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Because of their spin and tidal interactions, fluid layers are ellipsoidal in most celestial
bodies, such as planets, moons or stars. This departure from a spherical shape can lead
to inertial instabilities, and thus volume-filling turbulence. Theoretical studies mainly
consider weakly deformed spheres, while experimental or numerical studies use strongly
deformed ellipsoids because of technical constraints. To bridge the gap, we present a
general and versatile computational framework to perform linear global stability analysis
of incompressible flows in arbitrary rotating ellipsoids. We present the uniform vorticity
basic flow driven by a mechanical forcing in the limit of vanishing viscosity. Then we
describe the inviscid stability analysis method. The latter gives the growth rate and
velocity field of the unstable flow. Our framework relies on both symbolic and numeric
computations to handle global perturbations of unprecedented complexity. It provides a
unified understanding of inertial instabilities in rotating ellipsoids, bringing together and
extending several previous studies under a common framework. We apply our method
to the case of an orbiting fluid ellipsoid. We recover the two limiting cases, namely the
tidally-driven and libration-driven elliptical instabilities. Finally, the general case of an
orbiting body on an eccentric Kepler orbit is considered. In this case, several forcing
frequencies are present and the ellipsoidal shape of the fluid body evolves in time. These
effects give birth to new vigorous orbitally-driven elliptical instabilities.

1. Introduction

1.1. Geophysical context

Because of gravitational torques generated by their orbital partners, most planets
and moons have time-dependent spin rates and ellipsoidal shapes, which disturb their
rotational dynamics. It bears the name of mechanical or harmonic forcing (Le Bars et al.
2015), such as tides or librations (oscillations of the figure axes of a body with respect to a
given mean rotation axis). Librations often occur in synchronized moons as for the Earth’s
moon (Kopal 1966). Precession refers to the case whereby the instantaneous rotation
vector rotates itself about a secondary axis that is fixed in an inertial frame of reference
(Poincaré 1910). Knowledge of the mechanical forcing and measures of the rotational
dynamics of a celestial body allows to infer its internal structure (Dehant & Mathews
2015). Mechanical forcings also play an important role in the dynamics of planetary and
stellar liquid interiors, extracting a part of the available rotational energy to sustain
large-scale flows (Tilgner 2015) and eventually dynamos. Malkus (1963, 1968, 1989) first
pointed out the relevance of harmonic forcings to drive planetary core flows, suggesting
that the Earth’s magnetic field is maintained by luni-solar precession. Using energy and
power considerations, Kerswell (1996) showed that turbulent precession-driven flows are
sufficiently vigorous to potentially sustain a dynamo. Numerical dynamos driven by tides
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(Barker & Lithwick 2013; Cébron & Hollerbach 2014) and precession (Tilgner 2005, 2007;
Wu & Roberts 2009; Goepfert & Tilgner 2016) have been found.

1.2. Inertial instabilities

More than a century ago, Hough (1895), Sloudsky (1895) and Poincaré (1910) assumed
that precession-driven flows depend linearly on Cartesian space coordinates. It simplifies
the mathematical complexity of the problem, because flows are then reduced to a time-
dependent uniform vorticity (Roberts & Wu 2011). The latter is the order zero response of
a rotating fluid enclosed in rigid ellipsoids undergoing mechanical forcings, as confirmed
by theoretical and numerical studies of precession (Bondi & Lyttleton 1953; Stewartson
& Roberts 1963; Roberts & Stewartson 1965; Busse 1968; Lorenzani & Tilgner 2001;
Noir & Cébron 2013). Such nearly uniform vorticity flows are also observed in laboratory
precession experiments in the laminar regime (Pais & Le Mouël 2001; Noir et al. 2003).
Similar conclusions are drawn for librating flows, in both theoretical (Zhang et al.
2012; Vantieghem et al. 2015), numerical (Favier et al. 2015) and experimental studies
(Grannan et al. 2014).

However a basic flow of uniform vorticity is actually realized only if it is dynamically
stable, i.e. if no inviscid perturbation can grow upon the basic state (Kerswell 1993).
Otherwise, the basic flow is dynamically unstable and is prone to inertial instabilities.
Uniform vorticity basic flows are intrinsically unstable in some regions of the parameter
space, as observed for precession-driven flows (Kerswell 1993; Cébron et al. 2010b; Wu
& Roberts 2011), libration-driven flows (Cébron et al. 2012b; Vantieghem et al. 2015)
and tidally-driven flows (Kerswell & Malkus 1998; Cébron et al. 2010a; Le Bars et al.
2010; Barker 2016). Finally inertial instabilities are the first ingredient to explain the ob-
served transition towards mechanically-driven turbulence in experiments and simulations
(Grannan et al. 2014; Favier et al. 2015; Grannan et al. 2016).

1.3. Motivations

Previously cited theoretical works have studied inertial instabilities (i) in containers
departing very weakly from spheres, (ii) for a subset of simple mechanical forcings and
(iii) for rigid ellipsoidal containers. In contrast, (i) laboratory experiments and simula-
tions depart strongly from spherical containers to overcome viscous effects and celestial
bodies have mainly triaxial shapes, (ii) celestial bodies are subject to a combination of
mechanical forcings and (iii) celestial bodies may deform in time to adjust to gravitational
constraints. In this work we relax all these assumptions to perform the inviscid stability
analysis of mechanically-driven flows in triaxial ellipsoids subject to arbitrary mechanical
forcings.

To take into account the ellipsoidal geometry we perform a global stability analysis.
It relies on a Galerkin expansion of the perturbations onto a basis which satisfies the
boundary condition(s). Finding an appropriate basis is a difficulty task. Furthermore,
complex basis often require advanced numerical schemes (Theofilis 2011). Ellipsoidal
harmonics, which are the eigenfunctions of the Laplace operator in ellipsoidal coordinates,
form a complete basis (Dassios 2012). Unfortunately, ellipsoidal harmonics have neither
explicit expressions, nor known recurrence relationships to generate them. Following
Lebovitz (1989) and Wu & Roberts (2011), we use instead a polynomial basis made
of Cartesian monomials of various degrees. This basis has two main advantages over
other ellipsoidal harmonics: (i) the Cartesian coordinate system is easier to tackle than
the ellipsoidal one, and (ii) the basis is explicit and can be generated for any polynomial
degree.
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Figure 1. (Left) Relevant rotation vectors: the figure axes rotation vector ΩB, the planetary
spin rotation vector ΩW and the deforming tidal field rotation vector ΩO, related to ΩB via
the planetary rheology. (Right) Physical interpretations of ΩW and ΩB Top: Equatorial slice of
the system at an initial time t = t0. The two (red) balls, fixed within the container, are reference
points aligned with the ellipsoidal axes at the initial time. At a next time t > t0 : the bottom
left shows the case ||ΩB|| = ||ΩW ||, whereas the bottom right shows the case ||ΩW || > ||ΩB||.

The paper is organized as follows. In section 2 we determine the uniform vorticity
basic flow, in the vanishing viscosity limit, driven by any mechanical forcing in arbitrary
ellipsoids. In section 3, we describe our method that combines symbolic and numeric
computations to extend to higher polynomial degrees the global stability analysis first
performed by (Gledzer & Ponomarev 1978, 1992). In section 4, we consider the stability of
a fluid in an ellipsoidal container moving along Kepler orbits and describe new orbitally-
driven elliptical instabilities (ODEI). We end the paper with a conclusion.

2. Governing equations for the basic flow

2.1. Model and forcings

We describe a simple model to capture the main dynamics of internal fluid layers
of planets and moons undergoing mechanical forcings. We consider a rotating fluid
domain (e.g. a planetary liquid core) and assume the fluid is incompressible, of uniform
density ρ and kinematic viscosity ν. This fluid domain is enclosed in an arbitrary solid
container (e.g. a planetary solid mantle). The shape of the container may depend on
time t. A flow is driven in the fluid cavity through mechanical coupling at its boundary.
The fluid boundary S is modeled as a triaxial ellipsoid of principal semi-axes denoted
(a(t), b(t), c(t)) and of volume 4πabc/3. The center of mass of the triaxial fluid cavity O
is chosen as the origin of our working frames.

