scale analysis in β0 to solve the local equations (3.14).
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Figure 16. Survey of the stability of the precessing basic flow (B 1) in the (η, ε) plane. Basis
n = 25 (zoom in). The Earth oblateness (η = 0.005) is shown by the black dashed line. Colour
map shows the ratio σ/ε. White areas correspond to marginally stable regions. However the
precessing basic flow (B 1) is divergent for η = 0 (resonance). Hence its stability has not been
studied for η = 0.

The local growth rate σwkb is, at leading order (equation 32 of Le Dizès 2000),

σwkb

|1−Ω0|
= max

θ0

1

4

√
(1 + cos θ0)

4
β2
0 − 4

[
2− 4

(
1 + Ω̃0

)
cos θ0

]2
+O

(
β2
0

)
, (C 1)

with Ω̃0 = Ω0/(1 − Ω0) and θ0 the colatitude angle between the vertical axis ẑ and
the initial wave vector k0, ranging in [0, π]. Angle θ0 is chosen to maximise σ. In the
asymptotic limit β0 → 0, the elliptical instability only exists in the allowable range
−1 < Ω0 < 3 (Craik 1989). Outside this range, the flow lies in the forbidden zone of
the TDEI for β0 → 0, denoted FZ0. As a result of geometric detuning effects the classical
TDEI is excited on a wider allowable range for finite values of β0 introduced in the main
text. Values outside this range define the classical forbidden zone for finite β0, denoted
FZβ0

in the main text. In the limit β0 → 0, the growth rate (C 1) reduces to the formula
originally devised by Craik (1989)

σwkb

|1−Ω0|
=

(3 + 2Ω̃0)2

16(1 + Ω̃0)2
β0, (C 2)

for cos θ0 = 1/[2(1 + Ω̃0)] which maximises σwkb. Finally in the allowable range (β0 +
1)/(β0 − 1) < Ω0 6 −1, the formula (C 1) gives a non-zero growth rate of (equation 44
of Le Dizès 2000)

σwkb

|1−Ω0|
=

√
β2
0 − 4(Ω̃0 + 1/2)2 (C 3)

for θ0 = 0. When Ω0 > 3, formula (C 1) gives σwkb = 0, such that there is no TDEI
predicted by the local analysis (at this order in β0).

Thus the local analysis of Le Dizès (2000) given by the general formula (C 1) does
predict that the TDEI at finite β0 extends well beyond the region that is unstable at
β0 → 0, i.e. when −1 < Ω0 < 3. Larger values of β0 lead to more unstable couplings.
As explained by Bayly (1986); Waleffe (1990); Le Dizès (2000); Kerswell (2002), the
elliptical instability results from a parametric resonance of plane waves with the basic
flow. Resonances have finite widths which increase with β0. Thus the elliptical instability
can be excited even when exact resonance conditions are not satisfied, giving a wider
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(b) β0 = 0.6

Figure 17. Comparison of the growth rates of the TDEI between theoretical formula (C 1) and
numerical solutions of equations (3.14). Shaded areas are stable regions (forbidden zone FZβ0).
Numerical solutions have been computed with a Floquet analysis.

unstable region in parameter space. This coupling effect of β0 is highlighted in figure 4,
already giving good matching between local and global results at degree n = 15. Note
that this effect has recently been put forward by Barker (2016a), as shown in §C.2.

Finally note that in figure 4 the global analysis slightly predicts instabilities when
Ω0 > 3 while the asymptotic local analysis does not. It is a higher-order effect of finite
β0, which is not taken into account in the asymptotic formula (C 1). Indeed we compare
in figure 17 local formula (C 1) against numerical solutions of local equations (3.14). At
small β0, analytical and numerical solutions are indistinguishable. However for larger β0,
the formula (C 1) under-predicts the upper bound of Ω0 of the allowable region where
the instability occurs (near Ω0 = 3), because the assumption of small β0 � 1 is no longer
satisfied.

