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ABSTRACT

Classic Random Regression Forests (RRFs) used for multi-
organ localization describe the random process of multivari-
ate regression by storing the histograms of offset vectors
along each bounding wall direction per leaf node. On the one
hand, the RAM and storage requirements of classic RRFs
may become exorbitantly high when such a RRF consists of
many leaf nodes, but on the other hand, a large number of
leaf nodes are required for better localization. We introduce
Light Random Regression Forests (LRRFs) which eliminate
the need to describe the random process by formulating the
localization prediction based on the random variables that
describe the random process. Consequently, LRRFs with the
same localization capabilities require less RAM and storage
space compared to classic RRFs. LRRF comprising 4 trees
with 17 decision levels is approximately 9 times faster, takes
10 times less RAM, and uses 30 times less storage space
compared to a similar classic RRF.

Index Terms— Random Regression Forests, Organ Lo-
calization

1. INTRODUCTION

In the field of medical image analysis, Multi-Organ Localiza-
tion (MOL) is a preliminary step in both anatomical struc-
ture segmentation and registration. It also plays an important
role in content specific image retrieval. Based on pioneer-
ing work of Breiman [1], Random Regression Forests (RRFs)
were used in 2010 for the first time to solve the MOL prob-
lem by localizing the organs using bounding boxes [2]. The
ingenuity of the proposal was the manner in which the MOL
problem was transformed into a multivariate regression prob-
lem. It comprised the regression of a 6 Dimensional (6D) dis-
placement vector (offset vector) from the bounding box walls
of the organs to any given voxel. In 2013, the same authors
proposed a modified implementation of RRFs [3, 4] that en-
hanced the previously achieved results by modifying the split
node optimization method, the description of the random pro-
cess, and the eventual usage of this description for prediction.

This work was supported by the French ANR within the TECS project
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Since its introduction, RRFs have been successfully used
as the first localization step in fully automatic segmentation
of right and left kidneys [5], liver [6], multiple organs (liver,
right kidney, left kidney, spleen, gallbladder, and stomach)
[7], hip joint [8], and detection, grading and classification of
coronary stenoses [9] in CT volumes.

Predicting the localization of organs is based on using the
offset vectors stored in the RRF leaf nodes during the training
phase. The offset vectors d(v; c) are computed for each organ
and for each voxel using:

d(v; c) = v̂ − b(c) , (1)

where c ∈ organs (the set of organs to localize), b(c) the
bounding box vector, and v̂ = (vx, vx, vy, vy, vz, vz) made
from the voxel position (vx, vy, vz). d(v; c) is composed
of 6 components (ddirc ) where dir ∈ {left, right, anterior,
posterior, inferior, superior}.

Given a set of voxels arriving at a particular node and for
a given organ, the current setting of RRF regresses the contin-
uous conditional distribution of d(v; c) as a 6D multivariate
Gaussian [2, 3, 4]. Consequently, the 6D multivariate Gaus-
sian results in 6 1D univariate Gaussians.

The authors of [3, 4] described the random process at-
tached to the continuous conditional distribution by storing
the 1D histograms of offset vectors per each wall direction per
each organ. Describing the random process results in a sig-
nificant storage space requirement. In addition to that, these
saved 1D histograms are loaded into the RAM during the pre-
diction phase (also called the testing phase) in order to carry
out the localization of an unseen image. This again translates
into a substantial RAM requirement at the prediction phase.

In this article we present Light Random Regression
Forests (LRRFs) which describe the random variables inher-
ent to the random processes that were previously described in
classic RRFs. By describing the random variables, the stor-
age and RAM requirements are drastically reduced compared
to the classic RRFs.

2. ON GAUSSIAN DISTRIBUTION SUMMATION

The foundation of LRRF is based on the following observa-
tion on summation of 1D Gaussian distributions. A 1D Gaus-
sian distribution (G) is described by its mean (µ) and variance



Fig. 1: N1 and N2 are two 1D Gaussian distributions (shown
in blue). N1 + N2 is the distribution generated by adding
N1 and N2 together (shown in green). N1,2 is another Gaus-
sian distribution constructed from µ1,2: the weighted means
(equal weights in this case) of N1 and N2 (shown in red).
The goal is to check whether µ1,2 is a good approximation
of the argmax of N1 + N2 (am1+2). (a) The argmax can
be closely estimated by the weighted means when the means
of the original distributions are closer. (b) When the means
of the original distributions are far apart, taking the argmax
privileges one distribution over the other.

(σ2) in the following manner:
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A new distribution is made by summing many 1D Gaus-
sian distributions together. The ultimate goal is to find the
argmax of the final distribution. This is similar to adding
many prediction distributions described by histograms to-
gether and finding the argmax of the final summed distribu-
tion in order to obtain the absolute bounding wall location in
classic RRFs [3, 4].

