N

N
N

HAL

open science

Using Complex-Network properties For Efficient Graph
Analysis

Thomas Messi Nguélé, Maurice Tchuente, Jean-Francois Méhaut

» To cite this version:

Thomas Messi Nguélé, Maurice Tchuente, Jean-Francois Méhaut. Using Complex-Network proper-
ties For Efficient Graph Analysis. International Conference on Parallel Computing, ParCo 2017,
Foundation ParCo Conferences and Consortium Cineca, Sep 2017, Bologne, Italy. pp.413 - 422,
10.3233/978-1-61499-843-3-413 . hal-01498578v2

HAL Id: hal-01498578
https://hal.science/hal-01498578v2
Submitted on 17 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01498578v2
https://hal.archives-ouvertes.fr

Using Complex-Network Properties For
Efficient Graph Analysis

Thomas MESSI NGUELE *°, Maurice TCHUENTE " and Jean-Francois MEHAUT P

aIRD, UMI 209 UMMISCO, Université de Yaoundé I, BP 337 Yaoundé Cameroun
b Université de Grenoble Alpes, INRIA-LIG, Corse, BP: 38400 Grenoble, France

Abstract. A complex network is a set of entities in a relationship, modeled by a
graph where nodes represent entities and edges between nodes represent relation-
ships. Graph algorithms have inherent characteristics, including data-driven com-
putations and poor locality. These characteristics expose graph algorithms to sev-
eral challenges, because most well studied (parallel) abstractions and implementa-
tion are not suitable for them. This work shows how to use some complex-network
properties, including community structure and heterogeneity of node degree, to
tackle one of the main challenges in graph analysis applications: improving perfor-
mance, by a proper memory management and an appropriate thread scheduling. In
this paper, we first proposed Cn-order, a heuristic that combines advantages of the
most recent algorithms (Gorder, Rabbit and NumBaCo) to reduce cache misses in
graph algorithms. Second, we proposed deg-scheduling, a degree-aware scheduling
to ensure load balancing in parallel graph applications. Then we proposed comm-
deg-scheduling, an improved version of deg-scheduling that uses Cn-order to take
into account graph order in scheduling. Experimental results on a 32 cores NUMA
machine (NUMA4) (with Pagerank and livejournal for example) showed that Cn-
order used with deg-scheduling (comm-deg-scheduling) outperforms the recent or-
ders: with 32 threads, we reduce time by 26.81% compared to Gorder, 17.28%
compared to Numbaco and 11.53% compared to Rabbit.

Keywords. graph analysis, performance, cache miss, scheduling, load balancing

1. Introduction

A network is a set of entities such as individuals or organizations, with connections be-
tween them. Such a system is modeled as a graph G = (V, E) where entities are repre-
sented by vertices in V, and connections are represented by edges in E. As outlined in
[11], the advent of computers and communication networks that allow to gather and an-
alyze data on a large scale, has lead to a shift from the study of individual properties of
nodes in small specific graphs with tens or hundreds of nodes, to the analysis of macro-
scopic and statistical properties of large graphs also called complex networks, consisting
of millions and even billions of nodes.

This huge size combined with the complexity of the questions raised, make the de-
sign of efficient algorithms for parallel complex network analysis a real challenge [9].
The first difficulty is that graph computations are data driven, with high data access to
computation ratio. As a consequence, memory fetches must be managed very carefully,
otherwise as observed in other domains such as on-line transactions processing, the pro-
cessors can be stalled up to 50% of the time due to cache misses [15].

On the other hand, the irregular structure of complex networks combined with the
spatial locality of graph exploration algorithms, make difficult the scheduling task. In-

deed, the workload of the thread generated when dealing with the neighbors of a node
u depends on the degree of u. As a consequence, because of the great heterogeneity of
nodes degrees, these threads are highly unbalanced. In this regard, it has been shown
that in some graph applications, execution time can be reduced by more than 25% with
a proper scheduling which ensures that, threads that are executed together on a parallel
computer have balanced load [17,18].