Figure 1 (Left) depicts the physical situation, showing the planetary triaxial cavity
filled with fluid. Focusing on the fluid boundary S, we define two rotation vectors in the
inertial frame of reference considered here. The first one is the rotation vector ΩW(t)
of the boundary (mantle rotation vector in planetary terms). The plane perpendicular
to ΩW(t) and enclosing O is the equatorial plane. For planetary layers, this rotation
naturally leads to a centrifugal force. The latter generates an equatorial bulge and deforms
the boundary into a spheroidal (axisymmetric) fluid boundary. Besides, the tidal field due
to an orbiting companion generates a tidal bulge and the boundary becomes a triaxial
ellipsoid of semiaxes (a(t), b(t), c(t)). So we define a second rotation vector, denoted
ΩB(t), which describes the rotation of the principal figure semi-axes (a(t), b(t), c(t)) of
the ellipsoidal fluid domain. In the frame rotating at the spin velocity ΩB(t), the fluid
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boundary equation is

(S) :

(
x

a(t)

)2

+

(
y

b(t)

)2

+

(
z

c(t)

)2

= 1. (2.1)

Here, the semi-axes may change in time because of the time-dependence of the tidal
field (e.g. if the orbit of the orbiting companion is eccentric). Note also that the rotation
vector ΩB(t) of the figure axes is directly related to the orbital rotation vector ΩO(t)
of the orbiting companion. This relation depends among other things on the rheology of
the container, i.e. how quick does the solid shape respond to the internal and external
forcings. The orbital rotation vector defines the companion orbital plane, which is
orthogonal toΩO(t). These two rotation vectors are associated with two reference frames.
The body frame (also called frame of figure) is the frame rotating at ΩB(t), whereas the
mantle frame is rotating at ΩW(t) with respect to the inertial frame.

As a result, vector ΩB(t) corresponds to a block rotation of the ellipsoidal shape,
while vector ΩW(t) is the angular velocity of a material particle at the ellipsoidal
boundary. Figure 1 (Right) illustrates these differences. The equatorial slice of the system
is represented at two different times. At t = t0, two red dots are attached with the ellipse
made by a(t) and b(t). They may represent a geophysical feature of S, such as a mountain
ridge. At time t > t0, both the container and the mantle materials have rotated. Two
cases are drawn. If ||ΩB|| = ||ΩW ||, then the two points stay attached to the principal
axes. If ||ΩW || > ||ΩB||, then the figure axes rotate slower than the boundary. The two
dots are now displaced from the figure axes. It shows that the two rotation vectors play
a different role and must be distinguished in the general case.

In the following we choose L =
√

(a2 + b2)/2 as the length scale. We choose the time

scale Ω−1s , such that the time-averaged value of ||ΩW(t)|| in absence of any mechanical
forcing is unitary. For clarity, the dimensionless variables will be also noted as their
dimensional counterparts. In fluid mechanics studies, the knowledge of (a(t), b(t), c(t)),
ΩB(t) and ΩW(t) is sufficient to fully determine the forcing acting on the fluid. In
Appendix A we present some forcings previously used in fluid mechanics.

2.2. Uniform vorticity component of mechanically-driven basic flow

The knowledge of basic flow solutions of the governing Navier-Stokes equation is
essential to instability studies. We work in the body reference frame where the fluid
boundary is given by equation (2.1). Mechanical forcings drive a basic flow U(r, t),
which is incompressible (∇·U = 0) and satisfies the impermeability boundary condition
U · n = 0 at S, where n is the unitary outward vector normal to (S). Following the
seminal work of Poincaré (1910), we assume that U is a laminar flow of time-dependent
and uniform vorticity 2q. In the body frame these flows are of the form (Noir & Cébron
2013)

U =

 0 −2a2qz/(a
2 + b2) 2a2qy/(a

2 + c2)
2b2qz/(a

2 + b2) 0 −2b2qx/(b
2 + c2)

−2c2qy/(a
2 + c2) 2c2qx/(b

2 + c2) 0

 ·
xy
z

 (2.2)

with r = (x, y, z)T the position vector and (qx, qy, qz)
T the Cartesian components of

the time-dependent fluid rotation rate q. Basic flow (2.2) It is an exact solution of the
nonlinear, viscous, vorticity equation in the body frame with the boundary condition
U · n = 0. With such a boundary condition, the permanent regime of the inviscid basic
flow is entirely dependent on the chosen initial condition (see Tilgner 2015). In order to
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obtain a unique solution, independent of the initial vorticity, viscous coupling with the
boundary is needed.

We thus introduce the Ekman number (dimensionless viscosity) E = ν/(ΩsL
2). In the

low viscosity asymptotic limit E � 1, we follow Busse (1968) and consider the uniform
vorticity basic flow (2.2) as an accurate approximation of the mainstream flow in the bulk
of the cavity. However, this flow does not satisfy the no-slip boundary condition. An exact
description of the Ekman boundary layer in a triaxial ellipsoid for an arbitrary mechanical
forcing is out of reach. We adopt instead a simple linear model, similar to the one of
Åkervik et al. (2006). They add in the governing equation a linear term, proportional to
the difference between the velocity perturbation and a (well-chosen) target, to compute
steady (basic) flows of Navier-Stokes equation for flow-control purposes. The model
we choose, originally developed for precessing ellipsoids (Noir & Cébron 2013), is in
good agreement with the nonlinear leading order viscous solution of Busse (1968). We
parametrize viscous effects by adding a linear dissipative term in the inviscid vorticity
equation. In the body frame this term is (in dimensionless form)

E1/2

 λr −λi 0
λi λr 0
0 0 λr


︸ ︷︷ ︸

D

[
q − (ΩW −ΩB)

]
, (2.3)

with ΩW −ΩB the wall rotation vector in the body frame. Damping term (2.3) is thus
proportional to the differential rotation between the fluid and the wall. In formula (2.3)
λr < 0 and λi are free parameters, actually related to the real and the imaginary parts of
the damping factor of the only uniform vorticity inertial mode, i.e. the so-called spin-over
mode (for details see Noir & Cébron 2013). Their specific values are unimportant here
since the viscous torque (2.3) is only considered in the vanishing viscosity limit, where
it can be neglected compared to the pressure torque. The viscous torque determines
uniquely the inviscid rotation rate q in the limit E1/2 → 0. The full governing vorticity
equation of the basic flow becomes

dq

dt
−
[(
q +ΩB

)
· ∇
]
U = −dΩB

dt
+ E1/2D

[
q − (ΩW −ΩB)

]
. (2.4)

3. Inviscid global stability analysis

3.1. Polynomial expansion

We investigate whether basic flows of uniform vorticity driven by mechanical forcings
in rigid ellipsoidal containers are stable against small perturbations. To perform a linear
stability analysis, we expand the total velocity field into the sum of the basic flow U and
a perturbation u. The linearized governing equations for the perturbation are

∂u

∂t
+ (U · ∇)u+ (u · ∇)U + 2ΩB × u = −∇π, (3.1)

∇ · u = 0, (3.2)

with π the reduced pressure. The basic flow U is linearly unstable if the amplitude
||u|| grows without any bound with evolving time. To remove the pressure term, we
take the curl of equation (3.1) and obtain the governing equation for the rotation rate
ζ = (∇× u)/2 of the perturbation

∂ζ

∂t
+ (U · ∇) ζ + (u · ∇)ω − (ζ · ∇)U =

(
ω +ΩB

)
· ∇u. (3.3)
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As originally devised by Gledzer & Ponomarev (1978, 1992), if u is a Cartesian poly-
nomials of degree n in the coordinates (x, y, z), then each term in equation (3.3) is a
polynomial in the Cartesian coordinates of maximum degree n − 1. This suggests to
look for perturbations u which belongs to a finite-dimensional vector space of Cartesian
polynomials.

We consider the finite-dimensional vector space Vn, such that an element u ∈ Vn is
of maximum degree n and satisfies u ·n = 0 at the solid boundary S and ∇ ·u = 0. The
dimension of Vn is (Lebovitz 1989; Vantieghem 2014)

dimVn = n(n+ 1)(2n+ 7)/6. (3.4)

Vector space Vn is invariant under the momentum equation (3.1), as shown in triaxial
geometry by Lebovitz (1989) (see also Kerswell 1993, for the particular case of spheroids).
Thus we consider perturbations u ∈ Vn.

Following Lebovitz (1989) the basis elements of Vn, denoted {vi(r)}, are

vi(r) = ∇(piF )× x̂, vN2+i(r) = ∇(piF )× ŷ for i ∈ [1, N2] (3.5)

and

v2N2+i(r) = ∇(piF )× ẑ for i ∈ [1, N1] (3.6)

with pi a polynomial of degree n− 1 or less, (x̂, ŷ, ẑ) the unit basis vectors in Cartesian
geometry,

N1 =
1

2
n(n+ 1), N2 =

1

6
n(n+ 1)(n+ 2) (3.7)

and

F = 1− x2

a2
− y2

b2
− z2

c2
. (3.8)

The total number of these vectors is given by (3.4). In practice, we choose

{pi} =

1, x, y, x2, xy, y2, . . . , xn−1, yn−1︸ ︷︷ ︸
i∈[1,N1]

, z, xz, yz, z2, . . . , zn−1︸ ︷︷ ︸
i∈[N1+1,N2]

 . (3.9)

The polynomial set (3.9) ensures that basis elements (3.5) - (3.6) are linearly independent.
Using this procedure, we have effectively build polynomial basis for n as large as 25.

Note that we have also considered and implemented another algorithm to build the
vector space Vn for arbitrary n. as described in Appendix B. However it was less efficient
to the above procedure.