Although the addition of two 1D Gaussians does not result
in another 1D Gaussian, when the means of the distributions
are very close, weighted means of the distributions are a good
estimator of the argmax of the summation (see Fig. 1a). But
when the means of the distributions are quite apart from each
other, the weighted means are not a good estimator of the
argmax (see Fig. 1b).

At the prediction phase of RRFs, “a good set” of leaf
nodes that shows the lowest variability is selected per organ
for the final localization prediction. Since each of these se-
lected leaf node should predict approximately the correct po-
sition (hence, have approximately the same mean), we hy-
pothesized that finding the argmax of the final prediction
summation distribution can be estimated using the weighted
means of each selected leaf node.

3. LIGHT RANDOM REGRESSION FORESTS

Similarly to RRFs, LRRFs are also an ensemble of Random
Regression Trees (RRTs). Each RRT consists of split and leaf
nodes. Each split node divides the incoming voxels into two

separate child nodes. Leaf nodes are responsible for predict-
ing the localization of organs.

The training phase of LRRFs is identical to the training
phase of classic RRFs (see [3, 4] for a more detailed descrip-
tion) except for one simplification that occurs as a direct con-
sequence of our hypothesis mention in Sect. 2. This simplifi-
cation is described in Sect. 3.1 and the details of the prediction
phase of LRRFs are presented in Sect. 3.2.

3.1. Training phase implementation

The split nodes are trained following the exact procedure of
classic RRFs. When all the split nodes are trained, the leaf
nodes contain all the accumulated voxels. Training of a given
leaf node consists of summarizing the offset vectors of these
accumulated voxels. As previously mentioned, RRFs regress
the continuous conditional distribution of offset vectors as a
6D multivariate Gaussian which results in 6 1D univariate
Gaussians along each bounding wall direction [2, 3, 4]. The
classic RRFs train the leaf node by storing the random process
using histograms of the offset vectors [3, 4].

Thanks to our hypothesis, we can eliminate the storing
of the histograms (i.e. the description of the random process).
Hence, per organ, we only store the mean (µdir) and the vari-
ance (σ2

dir) of these 1D distributions (i.e. the random variables
that define the distribution D).

D ∼ N (µdir, σ
2
dir) . (3)

LRRFs are “light weight” by saving a lot of storage space as
they do not save the 1D histograms of each wall direction of
each organ.

3.2. Prediction phase implementation

During the prediction phase, a previously unseen image is put
through an already trained LRRF in order to localize the or-
gans. Similar to classic RRFs, each voxel (v) of the image
(V) is pushed through each RRT until it is accumulated at a
leaf node for each RRT of the LRRF (l(v)). The set of leaf
nodes that accumulates at least 75% of voxels (L̃) and that
displays the lowest variability per each organ is used for the
localization prediction similar to [3, 4]. Then, each bounding
wall distribution (D (b(c))) can be defined as :

D (b(c)) ∼
∑
l∈L̃

D (b(c | l(v)) · Pr(l) , (4)

where Pr(l) = |l(v)| /
∑
l(v)∈L̃|l(v)|, |l(v)| is the number

of voxels accumulated at the leaf node l, and b (c | l (v)) can
be derived from (1). From (3) this translates into an addi-
tion of weighted 1D Gaussians. The final prediction of the
absolute position of each bounding wall direction (b̃c) is the
arg max of D (b(c)).



In classic RRFs, D (b(c)) is modeled by histograms per
each bounding wall direction and b̃c is obtained by finding
the mode of the histogram (i.e. the argmax) [3, 4].

We use our hypothesis in order to find b̃c by calculating
the sum of the means of b (c | l(v)) weighted by Pr(l) as:

b̃c =
∑
l∈L̃

µb · Pr(l) , (5)

where µb = v̄dir−µd. LRRFs are “light” by leading to faster
computational times as no random process is mimicked by the
use of histograms but a model of b̃c is directly built using the
random variables.

4. MATERIALS AND EXPERIMENTS

Our dataset comprised 100 anonymized CT volumes belong-
ing to 100 different patients that were obtained from the
teaching hospital of Grenoble Alpes. These CT volumes
showed a high variability in size (from 263 × 263 × 366 to
466×466×568 in mm3), imaged region, noise level, with or
without the injection of contrast agents, presence or absence
of biomedical implants, etc. The dataset was randomly di-
vided, similarly to [2], into a training set and a testing set (or
prediction set) consisting of 55 and 45 volumes respectively.

The left kidney, right kidney, liver, spleen, left femur
head, right femur head, left pelvis, right pelvis, and L5 verte-
bra were used for this study. All organs of interest of all 100
images were manually delineated using 3D bounding boxes.
These manually delineated bounding boxes were used as the
gold standard.

