
HAL Id: hal-01498618
https://hal.science/hal-01498618

Submitted on 30 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monte Carlo Beam Search
Tristan Cazenave

To cite this version:
Tristan Cazenave. Monte Carlo Beam Search. IEEE Transactions on Computational Intelligence and
AI in games, 2012, 4 (1), pp.68-72. �10.1109/TCIAIG.2011.2180723�. �hal-01498618�

https://hal.science/hal-01498618
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 1

Monte-Carlo Beam Search
Tristan Cazenave

Abstract—Monte-Carlo Tree Search is state of the art for multiple games and for solving puzzles such as Morpion
Solitaire. Nested Monte-Carlo Search is a Monte-Carlo Tree Search algorithm that works well for solving puzzles. We
propose to enhance Nested Monte-Carlo Search with Beam Search. We test the algorithm on Morpion Solitaire. Thanks
to beam search, our program has been able to match the record score of 82 moves. Monte-Carlo Beam Search achieves
better scores in less time than Nested Monte-Carlo Search alone.

Index Terms—Nested Monte-Carlo Search, Puzzle, Beam Search.

✦

1 INTRODUCTION

Monte-Carlo Tree Search [16], [5] is very suc-
cessful in games such as Go [11], [14], Hex
[9], [1] or General Game Playing [13], [2],
[18]. Building on these successes in two-player
games, Monte-Carlo Tree Search algorithms
were also recently used in single-player games
[4], [21], [5], [19].
Nested Monte-Carlo search has been success-

fully applied to hard puzzles [15] such as Mor-
pion Solitaire or SameGame [5]. Beam search is
a search algorithm that selects a given number
of positions among the children of the current
set of positions. It has been succesfully com-
bined with ant colony optimization to solve
the travelling salesman problem with time win-
dows for example [17]. We propose to improve
Nested Monte-Carlo Search combining it with
beam search.
The second section deals with Nested Monte-

Carlo Search. The third section describes
Monte-Carlo Beam Search. The fourth section
explains Parallel Monte-Carlo Beam Search.
The fifth section details experimental results.

2 NESTED MONTE-CARLO SEARCH

The basic idea of Nested Monte-Carlo Search is
to play a game choosing each move based on

• T. Cazenave is at LAMSADE, Université Paris-Dauphine, 75016
Paris, France.
email: cazenave@lamsade.dauphine.fr

the results of a lower level Nested Monte-Carlo
Search [5]. At level 1, the lower level search is
simply a playout. A playout is a game where
moves are played at random until the game
ends.
Figure 1 illustrates a level 1 Nested Monte-

Carlo search. Three selections of moves at level
1 are shown. The leftmost tree shows that at
the root all possible moves are tried and that
for each possible move a playout follows it.
Among the three possible moves at the root,
the rightmost move has the best result of 20,
therefore this is the first move played at level
1. This brings us to the middle tree. After this
first move, playouts are performed again for
each possible move following the first move.
One of the moves has result 30 which is the
best playout result among its siblings. So the
game continues with this move as shown in
the rightmost tree.

30 10201010 20 10 30 40

Fig. 1. This figure explains three steps of a level
1 search. At each step of the playout of level 1
(shown here with a bold line), an NMC of level
1 performs a playout (shown with wavy lines) for
each available move and selects the best one.

The algorithm for higher levels is Algorithm



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 2

Algorithm 1 Nested Monte-Carlo search

nested (position, level)
best playout ← {}
while not end of game do

if level = 1 then
move ← argmaxm(sample (play
(position, m)))

else
move← argmaxm(nested (play (position,
m), level − 1))

end if
if score of playout after move > score of
the best playout then
best playout ← playout after move

end if
position← play (position, move of the best
playout)

end while
return score (position)

1. At each move of a playout of level 1 it
chooses the move that gives the best score
when followed by a single random playout (us-
ing the sample function that plays a completely
random game). Similarly for a playout of level
n it chooses the move that gives the best score
when followed by a playout of level n− 1.

For a tree of height h and branching factor
a, the total number of playout steps of a NMC
of level n will be tn(h, a) = a×

∑
0<i<h tn−1(i, a)

with t0(h, n) = h. So a NMC of level 1 will
perform a×h2/2 playout steps. The complexity
of a NMC of level n is O(anhn+1).

In Iterative Nested Monte-Carlo Search,
searches at the highest level are repeatedly
performed until the thinking time is elapsed.
Nested Monte-Carlo search has been successful
in establishing world records in single player
games such as Morpion Solitaire or SameGame.
It provides a good balance between exploration
and exploitation and it automatically adapts its
search behavior to the problem at hand without
parameter tuning. At each level, it is important
to memorize the best playout found so far in
order to play its moves if no better playout is
found.