This paper addresses one of the major challenges of graph analysis [9]: improving

performance through memory locality and thread scheduling. We did it with a proper
storage of complex network in memory and by ensuring that workload among threads is
well balanced.
Contribution. Despite the local irregularity of graph structures, it is known that com-
plex networks have some macroscopic structures such as communities, i.e. groups of ver-
tices that have a high density of edges within them and a lower density of edges between
groups [11]. Our contribution is as follows:

1. In the first aspect of our contribution, we exploit community structure in order
to design a node ordering that induces locality at a higher level during network
exploration, yielding a reduction of cache misses. More precisely, we present Cn-
order a new graph order heuristic that combines advantages of the most recent
graph ordering heuristics. This advantages include bring closer in memory pairs
of nodes appearing frequently in direct neighborhood (Gorder), or bring closer in
memory nodes belonging to the same community or sub-community (NumBaCo,
Rabbit).

2. In the second aspect, we introduce a technique that takes into account the het-
erogeneity of nodes degree to tackle load balancing among threads. This leads
to a heuristic named deg-scheduling that, used with Cn-order takes into account
the community and the heterogeneity of nodes degrees in order to obtain proper
storage and balanced workload among threads. Comm-deg-scheduling (Cn-order
used with deg-scheduling) outperforms the recent orders: on NUMA4, we reduce
time by 26.81% compared to Gorder, 17.28% compared to Numbaco and 11.53%
compared to Rabbit.

Paper organization. The remainder of this paper is structured as follows. Section 2
presents prerequisites such as complex networks representation, cache management and
Common pattern in graph analysis. Section 3 presents the three most recent heuristics for
graph ordering. Section 4 introduces our main contribution: section 4.1 presents a new
graph ordering for efficient cache management during network analysis and, section 4.2
precises how to benefit to our heuristic according to the target graph algorithm complex-
ity, section 4.3 is devoted to degree-aware loop scheduling that ensures load balancing
among threads during parallel complex network analysis. Experimental results on algo-
rithms that combine community-aware node ordering and degree-aware thread schedul-
ing are presented in section 5. Section 6 is devoted to the synthesis of our contribution,
together with the conclusion and future work.

2. Background

Complex network representation. There are three main ways to represent complex
networks:

- Matrix representation. A simple way to represent this graph is to use a matrix repre-
sentation M where M(i, j) is the weight of the edge between i and j. This is not suitable
for complex graphs because the resulting matrices are very sparse.

- Yale representation. The representation often adopted by some graph specific lan-
guages such as Galois [12] and Green-Marl [6], is that of Yale [S5]. This representation
uses three vectors: — vector A represents edges, each entry contains the weight of each
existing edge (weights with same origin are consecutive), — vector JA gives one extrem-
ity of each edge of A, — and vector IA gives the index in vector A of each node (index in
A of first stored edge that have this node as origin).

- Adjacency list representations. Other platforms use adjacency list representations. In
this case, the graph is represented by a vector of nodes, each node being connected to: -
a block of its neighbors [14], - a linked list of blocks (with fixed size) of its neighbors,
adapted to the dynamic graphs, used by the Stinger platform in [4,2].

Common pattern in graph analysis. One common statement used in graph analysis is
as follow:

i: for u € V(G) do

2 for v e Neighbor(u) do

3 program section to compute/access v
4 end for
s: end for

With this pattern, one should pay attention both in accessing « and v. In order to improve
performances (with cache misses reducing), one should ensure as far as possible, that
successive u and v are close in memory.

Cache Management. When a processor needs to access to data during the execution
of a program, it first checks the corresponding entry in the cache. If the entry is found in
the cache, there is cache hit and the data is read or written. If the entry is not found, there
is a cache miss.

There are three main categories of cache misses which include - compulsory misses
caused by the first reference to data, - conflict misses, caused by data that have the same
address in the cache (due to the mapping), - capacity misses, caused by the fact that all
the data used by the program cannot fit in the cache. Hereafter, we are interested in the
last category.

In common processors, cache memory is managed automatically by the hardware
(prefetching, data replacement). The only way for the user to improve memory locality,
or to control and limit cache misses, is the way he organizes the data structure used by
its programs. In this paper we will show how complex graphs can be organized to reduce
cache misses.

3. Releated work: graph ordering heuristics

In this section, we present three recent algorithms: Gorder [19], Rabbit Order [1] and
NumBaCo [10]; These three algorithms were published quite at the same period; each
of them claims to outperform state of the art algorithms such as BFS order [7], graph
partition order with METIS [8].