3.2. Stability problem

We expand the perturbation u(r, t) as a linear combination of the basis elements of
Vn, i.e.

u(r, t) =

dimVn∑
i=1

αi(t)vi(r) (3.10)

where {αi(t)} is a set of arbitrary time-dependent coefficients. The expansion (3.10)
reduces the stability problem (3.3) to a finite number of ordinary differential equations.

Following Wu & Roberts (2011), we substitute the expansion (3.10) into the vorticity
equation (3.3) and set to zero the pre-factor of each monomial xiyjzk (with i + j +
k 6 n) in each Cartesian component of the vorticity equation, because it holds for any
position (x, y, z) in space (the monomials are mutually orthogonal). It leads to a system
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of n(n + 1)(n + 2)/2 linear equations, whose unknowns are {αi(t)} and their first time
derivative. Note that this system of equations is not linearly independent yet. Indeed,
since ∇ · ζ = 0 the divergence of (3.3) imposes that n(n− 1)(n+ 1)/6 of these equations
are automatically satisfied. They are associated with the pre-factors of the the monomials
which do not disappear after taking the divergence. Dropping the latter equations leads
to a set of n(n + 1)(2n + 7)/6 linearly independent equations, in agreement with the
dimension (3.4). It is a time-dependent system written in matrix form

d

dt
(N α) = Mα, (3.11)

with the unknown vector α = (α1(t), α2(t), . . . )
T

, matrix N depending only on the
parameters (a(t), b(t), c(t)) and matrix M depending on (a(t), b(t), c(t)), q and ΩB(t)
in the body reference frame. System (3.11) is written in canonical form as the non-
autonomous dynamical system

dα

dt
= N−1

(
M − dN

dt

)
α = Jα, (3.12)

where J is the Jacobian matrix of the system. Note that in general the Jacobian matrix is
not a normal matrix, i.e. it does not commute with its complex conjugate JJ † 6= J †J .
Because of the difficulty to build the basis elements of Vn and the Jacobian J for an
arbitrary forcing, previous global studies have only considered low degree polynomials
n 6 6 (Kerswell 1993; Lebovitz & Lifschitz 1996a; Wu & Roberts 2011; Vantieghem et al.
2015; Barker 2016; Barker et al. 2016).

The stability of basic flow (2.2) is governed by the system (3.12). We determine the
stability in one of the following ways. If the Jacobian J is steady, then system (3.12)
reduces to the eigenvalue problem

λiαi = Jαi, (3.13)

with λi = σi + iωi the i-th eigenvalue. If J is periodic of period T , then we perform a
Floquet stability analysis. We seek solutions of the form {pi(t) exp(µit)}, where {pi(t)}
are functions of period T and {µi} the Floquet exponents. The latter are the eigenvalues
of the monodromy matrix Φ(T ) at time T , defined by the problem

dΦ

dt
= JΦ, Φ(0) = I, (3.14)

with I the identity matrix. The growth rate σi and the frequency ωi of the i-th Floquet
mode are

σi =
1

T
<e [ln (µi)] ωi =

1

T
=m [ln (µi)] , (3.15)

The growth rate of the most dangerous unstable flow for both eigen and Floquet solvers
is σ = maxi σi and its associated frequency is ω.

Finally if the Jacobian J has an arbitrary time dependence, then we solve the system
(3.12) as an initial-value problem. The basic flow is unstable if at least one component of
the state vector has an exponential growth, i.e. αi(t) ∝ exp(σit) with σi > 0. In practice,
to determine the growth rate σ we fit

ln

(∑
i

|αi(t)|

)
∝ σt. (3.16)

To reduce the source of uncertainties, we start fitting the law (3.16) when the amplitude
of
∑
i |αi(t)| is large enough compared to its initial value.
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Figure 2. Characteristic CPU time to compute a growth rate for tidally-driven and
libration-driven instabilities presented below in section 4 with the different numerical solvers.
To smooth out the variability of computation time between different parameters, we compute
a stability map of 100 points in the plane (βac, Ω0) for tides and in the plane (β0, 2e) for
longitudinal-libration to extract an average time for one iteration. Circle symbols stand for tidal
forcing and square ones for longitudinal libration. Dashed lines shows eigenvalue or Floquet
solvers and solid lines brute-force solver. The magenta solid line shows the power law ∝ n6, in
good agreement with the numerical scaling.

3.3. Numerical implementation

The matrix N , its time derivative and the matrix M are first computed symbolically
with Sympy (http://www.sympy.org/), a computer algebra system (CAS) for Python,
which is used to manipulate the Cartesian polynomials xiyjzk in a symbolic way. Then
we convert them to Fortran subroutines with the Sympy fcode function and finally we
wrap them with f2py (Peterson 2009) for fast numerical evaluation inside Python using
Numpy (Van Der Walt et al. 2011). The Jacobian J is computed numerically, because
we cannot compute the symbolic inverse N−1 for arbitrary n. As time solver we use
an explicit Runge-Kutta solvers with adaptive step-size and dense output (available in
the Python library Scipy). Performing a survey in parameter space is an embarrassingly
parallel problem, and our implementation takes full advantage of this situation using
mpi4py (http://mpi4py.scipy.org/).

To validate our implementation, we have first considered the precession of a spheroid.
This benchmark is described in Appendix C, showing a perfect agreement with previous
studies (Kerswell 1993; Wu & Roberts 2011). Then we assess the performance of our
code in figure 2, which shows the evolution of CPU time with n for the tidally-driven
and libration-driven flows considered below (see subsections 4.2 and 4.3). We compare
the eingensolver for tidal flows with Floquet and time-step solvers for libration. We
observe that the CPU time always scales more or less as n6, in agreement with formula
(3.4). Indeed the number of basis elements scales as n3 and so the number of elements
in matrices N and M is of order n6. As expected the eigenvalue solver is faster than
Floquet solver, which is itself faster than the time-step solver. However the accurate pre-
factors vary and are not significant, since they depend on both the numerical parameters
of the chosen solver and the considered mechanical forcing.

4. Stability of an orbiting fluid ellipsoid

In this section, the stability of an orbiting fluid ellipsoid is considered using the method
of sections 2 and 3. We first describe the model and the governing equations in §4.1.

http://www.sympy.org/
http://mpi4py.scipy.org/
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Figure 3. Kepler elliptical orbit for a two-body problem. The fluid body rotates around an
attractor with the spin velocity Ωorb(t) > 0 orthogonal to the orbital plane. The elliptical orbit
(thick black line) of center O has an eccentricity e, semi-axis aorb and borb, a perihelion point
Π, a aphelion point A. Dashed black line is the circumscribed circle of radius aorb. The position
vector of the orbiting body from the attractor center of mass is r(t). We denote the true anomaly
θ(t) and the mean anomaly E(t) the angle with respect to the auxiliary circle (outer dashed
line). Using Cartesian coordinates centered on the attractor (at a focus of the orbit), the position

of the orbiting body is xorb = aorb(cosE − e) and yorb = aorb
√

1− e2 sinE.

Then, we evaluate the performance of our method by revisiting two particular cases
of this general problem: the circular orbit (§4.2) and the case of synchronized bodies on
weakly elliptical orbits (§4.3). Finally, we solve for the stability of a fluid ellipsoid moving
along a Kepler orbit in §4.4. In this case, time variations of the ellipsoidal axis can play
a significant role and drive vigorous instabilities.

4.1. Modeling of orbitally-driven flows

We study the stability of a fluid ellipsoid of mass m orbiting on an elliptical orbit
of eccentricity e around an attractor of mass M . For simplicity, we do not consider the
general forcing described in section 2, which requires to solve numerically the vorticity
equation (2.4) to find the (nonlinear) basic flow (2.2). Instead we assume a null obliquity
such that the rotation vectors are along ẑ, i.e. ΩW(t) = Ωw(t) ẑ and ΩB(t) = Ωb(t) ẑ.
We write the fluid spin rate Ωw(t) in dimensionless form as

Ωw(t) = 1 + δΩw(t), (4.1)

such that it has a steady unitary component and periodic length-of-day variations δΩw(t).
We also consider that the tidal bulge always points towards the attractor (instantaneous
bulge response), i.e. Ωb(t) = Ωorb(t) with Ωorb(t) the orbital rotation rate of the body
along ẑ.

With our mechanical forcing we can solve analytically equation (2.4) in the limit of
vanishing viscosity (E1/2 → 0). In the permanent regime, the basic flow (2.2) has the
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same symmetry as the forcing, i.e.

qx = qy = 0. (4.2)

The vorticity equation (2.4) then reduces to its vertical component

dqz
dt

+
dΩorb

dt
= E1/2λr [qz −Ωw(t) +Ωorb(t)] . (4.3)

In the limit of vanishing viscosity (E1/2 → 0), the homogeneous solution of (4.3) vanishes
and the particular solution gives the solution in the permanent regime

qz = 1−Ωorb(t). (4.4)

It shows that the periodic length-of-day variations δΩw(t) do not play any role in the
limit of vanishing viscosity, since in equation (4.3) Ωw(t) only appears in the viscous
term. Hence, the basic flow (2.2) reduces to

U = [1−Ωorb(t)] (−[1 + βab(t)]y x̂ + [1− βab(t)]x ŷ) , (4.5)

where we introduce the (time-dependent) equatorial ellipticity

βab(t) =
|a2 − b2|
a2 + b2

< 1. (4.6)

In the literature, the stability of basic flows (4.5) has only been studied when βab is
constant. We relax this assumption in section 4.4.