3 MONTE-CARLO BEAM SEARCH

In this section we describe how we combine
beam search with Nested Monte-Carlo Search.
The combination consists of memorising a set
of best playouts instead of only one best play-
out at each level. This set is called a beam and
all the positions in the set are developed. The
size slevel of a beam is fixed for each level. Only
the slevel best playouts are kept at a given level.

102010 2015 25 30 25 30

35 20 30 25 2535

Fig. 2. Illustration of a beam search with a beam
of size two. At each move, the best two positions
among all children are kept.

Figure 2 intuitively explains how a beam
search of level 1 and size 2 works. At the
root node, there are three possible moves. For
each possible move, the move is played and
the resulting position is followed by a playout.
The position after the move is associated to
the score of the following playout. The best
two positions are kept and we are now in the
second tree. For each of the two positions in
the beam there are three possible moves. For
each position in the beam the possible moves
are played and followed by a playout. Out of
the resulting 6 positions, only the 2 positions
that have the best playout results are kept.
We are now in the third tree. There are again
playouts played after each possible move in
the positions of the beam, and the process
continues until all positions in the beam are
terminal.
Algorithm 2 details Monte-Carlo Beam

Search. The variable beam is the set of positions
in the beam. There are at most slevel positions
in the beam. The variable nextBeam represents
the best positions of the beam after one move.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 3

Algorithm 2 Monte-Carlo Beam Search

beamMonteCarlo (position, level)
beam ← {position}
while true do

nextBeam ← ∅
for b in beam do
p ← b
if there is a move to play in the best
playout of p then
play (p, move of the best playout)

end if
add p to nextBeam
for move in possible moves of b do
p ← b
play (p, move)
if level = 1 then

sample (p)
else

beamMonteCarlo (p, level − 1)
end if
add p to nextBeam

end for
end for
if beam = nextBeam then
break

end if
keep only the best slevel positions in
nextBeam
beam ← nextBeam

end while

The variable nextBeam is set to the empty
set before filling it with new positions. For all
positions in the beam the following position
of the best playout associated to the position
is put into nextBeam so as to keep the best
playout if no better playout is found. Then
for all possible moves in the position of the
beam, the move is played and a nested search
is performed on the resulting position. The
best playout resulting from the nested search
is associated to the position and the position is
inserted in the next beam. After all positions
in the beam have been developed, only the
slevel best positions are kept. A position is better
than another one if the associated playout has
a better score.

Monte-Carlo Beam Search is a generalization

of Nested Monte-Carlo Search. When slevel = 1
for all levels, Monte-Carlo Beam Search be-
haves exactly as Nested Monte-Carlo Search.

4 PARALLEL MONTE-CARLO BEAM

SEARCH

Monte-Carlo Tree Search algorithms close to
UCT parallelize quite well until 16 cores [6],
[7], [10], [12], while Nested Monte-Carlo Search
parallelizes quite well until at least 64 cores [8].
The parallelization of Monte-Carlo Beam

Search is even more simple than the paralleliza-
tion of Nested Monte-Carlo Search. It consists
in having a master process that performs the
search at the highest level, and some remote
processes that perform the search at the lower
levels. The master process computes all the po-
sitions following the positions in the beam and
sends them to the remote processes. The remote
processes apply the lower level Monte-Carlo
Beam Search to the positions they receive and
send back the result to the master process. Once
the master process has sent all the following
positions, it receives all the searched positions
and only keeps the best ones for the beam. The
master and the remote processes are given in
algorithms 3 and 4.

5 EXPERIMENTAL RESULTS

Morpion Solitaire is a single player game. The
goal of the game is to play as many moves as
possible. A move consists of adding a circle and
in drawing a line joining five circles that have
not been joined before. In the touching version
two lines in the same direction can share a
circle, while in the disjoint version they cannot.
Before playing, a number of circles are drawn
in a cross shape.
Nested Monte-Carlo Search has established

world records at Morpion Solitaire [5], [20].
The current records are 82-move for the dis-
joint version and 178-move for the touching
version. They were achieved by Chris Rosin
with Nested Monte-Carlo Search and playout
policy learning in August 2011.
More information on Morpion Solitaire can

be found on the Morpion Solitaire web site
[3]. The best human record for the touching



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 4

Algorithm 3 Master process

beamMonteCarlo (position, level)
beam ← {position}
while true do

nextBeam ← ∅
for b in beam do
p ← b
if there is a move to play in the best
playout of p then
play (p, move of the best playout)

end if
add p to nextBeam

end for
remote ← 1
nbSent ← 0
for b in beam do
for move in possible moves of b do
p ← b
play (p, move)
Send (p, remote)
remote ← remote+ 1
if remote = # of remote CPU then

remote ← 1
end if
nbSent ← nbSent+ 1

end for
end for
for i from 1 to nbSent do
Receive (p)
add p to nextBeam

end for
if beam = nextBeam then
break

end if
keep only the best slevel positions in
nextBeam
beam ← nextBeam

end while

Algorithm 4 Remote process

remoteProcess (level)
while true do

Receive(position)
beamMonteCarlo (position, level − 1)
Send(position, 0)

end while

version is 170 moves. This record by Charles-
Henri Bruneau held for 34 years before being
beaten by the combination of Nested Monte-
Carlo Search and playout policy learning.