C.2. Figures of equilibrium

We consider here a self-gravitating fluid domain on a circular orbit (e = 0) but with
semi-axes (a, b, c) which are no longer independent of Ω0 (as opposed to §4.1). Barker
et al. (2016) and Barker (2016a) have recently considered this particular case of TDEI
in figures of equilibrium. The equilibrium tide is related to Ω0. To compare our results
with theirs, we choose the inverse of the dynamical frequency ω−1d as time unit, with
ωd = (4πGρ/3)1/2 and G the gravitational constant. We introduce two new dimensionless
parameters, namely the fluid spin rate Ω∗s = Ωs/ωG and the orbital spin rate Ω∗0 = Ω∗sΩ0

(note that Ω0 is dimensionless). The tidal amplitude A is (Barker 2016a)

β0 =
3A

2 [1− γ2 − (Ω∗0)2]−A, (C 4)

with γ = Ω∗s −Ω∗0 the differential rotation. The fluid ellipsoid semi-axes are a =
√

1 + β0,
b =
√

1− β0 and

c2 =
2
[
(2A+ γ2 + (Ω∗0)2 − 1)(A− γ2 − (Ω∗0)2 + 1) + f

]
(A+ 1)[A+ 2(γ2 + (Ω∗0)2 − 1)]

, (C 5)
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(a) Local formula (C 8) (b) Global analysis (n = 15)

Figure 18. Survey of the parameter space (Ω∗
s , Ω

∗
0 ) for the elliptical instability as studied

by Barker (2016a); Barker et al. (2016). Color map shows log10(σ) and is saturated for ratio
smaller than 10−3. White areas correspond to undefined ellipsoidal figures of equilibrium such
that β0 6 0 or β0 > 1. Tidal amplitude A = 0.025. The elliptical instability in the limit β0 � 1
(Craik 1989) has positive growth rates above the dashed black lines for Ω∗

0 ∈ [−Ω∗
s , 3Ω

∗
s ]. Blue

solid line represent solutions of the equation Ω∗
s = −Ω∗

0 (2b/a−1) devised by Lebovitz & Lifschitz
(1996b); Barker et al. (2016).

with

f = 2γΩ∗0

√
[1− 2A− γ2 − (Ω∗0)2] [1 +A− γ2 − (Ω∗0)2]. (C 6)

Barker et al. (2016); Barker (2016a) find that the hydrodynamic instabilities in ellipsoids
with rigid boundaries are quantitatively similar to the ones in ellipsoids with realistic free
surface deformations. Consequently the results obtained with rigid boundaries can also
be applied to stellar configurations.

Lebovitz & Lifschitz (1996b); Barker et al. (2016) report a violent instability, called
”stack of pancakes”-type instability (SoP), for negative Ω∗0 if the tidal amplitude is
sufficiently large. The latter instability, located outside of the unstable range −Ω∗s <
Ω∗0 < 3Ω∗s of the elliptical instability (Craik 1989), occurs in the interval

− Ω∗s
2b/a− 1

6 Ω∗0 6 − Ω∗s
2a/b− 1

, (C 7)

which is centred on Ω∗s = Ω∗0 This instability is already highlighted by Le Dizès (2000) as
an effect of finite β0 (see discussion in §4.1). The local formula (C 1) of Le Dizès (2000)
can be written in the appropriate dimensionless form

σ

|γ| = max
θ0

1

4

√
(1 + cos θ0)

4
β2
0 − 4

[
2− 4

(
1 +

Ω∗0
γ

)
cos θ0

]2
+O(β2

0). (C 8)

In figure 18, we compare the global analysis at degree n = 15 and the local formula
(C 8). The agreement between the two approaches is quite good (except near Ω∗s > 0.95).
However for larger A, asymptotic formula (C 8) under-predicts the boundary of the region
in which the instability is present. Numerical solutions of local stability equations (3.14)
are in better agreement with global results (Barker et al. 2016). It is also better explained
by formula (C 7), which does not assume β0 → 0.
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(a) n = 3 (b)

Figure 19. Comparison between the global analysis and direct numerical simulations in
COMSOL at β0 = 0.3. (a) Survey of the stability of the orbitally driven flow (2.13) in the
plane (e/emax, Ω0) for degree n = 3. Isocontours of the growth rate σ are shown, saturated at
σ > 0.6. White areas correspond to marginally stable regions. The containers considered are
oblate with R = Rm + 0.05. Vertical black line corresponds to the synchronised case (Ω0 = 1)
driving the LDEI (see §4.2). The horizontal line e = 0 corresponds to the TDEI (see §4.1).
Vertical dashed black lines are the bounds of the forbidden zone FZβ0 of the TDEI valid for
e = 0 and βab = β0. Dashed black lines demarcate the two unstable tongues of the spin-over
mode n = 1. Blue circles: stable at Ek = 5.10−3. Red squares: unstable at Ek = 5.10−3. Blue
stars: stable at Ek = 2.10−3. Red crosses: unstable at Ek = 2.10−3. (b) Some unstable flows
computed in COMSOL in a meridional plane.