The time dependencies of Ωorb(t) and βab(t) are given by the orbital dynamics. The
physical problem is sketched in figure 3. We introduce the orbital period T andΩ0 = 2π/T
the mean orbiting rate of the body along the elliptical orbit. The orbit is characterized by
its mean orbital semi-axes (aorb, borb). Following Murray & Dermott (1999), an elliptical
orbit is described by Kepler’s equation at a given time t,

E(t)− e sinE(t) = Ω0t, (4.7)

with E(t) the eccentric anomaly. The orbital rotation rate on the elliptical orbit is

Ωorb(t) =
dθ

dt
= Ω0

(1 + e cos θ(t))2

(1− e2)
3
2

. (4.8)

where θ(t) is the true anomaly defined by

θ(t) = 2 arctan

[√
1 + e

1− e
tan

(
E(t)

2

)]
. (4.9)

The distance r(t) between the body and its attractor is

r(t) = aorb
1− e2

1 + e cos θ(t)
= aorb (1− e cosE(t)) . (4.10)

Then we estimate at first order the equatorial ellipticity (4.6) of the fluid ellipsoid with
an hydrostatic balance. Following (Cébron et al. 2012a) it gives

βab(t) =
3

2
(1 + k2)

M

m

(
D

r(t)

)3

= β0

(
1 + e cos θ(t)

1− e2

)3

< 1, (4.11)

with β0 a characteristic equatorial ellipticity, D the mean spherical radius of the fluid
ellipsoid of mass m, M the mass of the attractor and k2 the potential Love number. The
latter can be computed with the Clairaut-Radau theory (e.g. Van Hoolst et al. 2008).
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Figure 4. (Left) Normalized orbital spin rate Ωorb(t)/Ω0 given by formula (4.8) for various
eccentricities e. Kepler’s equation (4.7) is solved with an iterative Newton’s algorithm at each
time step. (Right) Associated power spectrum density (PSD) in function of the normalized
frequency ω/Ω0 of the Fourier transform.

Note that β0 is the ellipticity of a body of same mass m but on a circular orbit (e = 0)
of radius aorb (dashed circle in figure 3). However it is not the averaged value in time of
βab(t). The ellipticity β0 refers to the static (tidal) bulge or equilibrium tide (Zahn 1966).
The fluctuations in time superimposed on this equilibrium tide are the dynamical tides
(Zahn 1975), which are excited by the periodic terms of the tidal potential. From formula
(4.11), the dynamical tides lead to a minimum value of ellipticity βmin = β0(1 + e)−3 at
the aphelion point A (θ = π) and a maximum βmax = β0(1−e)−3 at the perihelion point
Π (θ = 0). Because βab(t) < 1, the maximum eccentricity emax for a given ellipticity β0
is

emax = 1− β1/3
0 . (4.12)

Finally to take into account all the possible triaxial geometries we introduce the polar
ellipticity βac(t) = (a2 − c2)/(a2 + c2). The limit βac → 1 corresponds to the limit case
of a disk (c = 0), whereas βac → −1 corresponds to an infinite cylinder (c→∞).

For a circular orbit (e = 0) the orbital rotation rate is steady Ωorb(t) = Ω0 and
βab(t) = β0. For an elliptical orbit (e 6= 0), we determine Ωorb(t) by solving Kepler’s
equation (4.7) numerically using an iterative Newton’s algorithm (starting with E = 0
as initial guess at t = 0). We show in figure 4 the normalized ratio Ωorb(t)/Ω0 and its
associated power spectrum density for different eccentricities. Ωorb(t) has a fundamental
period T = 2π/Ω0 but, as e is increased, more and more harmonics are required to
properly describe Ωorb(t).

Finally it is worth noting that the case Ω0 = 1 corresponds to a synchronized body,
since the dimensional averaged orbital rate and the averaged fluid spin rate are equal.
When Ω0 6= 1 the body is not synchronized, there is a mean differential rotation between
the elliptical deformation and the fluid spin rate over one spin period.

4.2. Tidally-driven elliptical instability on a circular orbit (e = 0)

In this subsection we focus on the effect of the equilibrium tide on a circular orbit
(e = 0). The fluid ellipsoid has steady semi-axes (a, b, c) and rotates at the steady orbital
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(a) β0 = 0.15 (b) β0 = 0.6

Figure 5. (a) & (b) Areas of instability of the tidally-driven flow in the (βac, Ω0) plane at
degree n = 15. Colormap shows log10 (σ/β0). White areas correspond to marginally stable

regions. Triaxial geometry a =
√

1 + β0 and b =
√

1− β0 and c = a
√

(1− βac)/(1 + βac).
Vertical dashed blacks lines represent the lower and upper bounds of the forbidden zone FZβ0 .
The solid black line indicates the synchronized case Ω0 = 1 (no instability). White dashed lines
correspond to σ/β0 = 0.01 for the stability problem reduced to degree n = 1, such that the
spin-over instability is excited in between (in this case, σ is analytically known, see e.g. Roberts
& Wu 2011).

rate Ω0. Basic flow (4.5) thus reduces to the tidally-driven basic flow

U = (1−Ω0) [−(1 + β0)y x̂ + (1− β0)x ŷ] . (4.13)

This flow is unstable if Ω0 6= 1, leading to the so-called tidally-driven elliptical instability
(TDEI).

On one hand, TDEI has been widely studied with a local (WKB) analysis in unbounded
domains assuming perturbations of small wavelengths (Bayly 1986; Craik 1989; Waleffe
1990; Cébron et al. 2012a). Using first-order expansion in β0, Le Dizès (2000) shows that
the TDEI exists in the range (β0 + 1)/(β0 − 1) 6 Ω0 6 3. Outside this range, the flow
is stable and lies in the so-called forbidden zone for finite β0, hereafter denoted FZβ0

.
The local growth rate σwkb is at leading order (equation 32 of Le Dizès 2000)

σwkb

|1−Ω0|
= max

θ0

1

4

√
(1 + cos θ0)

4
β2
0 − 4

[
2− 4

(
1 + Ω̃0

)
cos θ0

]2
+O

(
β2
0

)
, (4.14)

with Ω̃0 = Ω0/(1−Ω0) and θ0 the colatitude angle between the vertical axis ẑ and the
local wave vector of the plane-wave perturbation, ranging in [0, π]. Angle θ0 is chosen to
maximize σ. In the limit β0 → 0, the elliptical instability only exists for −1 6 Ω0 6 3.
Outside this range, the flow lies in the forbidden zone of the TDEI for β0 → 0, hereafter
denoted FZ0. In this limit, the growth rate (4.14) reduces to the formula devised by Craik
(1989)

σwkb

|1−Ω0|
=

(3 + 2Ω̃0)2

16(1 + Ω̃0)2
β0, (4.15)

for cos θ0 = 1/[2(1 + Ω̃0)] which maximizes σ. Finally in the range (β0 + 1)/(β0 − 1) 6
Ω0 6 −1, which lies in FZ0, formula (4.14) gives a non-zero growth rate of (equation 44
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of Le Dizès 2000)

σwkb

|1−Ω0|
=

√
β2
0 − 4(Ω̃0 + 1/2)2 (4.16)

for θ0 = 0. When Ω0 > 3, formula (4.14) gives σwkb = 0, such that there is no TDEI
predicted by the local analysis (at this order in β0).

On the other hand, global stability analysis of tidal basic flow (4.13) has been mainly
performed for weakly deformed spheroids (Lacaze et al. 2004) or cylinders (Malkus
1989; Eloy et al. 2003). Triaxial ellipsoids have been considered (Gledzer & Ponomarev
1978, 1992; Kerswell 2002; Roberts & Wu 2011; Barker et al. 2016; Barker 2016), but
only allowing perturbations of small polynomial degrees (n 6 6). Such large-wavelength
instabilities do not compare well with the afore-mentioned local stability analysis.