3.1. Gorder

The goal is to reduce cache misses by making sibling nodes be close in memory (allow
them to fit in cache memory). Gorder tries to find a permutation £ among all nodes in a
given graph G by keeping nodes that will be frequently accessed together in a window
w, in order to minimize the cpu cache miss ratio. Hao Wei and co-authors [19] defined
a score function S(u,v) = Ss(u,v) + S, (u,v), where Ss(u,v) is the number of common

1) QUOY

é\/

Figure 1. Running example Figure 2. Running graph with Louvain

Original order

in-neighbors of u and v (sibling relationship); S, (u,v) is the number of times that u and
v are in neighbor relationship. Based on this score function , Gorder algorithm tries to
find a permutation 7 that maximize the sum of score S(.,.):
— Find n:N—N
v m(v)

— suchthat F(m)=):] mar{1iow} Si,vj),

is maximal..
3.2. NumBaCo and Rabbit Orders
The main idea of these orders is to make nodes that belong to the same community
to close in memory. Both NumBaCo and Rabbit orders start by detecting communities
in a graph before numbering. If NumBaCo uses Louvain algorithm [3], Rabbit order
uses another community detection algorithm [16] that can be seen as a light version of
Louvain.

Louvain algorithm [3] is one of the most popular community detection heuristic. It
is based on a quality function called modularity, that assigns to a partition a scalar value
between -1 and 1, representing the density of links inside communities as compared to
links between communities. It starts with a partition where each node is alone in its
community. Then, it computes communities by repeating iteratively the two following
phases:

Let G = (N,E),

Step 1) for each node i, evaluate the gain in modularity that may be obtained
by removing i from its current community and placing it in the community of a
neighbor j. Place i in the community for which this gain (if positive) is maximum.
Step 2) Generate a new graph where nodes are communities detected in the first
phase. Reapply the first phase of the algorithm to the resulting weighted network.

These two phases are iterated until the maximum modularity is reached.

In contrast to Louvain, algorithm used in Rabbit [16] does not traverse all vertices
multiple times; it incrementally aggregates vertices placed in a same community into an
equivalent single, this contributes to reduce drastically execution time. To ensure just
in time graph ordering, Junya Arai and co-authors [1] propose a parallel version of this
community detection algorithm.

Louvain algorithm generates a merged structure corresponding to lower level and
higher level group structures: the lowest level (level one) contains structures got at the
first iteration of the two phases and the highest level, last level contains structures got at
the last iteration. Communities generated by graph in figure 1, is given at figure 2. Level
one has 4 communities {0,1,2,3}, level two (the last) has 3 communities {0,1,2}.

After detecting communities, if Rabbit generates directly a numbering, NumBaCo
first classifies communities to make ones with higher affinity (number of edge shared)
being together. The numbering is different in the two algorithms. Rabbit assigns a new
number to each node by performing DFS (Depth-First Search) within each hierarchical
community. This action makes nodes belong to the same sub-community be close in the
memory. NumBaCo assigns numbers to nodes by keeping the initial order within each
community: that is, if x and y are in the same community and x < y then numbaco will
assign 7(x) to x and 7(y) to y in such away that 7(x) < 7(y).

3.3. Strengths and weaknesses of each heuristic

Advantage and disadvantage of gorder: 'The main advantage of Gorder is that it brings
closer pairs of nodes appearing frequently in direct neighborhood. But the main disad-
vantage is that it doesn’t take into account the community structure which is usually
present in complex networks and influences graph analysis performances. During the
numbering, nodes that belong to same community may be scattered.

Advantage and disadvantage of NumBaCo and rabbit: The main advantage of Num-
BaCo or Rabbit is that they allow nodes belonging to the same community or sub-
community to be closer in memory. The disadvantage is that the numbering within a com-
munity. May be, a good numbering within communities can allow better performances.

The next paragraph shows how we use these strengths and weaknesses to build a
more powerful graph order.

4. Community-aware graph ordering and degree-aware scheduling

The first part of this section presents a new graph ordering for efficient cache manage-
ment based on community structure of complex-networks. In the second part, we present
time complexities of all graph ordering heuristics, in order to categorize target graph al-
gorithms. The last part present degree-aware loop scheduling that ensures load balancing
among threads during parallel complex network analysis.

4.1. Community-aware graph ordering

The problem of complex-network ordering for cache misses reduction can be easily
formalized as the optimal linear arrangement problem (a well known NP-Complete
problem)[10]. As usual in this kind of problem, the only way to solve it in reasonable
time is through heuristics. The goal of Cn-order (complex network order) heuristic is to
bring close nodes of the same community with NumBaCo and within each community,
use Gorder to bring close nodes appearing in a direct neighborhood. A simple approach
of Cn-order is presented in Algorithm 1.