A classic RRF was trained and used for prediction as de-
scribed in [3, 4]. Then, the classic RRF was transformed into
a LRRF by removing the stored 1D histograms of offset vec-
tors per each wall direction as mentioned in Sect. 3. This en-
abled us to compare the two methods under the exact same
conditions.

We generated two results sets from classic RRFs (RCi)
and from LRRFs (RLi); namely:
• RC1 andRL1 with 4 RRTs andD = 12 similar to [3, 4],
• RC2 and RL2 with 4 RRTs and D ∈ [1, 2, . . . , 17],

to evaluate the precision and usability of both methods.
Validation of our hypothesis: In order to evaluate the hy-

pothesis of estimating the argmax of summation of 1D Gaus-
sians by the weighted summation of their means as presented
in Sect. 2, the following steps were carried out. First, the dis-
tribution pairs of argmax of p(bc) and weighted means of
p(bc | l) denoted respectively byDa andDµ were created for
each wall direction per organ (6×9 distribution sets) using all
45 prediction images. Finally, each pair of Da and Dµ were
subjected to Wilcoxon–Mann–Whitney test.

Prediction precision: Bounding Wall Prediction Error
(BWPE) was used as the performance evaluation metric sim-
ilar to [2, 3]. BWPE is the absolute difference between the

predicted and gold standard bounding box walls. As there are
six walls per bounding box, the mean BWPE (Er) is calcu-
lated taking the mean of the six BWPEs. Er was calculated
only for the organs that were fully present in the CT volumes.

Usability: The usability was evaluated using the mean
time (t) and the mean amount of RAM (M ) required to do a
MOL in a CT volume. The amount of disk space used to store
the forest (S) was also compared.

For all statistical tests carried out, α was set to 0.01.
All results were generated using a C++ implementation on
a quad-core Intel R© Xeon R© 3GHz machine with 32GB of
RAM.

5. RESULTS

Hypothesis verification: Wilcoxon–Mann–Whitney test
failed to reject the null hypothesis of Da and Dµ com-
ing from the same underlying distribution with p−value ∈
[0.04− 0.98] for all 54 verification distribution pairs of Da
and Dµ. This provides strong empirical evidence that the
argmax of summation of 1D Gaussians can be readily esti-
mated by the weighted summation of their means.

Prediction precision evaluation: The mean BWPEs
(Er1) obtained for RC1 and RL1 per each organ are pre-
sented in Fig. 2a. The obtained Er1 failed to reject the null
hypothesis that both error measures of RC1 and RL1 for
all organs originated from the same underlying distribution
with p−value ∈ [0.03− 0.78]. That indicates the error is
statistically the same with the two methods.

The mean BWPEs (Er2) of all organs obtained were
in the range of [9.85 −16.53] for RC2 and in the range of
[9.99− 16.23] for RL2. The standard deviations of RC2 and
RL2 fell between [10.21− 15.17] and [9.59− 14.23] respec-
tively. Er2 decreased with the number of decision levels for
both RC2 and RL2.

Usability evaluation: The metrics t2, M2, and S2 for
RC2 and RL2 are presented in Fig. 2b. Both t2 and S2 for
RC2 grow exponentially compared to the same values ofRL2.
For 17 decision levels, t2, M2, and S2 are (2.2 s, 19.5 s),
(117MB, 1147MB), and (171MB, 5221MB) for RL2 and
RC2 respectively. MOL using the LRRF is approximately 9
times faster, takes about 10 times less RAM, and uses about
30 times less storage space compared to the classic RRF.

6. DISCUSSION AND CONCLUSION

Although estimating the arg max of summation of 1D Gaus-
sians by weighted individual means might be questionable (as
the sum of 1D Gaussians is not a Gaussian distribution), the
empirical results indicated that they are statistically alike.

From RC2 and RL2, it is apparent that as the number of
decision levels increase, the feasibility of classic RRFs for
MOL becomes questionable. We propose LRRFs as an alter-
native that only describes the random variables that are inher-



Fig. 2: Prediction precision and usability evaluation. (a) 1.5 Inter quartile range box plots of mean BWPEs per organ for RC1

and RL1. (b) Evolution of t2, M2, and S2 with number of decision levels for RC2 and RL2.

ent to the random process which results in a huge RAM and
storage requirement reduction enabling the growth of random
forests having deeper trees.

The huge gains in speed and memory obtained using LR-
RFs without compromising the localization capabilities en-
able the use of RRFs in resource limited environments such
as mobile phones or smart wearables. Another advantage of
LRRF is the ability to transform a classic RRF into a LRRF
and use it in a resource critical environment.
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