Appendix D. Direct numerical simulations of orbital flows

The global analysis gives sufficient conditions for inviscid instability, associated with
the most unstable inviscid flows. However we could have doubts about their existence in
real viscous flows. So we compare our global results against direct numerical simulations of
the stability equation (2.15). Unlike the global and local stability methods, we reintroduce
the viscous term Ek∇2u and nonlinear term (u · ∇)u in the stability equation (2.15).
Indeed it is not feasible to carry out three-dimensional numerical simulations in the
inviscid linear regime. The impermeable boundary condition u · n = 0 is supplemented
with the stress-free boundary condition

n×
[
n ·
(
∇u+ (∇u)T

)]
= 0. (D 1)

Stress-free boundary condition (D 1) avoids expensive computations to solve thin viscous
boundary layers. This is also the astrophysically relevant viscous boundary condition. We
keep the value of the Ekman number fixed at Ek = [2.10−3, 5.10−3]. With this condition,
we isolate inertial instabilities we are interested in (Lorenzani & Tilgner 2003; Vantieghem
et al. 2015). Indeed mechanically driven viscous and centrifugal instabilities, which are
often triggered in the boundary layers (e.g. Lorenzani & Tilgner 2001; Noir et al. 2009;
Sauret et al. 2012), are ruled out with the stress-free condition (D 1).

Numerical simulations cannot here benefit from a axisymmetric geometry to use fast
and accurate spectral methods usually employed in global astrophysical simulations. We
need also to adapt the numerical mesh at each time step. We solve stability equations
(2.15) - (D 1) for the perturbation upon the basic flow in their weak variational form with
the commercial parallelided finite element code COMSOL, previously used in numerical
studies of tidal, librating and precessing flows (e.g. Cébron et al. 2010a,b, 2012b; Noir
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& Cébron 2013). An unstructured mesh with tetrahedral elements is initially created.
The mesh element type employed is the standard Lagrange element P1 - P2, which is
linear for the pressure field but quadratic for the velocity field. The total number of
degrees of freedom ranges between 50 000 and 300 000. We use the implicit differential
algebraic solver (IDA solver), based on backward differentiation formula (Hindmarsh
et al. 2005). At each time step the system is solved with the sparse direct linear solver
PARDISO (Schenk & Gärtner 2004). No stabilisation technique is used. We solve for
the mesh motion using an arbitrary Lagrangian Eulerian (ALE) method, which adapts
the numerical mesh at each time step to adjust the ellipsoidal boundary. In practice the
ellipsoidal domain is fixed at the origin and the elements are displaced in each Cartesian
direction by amounts

[δx, δy, δz] (t) =

[
x(0)

(
a(t)

a(0)
− 1

)
, y(0)

(
b(t)

b(0)
− 1

)
, z(0)

(
c(t)

c(0)
− 1

)]
(D 2)

where (a(0), b(0), c(0)) are the semi-axes of the ellipsoidal domain at initial time and
(x(0), y(0), z(0)) the initial position of a given mesh element. The extra computational
work per time step makes the code significantly more computationally demanding than
a fixed grid version. ALE method has recently been used by Barker (2016a) in nonlinear
simulations of tidal flows. We have checked that our results are not significantly affected
by changing the mesh, the size of the domain or the maximum time step.

Figure 19 shows the comparison between the global analysis and direct numerical
simulations in COMSOL at β0 = 0.3. Formally, the global method cannot predict
accurately neither the viscous growth rate nor the viscous unstable flow of a given spatial
complexity. However the viscosity selects the spatial complexity of real viscous flows. It
mostly enters as a damping term in the stability problem of tidally driven basic flows
(e.g. Lacaze et al. 2004; Le Bars et al. 2010). So we can heuristically mimic the leading
order viscous damping by varying the maximum polynomial degree n. That is the reason
why in figure 19 (a) we observe that numerical simulations are in good agreement with
the global analysis at n = 3, outside and within the forbidden zone. The tongue located
around Ω0 = 3 is not recovered in the simulations, because the Ekman number is too
high in the simulations compared to the expected inviscid growth rate. This tongue could
be obtained in the simulations by decreasing Ek.

Finally in figure 19 (b) we show some of the most unstable flows in the simulations.
The flow Ω0 = −3 has a SoP structure, as predicted by the global and local analyses in
§5. Similarly the flow at Ω0 = −2.5 is a spin-over mode, because the numerical point lies
within the spin-over tongue in figure 19 (a).
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