Fig. 3. Evolution of the average score of Iter-
ative Nested Monte-Carlo Search with different
levels.

Figure 3 gives the evolution of the average
score of a regular Nested Monte-Carlo Search
at level 0, 1 and 2. We can observe that at level
1, doubling the computation time improves
the average score by half a point. At level 2,
doubling the computation time improves the
average score by 0.7 points. The average score
is only given for time settings of which at least
one iteration has been completed.

Fig. 4. Evolution of the average score of a
search with different levels and beam sizes.

Figure 4 shows the evolution of the average
score obtained for different beams and different
levels. The sizes of the beams of the underlying



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 5

s1\s2 1 2 4 8 16 32
1 66.66 67.44 69.06 70.48 71.59 72.28
2 67.84 68.97 70.17 71.38 72.47
4 69.25 70.53 71.47 72.53
8 70.47 71.74 72.48
16 71.76 72.27
32 72.36

TABLE 1
Average score of level 2 searches for different

combinations of s1 and s2

levels are set to 1 when testing a value for the
beam size of a level. We can see that the behav-
ior is slightly different for the different levels.
At level two, doubling the beam size enables
the algorithm to get more points than doubling
the beam size at levels 1 and 3. The slope of the
curve is better at level 2 until a beam of 128:
a 1.1 point gain is observed for each doubling,
but then it decreases to approximately half a
point. Concerning level 1, approximately 0.9
points are gained for each doubling of the beam
size. At level 3, approximately 0.7 points are
gained for each doubling of the beam size.
Doubling the beam approximately doubles the
computing time for all levels.

Table 1 gives the average scores obtained
for different combinations of the beam sizes
at level 1 (s1) and at level 2 (s2). The values
have been computed over 118 runs of the
algorithms, and only for combinations such
that s1 × s2 ≤ 32. As the running time of the
algorithm is proportional to s1 × s2, we can
compare algorithms that are equivalent for the
computing time, comparing the values along
the antidiagonal. For each antidiagonal, the
best value is put in bold. We can observe that
values that have the same s1×s2 are quite close
to each other.

Figure 5 depicts the evolution of the average
score at level 1 for beams of size 1, 16 and 128.
The curve for beam size 1 is the curve for the
original Nested Monte-Carlo search algorithm.
The two other curves are for Monte-Carlo Beam
Search. We can see that using a beam much
improves the nested Monte-Carlo algorithm.
When running for 163 seconds, Monte-Carlo
Beam Search with a beam of 16 scores three

Fig. 5. Evolution of the average score of a
search at level 1 for different beam sizes.

more points on average than Nested Monte-
Carlo search. With a beam of size 128, it scores
four more points on average.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

3940

41

42

43

44

45

46

47

48

49

50

5152

53

54

55

56

5758

59

60 61

6263

64

65

6667

68

69

70

71

72

73

74

75

7677

78

79

80

81 82

Fig. 6. An 82-move record for Morpion Solitaire
disjoint version.

An 82-move record was obtained using
Monte-Carlo Beam Search. It was found by a
level 3 search with s1 = s2 = s3 = 4, a beam of
size 4 for level 1, 2 and 3. The record is depicted
in figure 6.
Since the fastest way to gain points is to use



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 22

23

24

2526

27

28 29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53

54

55 56

57

58

59

60

61

62

63

64

6566

67

68

69

70

71

72 73 74

7576

77

78

79

80

81

82

Fig. 7. Another 82-move grid.

a beam size s2 = 8 (as can be observed in figure
4), other tests were done with s1 = 1 and s2 =
s3 = 8. These searches found multiple 80 moves
grids and another 82-move record depicted in
figure 7.
Previous to these experiments we ran many

searches of Nested Monte-Carlo Search at
level 4 using a parallel implementation. These
searches achieved two 80-move grids out of
many attempts. In contrast Monte-Carlo Beam
Search achieved many 80-move grids and two
82-move grids with faster searches and much
less time. The time to complete a search at level
3 with s1 = 1 and s2 = s3 = 8 is less than the
time to complete a level 4 search and it gives
better scores. A Nested Monte-Carlo Search at
level n + 1 requires 200 more computational
time than a search at level n, while the Monte-
Carlo Beam Search we have used only requires
64 more computational time than a Nested
Monte-Carlo Search of level 3 and gives better
results than a search at level 4.