Using our framework, we can reach much larger polynomial degrees n. Global stability
results at n = 15 are shown in figure 5, where the ratio σ/β0 of the instability is computed
for two equatorial ellipticities (β0 = 0.15 and β0 = 0.6). We always find σ = 0 when
Ω0 = 1, as expected. When β0 increases, the zone of instability extends but lies in the
forbidden zone FZβ0

with an exception for the largest β0. Indeed we find that TDEI
is excited when Ω0 > 3, which is unexpected. It is due to detuning effects not taken
into account in the local analysis. We observe that ellipsoids spinning in the retrograde
direction (Ω0 < 0) are more unstable than the prograde ones (Ω0 > 0). By varying
the polynomial degree, we observe that TDEI for prograde rotation (Ω0 > 0) appears
at larger n than TDEI for retrograde rotation (Ω0 < 0). As an example the so-called
spin-over mode (Kerswell 2002), associated with the linear basis (n = 1), appears only
for Ω0 < 0. Similarly the most unstable σ is mainly reached at smaller n for retrograde
rotation than for prograde rotation (not shown). Finally we observe an effect of βac at
large values of |βac|. There, higher polynomial degrees are probably needed to properly
describe the instabilities.

In figure 6 we show the most dangerous unstable flows of the TDEI, at various Ω0 for
β0 = 0.15. Note that the spatial structures of flows, at the same value of Ω0 but at β0 =
0.6, are similar (not shown). In all these flows, the motion seems to be concentrated in
conical layers forming an angle α with the rotation axis. High intensity surface flows arise
where the surface has this same angle (or equivalently where the surface is perpendicular
to the local wave vector). Between these layers, the flow has low or zero amplitude. Some
flows also exhibit one or several nodes in azimuth.

In figure 6 (a) obtained at Ω0 = −1, the flow has the structure of a stack of
pancake (SoP), a structure already observed in experiments (Grannan et al. 2014), direct
simulations (Favier et al. 2015) and theory (Barker et al. 2016). In this instability, each
pancake moves horizontally in the direction opposite to its neighbours, in a plane at
45◦ from the main equatorial axes where the stretching is maximum (Waleffe 1990).
It is illustrated by the streamlines in figure 7. This unstable mode is stationary (zero
frequency). High amplitudes are located near the poles. Note also that the number of
pancakes in this unstable mode increases as n increases, as suggested by figure 7. However
this number seems to be insensitive to the amplitude of the equilibrium tide β0 and to
βac (not shown). Such a small-scale flow will undoubtedly lead to turbulence if it reaches
high-enough amplitudes.

In contrast, at Ω0 = −0.5 the unstable flow shown in figure 6(b) for n = 15 is the same
for n = 10 and n = 6. It is mostly an equatorially symmetric mode dominated by an
m = 1 azimuthal symmetry. High intensities are found on the rotation axis and within a
surface band at mid-latitudes.

At Ω0 = −0.1, the flow has 6 azimuthal zeros, no energy on the rotation axis and a
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(a) βac = 0.5, Ω0 = −1, ω = 0 (b) βac = 0.5, Ω0 = −0.5, ω = 0

(c) βac = 0.5, Ω0 = −0.1, ω = 3.27 (d) βac = 0.5, Ω0 = 2, ω = 0

Figure 6. 3D renderings of the most unstable flows associated with figure 5. Degree
n = 15 and amplitude of equilibrium tide β0 = 0.15. Velocity magnitude ||u|| is shown
in meridional/equatorial planes and at the ellipsoidal surface. The colormap is saturated for
||u|| > 3.

(a) n = 10, σ = 0.297, ω = 0 (b) n = 15, σ = 0.299, ω = 0

Figure 7. ”Stack of pancakes”-like instability for β0 = 0.15, βac = 0.5 and Ω0 = −1. Magnitude
||u|| and velocity streamlines in the meridional plane at 45 degrees from the long axis where the
stretching is maximum.

high intensity band at mid-latitude close to the surface. We obtain a similar structure at
larger scale at Ω0 = 2.

In figure 8 we quantitatively compare the growth rate from the local formula (4.14)
with our global results at a high degree (n = 20). At β0 = 0.15, the agreement is striking.
We note however that for Ω0 < −1 and βac < 0, our global stability analysis yields lower
growth rates than the local analysis, especially at large β0. Similarly, the global analysis
indicates stable flows near Ω0 = 1 for βac > 0, especially at small β0, whereas both global
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Figure 8. Growth rate of the TDEI obtained by local theory (4.14) and our global stability
analysis at degree n = 20. Shaded areas are stable regions for the local theory. These curves
correspond to cuts in the maps of figure 5.

analysis at βac < 0 and the local analysis indicate unstable flows. We also observe that
for large values of β0, the flows for Ω0 > 1 are more unstable than what is predicted by
local theory, and that TDEI can even exist when Ω0 > 3, a region that is stable in the
local theory.

However, the local analysis of Le Dizès (2000) given by formula (4.14) does predict that
the TDEI at finite β0 extends well beyond the region that is unstable at β0 � 1, that is
−1 6 Ω0 6 3. Larger values of β0 allow more unstable couplings. This coupling effect
of β0 is highlighted in figure 9, with good matching between local and global results. Note
that this very same effect has recently been put forward by Barker (2016), as shown in
Appendix D.

4.3. Libration-driven elliptical instability on weakly elliptical orbit (0 < e� 1)

We investigate here the stability of a synchronized fluid body on an orbit of small
eccentricity 0 < e � 1. The associated forcing, called longitudinal librations, can give
birth to the libration-driven elliptical instability (LDEI). We distinguish the following
two limit cases of longitudinal librations.

If the rigidity of the container is strong enough, the entire body rigidly rotates with a
fixed shape. Dynamical tides are neglected with respect to the equilibrium tide such that
βab(t) = β0. The forcing bears the name of physical librations. A differential rotation
exists between the fluid spin rate and the equilibrium tide, rotating at leading order at

Ωorb(t) = 1 + ε sin(t), (4.17)

with ε 6 2e the libration amplitude. This amplitude depends on the rheology of the
celestial body. LDEI driven by physical librations has been studied amongst others by
Cébron et al. (2012b); Noir et al. (2012); Grannan et al. (2014) and Favier et al. (2015).
Note that physical librations (4.17) may contain multiple frequencies due to the presence
of several attracting bodies (Rambaux & Williams 2011). In the limit β0 � 1, the local
growth rate of this physical LDEI is (Cébron et al. 2012b)

σwkb =
17

64
εβ0. (4.18)
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(a) Local formula (4.14) (b) Global analysis n = 15

Figure 9. Areas of instability of the tidally-driven flow in the (β0, Ω0) plane. Colormap shows
log10(σ/[β0|1−Ω0|]). Triaxial geometry a =

√
1 + β0, b =

√
1− β0 and c = 1/(ab) such that the

triaxial container has a constant dimensionless volume 4π/3. On the vertical white line Ω0 = 1
the TDEI does not exist. Black dashed lines Ω0 = (1 + β0)/(1 − β0) and Ω0 = 3 are the
bounds of the forbidden zone FZβ0 corresponding to formula (4.14).

According to the local formula (4.18) LDEI is triggered for any non-zero ε and β0.
On the other hand, if the rigidity of the container is zero, then the ellipsoidal cavity

always points toward the attractor and the container has a time-dependent ellipticity.
A differential rotation exists between the fluid spin rate and the dynamical tides (su-
perimposed on the equilibrium tide). We expand (4.8) and (4.11) at first order in e to
obtain

Ωorb(t) = 1 + 2e cos t, (4.19)

βab(t) = β0(1 + 3e cos t). (4.20)

In the inviscid framework of this work, we call this forcing optical librations (because
optical librations amplitude is 2e, see e.g. Murray & Dermott 1999). However, note that
this forcing simply associates a prescribed time-evolution of (a, b, c) to the forcing (4.17),
rather than considering a constant ellipsoidal shape. At this order, the time dependence
of the dynamical tide is monochromatic, in agreement with numerical results of figure
4 at small e. Physical librations with maximum amplitude ε = 2e are recovered if we
neglect the dynamical tides (4.20), yielding βab(t) = β0.

We compare in figure 10 physical libration (a) with optical librations (b), assuming a
libration amplitude ε = 2e in the physical case. We fix the polynomial degree n = 5 to
capture only the large-scale unstable flows. Flows of higher degrees are not essential for
this comparison. We show the ratio σ/σwkb to compare global results and local formula
(4.18). The global growth rates of physical librations do not reach yet the local growth
rates, as expected for n = 5. For very small eccentricities e, predictions for physical and
optical librations are in broad agreement. However for larger amplitudes optical librations
drive more violent instabilities than physical librations. The growth rates are much larger
and can even be higher than those predicted by formula (4.18), clearly enhancing the
LDEI. Thus, with the same libration amplitude, physical librations underestimate the
growth rate predicted by optical librations for large eccentricities. Dynamical tides drive
instabilities and cannot be neglected in the dynamics of bodies on eccentric Kepler orbit.
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(a) First order physical librations (b) First order optical librations

Figure 10. Survey of the libration-driven elliptical instability for physical librations (4.17)
and optical librations (4.19) in the plane (β0, 2e). Polynomial degree n = 5. Colormap shows
ratio σ/σwkb with σwkb given by formula (4.18). White areas correspond to marginally stable

regions. Triaxial geometry a(t) =
√

1 + βab(t), b(t) =
√

1− βab(t) and c(t) = [a(t)b(t)]−1. (a)
βab(t) = β0 and ε = 2e. (b) βab(t) = β0(1 + 3e cos t). Growth rates σ/β0 6 0.01 are filtered out
because we chose an integration time not long enough.

Furthermore, we checked that this phenomenon is reinforced by taking into account the
next orders of βab(t) and Ωorb(t). Consequently, we turn to the general orbitally-driven
elliptical instability.

4.4. General orbitally-driven elliptical instability (ODEI)

We consider here the general case of a fluid ellipsoid orbiting on a Kepler orbit of
ecentricity 0 6 e < 1. We numerically solve the full governing equations described in
section 4.1. We consider here only oblate containers (a > b > c), which are typically
the shapes of celestial bodies. Moreover, we consider ellipsoids of constant dimensionless
volume 4π/3, with semi-axes length

a = R
√

1 + βab(t), b = R
√

1− βab(t) and c = 1/(ab). (4.21)

The equatorial ellipticity βab(t) is given by formula (4.11) and R is a free parameter
governing the polar ellipticity βac(t) of the ellipsoid. The oblateness condition b > c at
each time leads to the sufficient condition R > Rm, with

Rm =
[
(1− β2

max)(1− βmax)
]−1/6

(4.22)

and βmax = β0(1− e)−3 the maximum value of βab(t) along the orbit.
It is important to recall that, when the full equations are solved, the forcing contains a

lot of frequencies. In a planetary context, multiple harmonics are always present, which
challenges theoretical predictions. Here, we show that our framework can handle this
additional complexity, at the expense of a larger computational cost.

In figure 11 we survey the stability of orbitally-driven flow (4.5) in the parameter space
(Ω0, e) for β0 = 0.05 and β0 = 0.3. TDEI considered in subsection 4.2 corresponds to the
horizontal line e = 0, where instabilities are predicted for (1 + β0)/(β0 − 1) 6 Ω0 6 3 by
the local theory. The LDEI considered in subsection 4.3 corresponds to the vertical line
Ω0 = 1 (e � 1), and instabilities are thus also expected for Ω0 = 1 (whereas TDEI is
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Figure 11. Orbitally-driven elliptical instability. (a) & (b) Range of values of βab (blue) and
βac (red) for an orbit of eccentricity e/emax considered. Blue thick (resp. red dashed) line shows
the mean value of βab (resp. βac) along the orbit. Second vertical axis shows the maximum of
ratio Ωorb/Ω0 (green dotted line) for various normalized eccentricities e/emax. (c) & (d) Survey
of the instability of the orbitally-driven flow (eq. 4.5) in the plane (e/emax, Ω0) for degree n = 6.
Colormap shows the growth rate σ, saturated for σ > 0.4σmax. White areas correspond to
marginally stable regions. The containers considered are oblate with R = Rm + 0.05. Vertical
black line corresponds to the synchronized case (Ω0 = 1) driving the LDEI (see §4.3). The
horizontal line e = 0 corresponds to the TDEI (see §4.2). Vertical dashed black lines are the
bounds of the forbidden zone FZβ0 of the TDEI valid for e = 0 and βab = β0.

expected for Ω0 6= 1). We notice the effect of finite deformations, which gives instabilities
for Ω0 6 −1.

Interestingly, our survey uncovers a strong new instability around Ω0 = 2, i.e. when
the fluid spin period is twice the orbital period. Figure 12 compares the growth rate of
the TDEI (circular orbit) to the one of the ODEI for a Kepler orbit of finite eccentricity.
For (β0 + 1)/(β0 − 1) 6 Ω0 6 1, the growth rate of the ODEI has almost the same value
as for the TDEI. Furthermore, the flows associated to ODEI at Ω0 = −1, −0.49 and −0.1
in figure 13 (b) to (d) are similar to the ones associated to TDEI in figure 6 (a) to (c),
although not computed at the same n. Around Ω0 = 1 we see the peak corresponding to
LDEI. The corresponding flow is displayed in figure 13.
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Figure 12. Growth rate of the orbitally-driven elliptic instability for a Kepler orbit of fixed
eccentricity (e/emax = 0.4) compared to the case of zero eccentricity (TDEI, e = 0). Shaded
areas are the forbidden zone FZβ0 for the TDEI, valid for local perturbations at e = 0.

New instabilities driven by the non-circular Kepler orbits are also clearly visible in
Figure 12, even at low β0. In particular at Ω0 ' −2 where a region stable with respect
to the TDEI is here unstable. The flow associated with this new instability at Ω0 = −2
is shown in figure 13 (a) and displays vertical stripes. They are similar to the stacked
pancakes seen at Ω0 = −1 but here stacked along an equatorial axis. The largest growth
rate is achieved around Ω0 = 2, in a region already unstable for the TDEI but the ODEI
leads to growth rates about ten times larger in this peak near Ω0 = 2. This instability
is even stronger as n is increased from n = 6 to n = 10, suggesting a rather small-scale
instability. Indeed, the flow shown in figure 13 (f) exhibits intense motion localized in
patches around the equator, and is very different from the TDEI flow at Ω0 = 2 in
figure 6 (d). We expect both the growth rate and this localization to increase as n is
increased further. Finally, for the value of n considered here, we remark that at large β0
the basicflow is found unstable everywhere for −4 6 Ω0 6 4 and e/emax & 0.4.

We show in figure 14 the LDEI on eccentric orbits, taking into account the exact
orbital motion and associated dynamical tides. Compared to figure 10 (b) where only
the first order effect of dynamical tides is taken into account, we observe in figure 14
(a) that LDEI can be more vigorous than predicted before. Indeed, the growth rates can
be tens times larger than predicted by local analysis (4.18) for large eccentricities. Note
that the growth rates are still increasing from n = 10 to n = 15. Hence, even though we
find that the basic flow is stable when e � 0.1, we expect it to be unstable at higher
n. Similarly, we expect the growth rate of the LDEI to be even larger as higher n are
considered. Interestingly, the effect of dynamical tides is more important at β0 = 0.05
than at β0 = 0.3. In figure 14 (b) we show the most dangerous unstable flow for an
equilibrium tide of amplitude β0 = 0.05 and an eccentricity e/emax = 0.4.

5. Conclusion

We have studied the global stability of uniform vorticity basic flows induced by the
shape variation of ellipsoids on Kepler orbits. Although viscous effects such as the thin
Ekman layers and internal shear layers (Kerswell 1995) are neglected, the considered
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(a) Ω0 = −2, ω = 0.326 (b) Ω0 = −1, ω = 0

(c) Ω0 = −0.49, ω = 0.227 (d) Ω0 = −0.1, ω = 0.03

(e) Ω0 = 0.5, ω = 0, 142 (f) Ω0 = 2.05, ω = 0.347

Figure 13. 3D renderings of the most unstable flows associated with figure 12, at n = 10,
e/emax = 0.4 and β0 = 0.05. Velocity magnitude ||u|| is shown in meridional/equatorial planes
and at the ellipsoidal surface. The colormap is saturated for ||u|| > 3. Flows are computed at
θ(t) = π/2 on the orbit (see figure 3).

uniform vorticity basic flows are good approximations of the mechanically-driven basic
flows (e.g. Busse 1968; Noir & Cébron 2013; Vantieghem et al. 2015).

The flow stability in ellipsoids is a long standing issue, which dates back to the stability
study of self-gravitating ellipsoids. For instance, Riemann (1860) considered the stability
of flows linear in space coordinates for such ellipsoids, by using linear perturbations (i.e.
n = 1). Actually, it is mainly the elliptical instability which destabilizes these so-called
Riemann ellipsoids (Lebovitz & Lifschitz 1996b) and, surprisingly, the free surface aspect
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Figure 14. Libration-driven elliptical instability (Ω0 = 1) for arbitrary Kepler orbits. (a) Ratio
σ/σwkb with σwkb the local growth rate of LDEI given by formula (4.18). (b) Flow magnitude
||u|| for β0 = 0.05, e/emax = 0.4. Flow computed at θ(t) = π/2 on the orbit (see fig. 3).

(i.e. the surface gravity modes) does not really affect their stability (Barker et al. 2016).
Our study of flows in rigid ellipsoids is thus relevant for this question.

We have developed a framework that combines symbolic and numerical computations.
It allows to study the global stability of any self-gravitating ellipsoid, taking into account
perturbations of unprecedentedly small wavelength. Indeed, our freely available Python
code has been used up to polynomial degree n = 25, which corresponds to more than
6000 basis elements. Our framework also handles ellipsoidal shapes not limited to small
departures from the sphere. Furthermore, two new effects due to an eccentric orbit are
taken into account: a time-dependent ellipsoidal shape (dynamical tides) and the time-
variation of the rotation rate of the principal body axes (or tidal bulge), both leading to
a non-harmonic forcing (see figure 4).