6 CONCLUSION

We have defined a new Monte-Carlo Tree
Search algorithm that combines Nested Monte-
Carlo Search with Beam Search. We have
shown that the use of a beam improves

Nested Monte-Carlo search at Morpion Soli-
taire. Monte-Carlo Beam Search has matched
the current world record of 82 moves at the dis-
joint version of Morpion Solitaire with a search
faster than Nested Monte-Carlo Search at level
4. Moreover Nested Monte-Carlo Search at
level 4 only achieved 80-move grids. When
compared at level 1, Monte-Carlo Beam Search
gets four more points on average than Nested
Monte-Carlo Search. In future work, we intend
to apply the algorithm to other puzzles.

ACKNOWLEDGMENT

I wish to thank Ed Mertensotto who told me
he uses beam search in his evaluation and
search based SameGame solver and Nicolas
Jouandeau who helped me to run my programs
on the mime cluster of University Paris 8. I also
thank the anonymous reviewers for helping
me improve this paper. This work has been
supported by the French National Research
Agency (ANR) through the COSINUS program
(project EXPLO-RA ANR-08-COSI-004)

REFERENCES

[1] B. Arneson, R. B. Hayward, and P. Henderson. Monte
carlo tree search in hex. IEEE Trans. Comput. Intellig. and
AI in Games, 2(4):251–258, 2010.

[2] Y. Björnsson and H. Finnsson. Cadiaplayer: A simulation-
based general game player. IEEE Trans. Comput. Intellig.
and AI in Games, 1(1):4–15, 2009.

[3] C. Boyer. Morpion solitaire. web page,
http://www.morpionsolitaire.com/, 2011.

[4] T. Cazenave. Reflexive Monte-Carlo search. In Computer
Games Workshop 2007, pages 165–173, Amsterdam, The
Netherlands, June 2007.

[5] T. Cazenave. Nested Monte-Carlo search. In IJCAI, pages
456–461, 2009.

[6] T. Cazenave and N. Jouandeau. On the parallelization of
UCT. In Computer Games Workshop 2007, pages 93–101,
Amsterdam, The Netherlands, June 2007.

[7] T. Cazenave and N. Jouandeau. A parallel monte-carlo
tree search algorithm. In Computers and Games, volume
5131 of LNCS, pages 72–80, Beijing, China, 2008. Springer.

[8] T. Cazenave and N. Jouandeau. Parallel nested monte-
carlo search. In NIDISC, IPDPS, pages 1–6, 2009.

[9] T. Cazenave and Abdallah Saffidine. Utilisation de
la recherche arborescente Monte-Carlo au Hex. Revue
d’Intelligence Artificielle, 23(2-3):183–202, 2009.

[10] G. Chaslot, M. H. M. Winands, and H. J. van den Herik.
Parallel monte-carlo tree search. In Computers and Games,
volume 5131 of Lecture Notes in Computer Science, pages
60–71. Springer, 2008.

[11] R. Coulom. Efficient selectivity and back-up operators
in monte-carlo tree search. In Computers and Games 2006,
Volume 4630 of LNCS, pages 72–83, Torino, Italy, 2007.
Springer.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 7

[12] M. Enzenberger and M. Müller. A lock-free multithreaded
monte-carlo tree search algorithm. In ACG, volume 6048
of Lecture Notes in Computer Science, pages 14–20. Springer,
2010.

[13] H. Finnsson and Y. Björnsson. Simulation-based approach
to general game playing. In AAAI, pages 259–264, 2008.

[14] S. Gelly and D. Silver. Combining online and offline
knowledge in UCT. In ICML, pages 273–280, 2007.

[15] G. Kendall, A. J. Parkes, and K. Spoerer. A survey of
np-complete puzzles. ICGA Journal, 31(1):13–34, 2008.

[16] L. Kocsis and C. Szepesvári. Bandit based monte-carlo
planning. In ECML, volume 4212 of Lecture Notes in
Computer Science, pages 282–293. Springer, 2006.

[17] M. López-Ibáñez and C. Blum. Beam-aco for the travelling
salesman problem with time windows. Computers & OR,
37(9):1570–1583, 2010.

[18] J. Méhat and T. Cazenave. Ary, a general game playing
program. In Board Games Studies Colloquium, Paris, 2010.

[19] J. Méhat and T. Cazenave. Combining UCT and nested
monte-carlo search for single-player general game play-
ing. IEEE Transactions on Computational Intelligence and AI
in Games, 2(4):271–277, 2010.

[20] C. D. Rosin. Nested rollout policy adaptation for monte
carlo tree search. In IJCAI, pages 649–654, 2011.

[21] M. P. D. Schadd, M. H. M. Winands, H. J. van den Herik,
G. Chaslot, and J. W. H. M. Uiterwijk. Single-player
monte-carlo tree search. In Computers and Games, volume
5131 of Lecture Notes in Computer Science, pages 1–12.
Springer, 2008.