We prove the capabilities of the method by considering the stability of a fluid ellipsoid
moving on an eccentric orbit. With this challenging case we recover the limiting cases
previously studied in the literature and unify them (TDEI and LDEI) into a global
framework. The good agreement at low ellipticity between previous local analysis (WKB)
and our global analysis confirms that the local stability computations can be applied to
celestial bodies. In particular, instabilities in retrograde planets are rather insensitive to
realistic orbital effects and are thus well described by the local theory of TDEI derived
by Le Dizès (2000). As a consequence, the spin-over (n = 1) is replaced by other, more
complex, unstable flows with larger growth rates (see examples in figure 6).

However, we find that realistic orbital effects – the time-dependence of the ellipsoid
deformation, combined with the time-dependence of the tidal bulge rotation rate – are
important in several cases, leading to new instabilities. Firstly, the dynamical tides
superimposed on the libration forcing (Ω0 = 1) lead to much larger growth rates, as
shown in figure 10 and 14. The growth rate can even exceed the one predicted by the
local analysis with a fixed shape. Secondly, prograde spinning bodies exhibit a vigorous
instability near the 2:1 spin-orbit resonance (Ω0 ' 2). This new instability is a small-
scale, localized one, and has higher growth rates for eccentric orbits (see figure 12).
Thirdly, retrograde bodies exhibit a new instability in the stable zone of the TDEI
(Ω0 < (β0 + 1)/(β0 − 1)), as seen in figure 12.

All these findings show that dynamical tides can drive instabilities and cannot be
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neglected in the dynamics of bodies on eccentric Kepler orbit. In particular, the eccen-
tricities and tidal amplitude of some hot Jupiters may be comparable with values required
for the onset of the ODEI (at high polynomial degree n), inside and outside the forbidden
zone.

This work is also a first step toward the study of viscously damped inertial instabilities
in arbitrary ellipsoids. Indeed, we plan to reintroduce the viscosity as a correction,
allowing direct comparisons between the theory and simulations or experiments, all
performed at finite values of viscosity and deformation.
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Appendix A. Mechanical forcings used in the literature

Description of rotation vectors and their associated reference frames is achieved by
using Euler angles, measured in the inertial frame. We express the Euler angles using the
ZYZ convention, as described by Goldstein (1965). We introduce the precession angle
ψw(t), the nutation angle αw(t) and the proper rotation angle φw(t) to define ΩW(t)
Similarly, we introduce the precession angle of the orbital partner ψb(t), the nutation
angle of the orbital partner αb(t) and the rotation of the orbital partner φb(t) to describe
ΩB(t). We gather the different cases studied in the literature in table 1.

With our convention, the mantle (resp. body) rotation vector ΩW (resp. ΩB) has the
three components in the mantle (resp. body) frame

Ωi(t) =

 sinαi cosφi dψi/dt+ sinφi dαi/dt
− sinαi sinφi dψi/dt+ cosφi dαi/dt

cosαi dψi/dt+ dφi/dt

 , (A 1)

where the index i refers to the mantle or the body frame. In equation (2.4) the mantle
rotation vector has to be written in the body frame. To this end, the direction cosine
matrix RI

i relating a vector of components xi in the frame i (mantle or body) and xI in
the inertial frame, defined by

xi(t) = RI
i (t)xI(t), (A 2)

is

RI
i =

− sinαi sinψi + cosαi cosψi cosφi sinφi cosψi + sinψi cosαi cosφi sinαi cosφi
sinφi cosψi + sinψi cosαi cosφi − sinφi sinψi cosαi + cosφi cosψi − sinαi sinφi

− sinαi cosψi − sinαi sinψi cosαi

 .

Finally, the time derivative of the body rotation vector in equation (2.4), expressed in

https://bitbucket.org/vidalje/siren
https://bitbucket.org/vidalje/siren
http://matplotlib.org/
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Rigid containers Deformable containers
LibLat Prec. 1 LDEI 1 Prec. 2 LDEI 2 TDEI

ΩW(t)
ψw(t) t ε t 0 ε t 0 ψ0

αw(t) ε
f

sin(ft) α0 0 α0 0 α0

φw(t) 0 t t+ ε
f

sin(ft) t t t

ΩB(t)
ψb(t) t ε t 0 ε t 0 ψ0

αb(t)
ε
f

sin(ft) α0 0 α0 0 α0

φb(t) 0 t t+ ε
f

sin(ft) ε t t+ ε
f

sin(ft) εt

Table 1. Euler angles used to describe mechanical forcings in the fluid mechanic literature
(non exhaustive). The time unit is Ω−1

s . LibLat: Latitudinal libration (Vantieghem et al. 2015),
LongLib: Longitudinal libration. Prec. 1: Precession (Kerswell 1993; Wu & Roberts 2011; Noir &
Cébron 2013) LDEI 1: Libration-driven elliptical instability (Wu & Roberts 2013; Cébron et al.
2014). Prec. 2: Precession (Cébron et al. 2010b), LDEI 2: Libration-driven elliptical instability
(Kerswell & Malkus 1998), TDEI: Tidally-driven elliptical instability (Kerswell 2002; Cébron
et al. 2010a). ε is the dimensionless amplitude of the mechanical forcing (not necessarily small).
f is the frequency of the mechanical forcing. ψ0 and α0 are arbitrary constants.

the body frame, is

dΩB

dt
· x̂ = sinαb sinψb

dφb
dt

dψb
dt
− sinαb cosψb

d2φb
dt2

− sinψb
d2αb
dt2

(A 3)

− cosαb cosψb
dαb
dt

dφb
dt
− cosψb

dαb
dt

dψb
dt

, (A 4)

dΩB

dt
· ŷ = − sinαb sinψb

d2φb
dt2

− sinαb cosψb
dφb
dt

dψb
dt
− sinψb cosαb

dαb
dt

dφb
dt

(A 5)

− sinψb
dαb
dt

dψb
dt

+ cosψb
d2αb
dt2

(A 6)

dΩB

dt
· ẑ = − sinαb

dαb
dt

dφb
dt

+ cosαb
d2φb
dt2

+
d2ψb
dt2

. (A 7)

where (x̂, ŷ, ẑ) are the unit basis vectors in the body frame.

Appendix B. Polynomial basis of Vn

Recently, Wu & Roberts (2011) have proposed another algorithm to build the basis
elements of Vn. We outline here the method. We consider first a spherical container
(a = b = c). The vorticity field is decomposed into poloidal Pw(r) and toroidal Tw(r)
scalars as

∇× u = ∇× (Twr) +∇×∇× (Pwr) . (B 1)

such that it obeys to the solenoidal condition. Vorticity ∇ × u is then projected onto
the finite-dimensional vector space Wn−1, made of Cartesian homogeneous monomials
xiyjzk of degree n − 1 = i + j + k (Vantieghem 2014). Note that an element of Wn

is solenoidal but does not necessarily satisfy the impermeability condition. Pw(r) is a
homogeneous polynomial of degree n while Tw(r) is a homogeneous polynomial of degree
n−1. Similarly the velocity field u(r) is expanded into poloidal Pu(r) and toroidal Tu(r)
scalars as

u(r) = ∇× (Tur) +∇×∇× (Pur) . (B 2)
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Since there is an isomorphism between vector spaces Wn−1 and Vn (Vantieghem 2014),
we expand u onto Vn such that velocity scalars are related to the vorticity scalars by

Tu = Pw (B 3)

and

∇2Pu = −Tw with L2Pu = 0 at r = 1, (B 4)

where L2 is the angular momentum operator

L2 =

(
y
∂

∂z
− z ∂

∂y

)2

+

(
z
∂

∂x
− x ∂

∂z

)2

+

(
x
∂

∂y
− y ∂

∂x

)2

. (B 5)

The difficult part of the above algorithm is to solve equations (B 4). However any
homogeneous polynomial of degree p can be decomposed into harmonic homogeneous
polynomials of maximum degree p, which are spherical harmonics (Backus et al. 1996).
So we project Tw(r) of degree n− 1 onto spherical harmonics as

Tw(r) = rn−1
n−1∑
l=1

l∑
m=−l

tml Yml , (B 6)

where Yml are normalized spherical harmonics of degree l and order m and {tml } the set of
spherical harmonics coefficients. The degree l = 0 is omitted because of the incompressible
condition. Poloidal scalar solution of (B 4) is of the form

Pu = PP + PH , (B 7)

with PP a particular solution of (B 4) and the general solution of the homogeneous
Laplace equation∇2PH = 0. Because of expansion (B 6), a particular solution of equation
(B 4) in spherical harmonics expansion is

PP (r) = rn+1
n−1∑
l=1

l∑
m=−l

−tml
(n+ 2)(n+ 1)− l(l + 1)

Yml . (B 8)

The homogeneous solution has the general form

PH(r) = rn+2
n+2∑
l=1

l∑
m=−l

pml Yml , (B 9)

where the set of coefficients {pml } is determined by the boundary condition

L2PP = −L2PH . (B 10)

Once the coefficients are known we can transform the spherical harmonics expansion
back into a Cartesian form. Finally, the Poincaré transform (Poincaré 1910)

(x, y, z)←
(x
a
,
y

b
,
z

c

)
and (ux, uy, uz)←

(ux
a
,
uy
b
,
uz
c

)
(B 11)

is used to convert the solutions valid in spheres to solutions valid in ellipsoids of axis
(a, b, c).

The implementation of Wu & Roberts (2011) relies on symbolic computations of (B 6),
(B 8) and (B 9). Basis elements up to degrees n = 5 are explicitly given in their Appendix
A. However, their symbolic algorithm breaks down for degrees n > 6, because spherical
harmonic coefficients tml cannot be computed analytically for higher degrees. We have
extended their method to build the basis for degrees n > 6. It is achieved by combining
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symbolic and numerical calculus in Python. The algorithm was also parallelized to
reduce the computation time. With our implementation we can reach degrees n > 6
because spherical harmonics coefficients are only computed numerically with the open-
source library SHTNS (Schaeffer 2013). The comparison between (3.5) - (3.6) and the
elements obtained above shows that the two sets are equivalent, changing only by linear
combinations of the basis elements.

In practice the generation of basis elements is not restricted to a particular degree
but we found that the generation of symbolic matrices M and N becomes impractical
for degrees n > 18 because of high-memory usage (' 200 GB). Consequently we have
adopted the algorithm of Lebovitz (1989) for high degrees numerical computations,
reaching degrees as high as n = 25 (. 20 GB). The limiting factor is then the CPU
time to solve the stability problem.

Appendix C. Precessing flow in spheroidal containers

We revisit here the precession-driven instabilities in spheroidal geometry (a = b 6= c)
studied by Kerswell (1993) and Wu & Roberts (2011). We use this case as a benchmark for
our global analysis. We work in the precessing frame where the vertical axis coincides with
the spheroidal axis of symmetry. Using notation of table 1, we assume a precession angle
α0 = π/2. In this frame the body rotation vector is ΩB = ε x̂, with ε the dimensionless
amplitude of the precession forcing (Poincaré number). The basic flow (2.2) then reduces
to

U = −y x̂+ [x− µ(1 + η)z] ŷ + µy ẑ, (C 1)

with η = 1/c2 − 1 the polar flattening and µ = 2ε/η a parameter which measures the
ratio of the elliptical distortion over the shearing of the streamlines.

As shown by Kerswell (1993), no instability is associated with the linear basis (n = 1).
Wu & Roberts (2011) extended the work of Kerswell (1993) by considering basis up
to degree n = 6. Results for the n = 2 and n = 6 basis are shown in figure 15 (a)-
(b), which surveys the stability of (C 1) in the plane (η, ε). The stability maps are in
perfect agreement with the previous studies. Tongues of instabilities emerge from the η
axis. Tongues are associated with two types of instability, namely elliptical and shear
instabilities (Kerswell 1993). The former have growth rates proportional to ε2 and the
latter to ε. Showing iso-contours of σ/ε leads to elliptical tongues which are thicker than
shearing ones. When n increases, the maximum growth rate of oblate spheroids (η > 0)
first increases quickly and we observe that when n is large enough (n > 10) it slows down
to reach a constant value when n increases further. On the other hand prolate spheroids
(η < 0) have already large growth rate close to 1 for large ε and the maximum value
does not really evolve with n. As noticed by Wu & Roberts (2011), the progression of
unstable tongues for oblate spheroids (η > 0) toward the spherical case η = 0 is quicker
than for prolate spheroids (η < 0) when n increases.

Global analysis using n = 15 is shown in figure 15 (c). In comparison with n = 6,
new tongues of instabilities appear almost everywhere, filling the map and making the
identification of the nature of the instability difficult. Valleys of less unstable modes are
found for prolate and oblate ellipsoids (white dashed lines).

Figure 15 (c) draws the possible existence of instabilities for the limit of very small
oblateness relevant in geophysics. For instance the Earth’s liquid core has a flattening of
η ' 0.005. To this end we push up the degree to n = 25 in figure 15 (d) and make a zoom
in the geophysical range of parameter space. We observe instability for oblate spheroid
of oblatenesses as small as the one of the Earth’s core. The amplitude of precession ε is
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(a) Basis n = 2 as in Kerswell (1993) (b) Basis n = 6 as in Wu & Roberts (2011)

(c) Basis n = 15. Top and bottom white dashed
lines are given by η = ±2ε.

(d) Basis n = 25 (zoom in). The Earth
oblateness (η = 0.005) is shown by the black
dashed line.

Figure 15. Survey of the stability of precessing basic flows (C 1) in the (η, ε) plane. Colormap
shows the ratio σ/ε. The same color scale is used for the four plots. White areas correspond to
marginally stable regions.

still rather large to be consistent with geophysical values (ε ' 10−7), but it is likely that
an unstable area appears for smaller ε when n is further increased.

Appendix D. Tidally-driven elliptical instability (e = 0) in figures of
equilibrium

We consider here a self-gravitating fluid domain on a circular orbit (e = 0) but (a, b, c)
are no longer independent of Ω0 (as opposed to subsection 4.2). Barker et al. (2016)
and Barker (2016) have recently considered this particular case of TDEI, considering
figures of equilibrium where the equilibrium tide is related to Ω0. To compare our results
with theirs, we choose the inverse of the dynamical frequency ω−1d as time unit, with
ωd = (4πGρ/3)1/2 and G the gravitational constant. We introduce two new dimensionless
parameters, namely the fluid spin rate Ω∗s = Ωs/ωG and the orbital spin rate Ω∗0 = Ω∗sΩ0

(note that Ω0 is dimensionless).
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(a) Local formula (D 4) (b) Global analysis (n = 15)

Figure 16. Survey of the parameter space (Ω∗s , Ω
∗
0 ) for the elliptical instability as studied by

Barker (2016); Barker et al. (2016). Colormap shows log10(σ) and is saturated for ratio smaller
than 10−3. White areas correspond to undefined ellipsoidal figures of equilibrium such that
β0 6 0 or β0 > 1. Tidal amplitude A = 0.025. The elliptical instability in the limit β0 � 1
(Craik 1989) is obtained above the dashed black lines for Ω∗0 ∈ [−Ω∗s , 3Ω∗s ].

Denoting A the tidal amplitude, Barker (2016) shows that

β0 =
3A

2 [1− γ2 − (Ω∗0)2]−A
(D 1)

with γ = Ω∗s −Ω∗0 the differential rotation. The fluid ellipsoid semi-axes are a =
√

1 + β0,
b =
√

1− β0 and

c2 =
2
[
(2A+ γ2 + (Ω∗0)2 − 1)(A− γ2 − (Ω∗0)2 + 1) + f

]
(A+ 1)[A+ 2(γ2 + (Ω∗0)2 − 1)]

, (D 2)

with

f = 2γΩ∗0

√
[1− 2A− γ2 − (Ω∗0)2] [1 +A− γ2 − (Ω∗0)2]. (D 3)

They found that instabilities in ellipsoids with rigid boundaries are quantitatively similar
to the ones in ellipsoids with realistic free surface deformations. Consequently the results
obtained with rigid boundaries can also be applied to stellar configurations. They also
report a violent instability (called ”stack of pancakes”-type instability) for negative Ω∗0 ,
if the tidal amplitude is sufficiently large and located outside of the unstable range
−Ω∗s 6 Ω∗0 6 3Ω∗s of the elliptical instability (Craik 1989). In fact, this instability is
already highlighted by Le Dizès (2000) as an effect of finite β0 (see discussion in §4.2).

The local formula (4.14) of Le Dizès (2000) can be written in the appropriate dimen-
sionless form

σ

|γ|
= max

θ0

1

4

√
(1 + cos θ0)

4
β2
0 − 4

[
2− 4

(
1 +

Ω∗0
γ

)
cos θ0

]2
+O(β2

0). (D 4)

In figure 16, we compare the global analysis at degree n = 15 and the local formula (D 4).
The agreement between the two approaches is very good (except near Ω∗s > 0.95).
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Cébron, D. & Hollerbach, R. 2014 Tidally driven dynamos in a rotating sphere. The
Astrophysical Journal Letters 789 (1), L25.
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30 J. Vidal, D. Cébron and N. Schaeffer

Roberts, P. H. & Wu, C.-C. 2011 On flows having constant vorticity. Physica D: Nonlinear
Phenomena 240 (20), 1615–1628.

Schaeffer, N. 2013 Efficient spherical harmonic transforms aimed at pseudospectral numerical
simulations. Geochemistry, Geophysics, Geosystems 14 (3), 751–758.

Sloudsky, T. 1895 De la rotation de la Terre supposée fluide à son intérieur .
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