Algorithm 1 : Complex Network order (cn-order)
Input: G = (V,E)
Output: G’ = (G), 7 permutation, neighborhood storage is changed
I:) < produce_m_in_goder_fashion(G)
2 Com < detect_comm_Louvain(m (G))
3. Comy < classify_and_find_of fsets(Com,Cache_size)
4 7T < graph_numbering(Come;, 7 (G))
5. G' + store_neighboors(G,T)

Cn-order version 1. — Line 1 computes 7; in Gorder fashion. Details are close to
algorithm 4 with the only difference that, here it is applied to the whole graph.

Lines 2 to 5 compute NumBaCo order with little changes (at line 3 when cache
memory size is taking into account): — line 2 computes communities with Louvain

algorithm [3]; — Line 3 classifies communities according to their affinities (algorithm
2, line 1 to 6); it also delimits communities in different groups in such away that each
group will fit into cache memory with the size Cache_size (algorithm 2, line 7 to 20).
Algorithm 2 : classify_and_find_of fsets

Input: Com,Cache_size
Output: Com,,,z, communities ranged by their affinity, having each at most Cache_size nodes

i: select C € Com; Comy[1] < C; Com, <— Com—{C}

2: 142, nb_com < Com.nb_com

3. while i < nb_com do

4 Cpax <—arg max |{(u,v) :u € Comg[i—1],v € com,[k]}|
YCom,

s: Comgyli] Cpax; Comy < Com,—{C}; i+ i+]1

6. end while

7. i< 1; of fset <0

s: for all C € Com,; do

9; if C.nb_edge < Cache_size then

10: Comygpagsli] = C,

11: Comgjassli].of fset < of fset,

12: i< i+1; offset < of fset +C.nb_node
13 else

14: for all subcommunity s_C € Com; do

15: Comyjggsli| < 5_C,

16: Comyjussli].of fset < of fset,

17: i< i+1; offset < of fset +s_C.nb_node
18: end for

19: end if

20: end for

— line 4 generates ordering by ensuring that nodes belonging to the same commu-
nity have consecutive numbers and within each community, nodes keep gorder number-
ing

— Line 5 changes the storage of each node. It sorts the neighborhood of each node.

This version of cn-order reaches its initial goal : — sibling nodes are kept close, —
nodes that belong to same community are close, — and communities with higher affinity
are close. Another advantage of cn-order is that, it generates an order that takes into
account the target architecture through cache memory size (thanks to line 3). The main
disadvantage of this version of cn-order is in its time complexity: gorder time complexity
+ numbaco time complexity. To overcome this problem, we design another version of
cn-order based on the same idea (Algorithm 3).

Cn-order version 2. The goal here is to reduce execution time and keeping the same
ordering quality. The algorithm starts by communities detection at line 1. In this version
of cn-order, we adopted communities detection algorithm proposed in [16] and precisely
a a parallel communities detection based on this algorithm proposed in [1].

Line 5 of cn-order (detailed in Algorithm 4) generated order for each community.
We adapted Gorder [19] to be applied in each community (each community is seen as a
small graph).

Finally, to ensure that cn-order will take less execution time compared to first version
of cn-order, we introduce parallelism (parallel community detection, computing order
within communities in parallel, and parallel change neighborhood storage).

4.2. Time complexity comparison of graph ordering heuristics

Consider graph G = (N, E), where n = |[N| and m = |E|. Table 1 presents time complex-
ities of all heuristics. Among the first three, Gorder is the slowest. Rabbit and NumBaCo

Algorithm 3 :Complex Network order (cn-order_2)

Input: G = (V,E),Cache_size
Output:G’ = 7(G), & permutation, neighborhood storage is changed

: Com < detect_communities(G)

: Comgy < classify_and_find_of fsets(Com,Cache_size)

i hejags < Comey.nbejggs

: for all i € [1 ... nby,q] parallel do
compute_community_order(Com[i], G,)

end for

. G’ « store_neighboors(G,)

P - R T

Algorithm 4 : compute_community_order (Gorder [19] adapted to a community)

Input: Com., n,G,w,S(.,.): & will be set only for nodes in Com,;
Output: 7 a permutation, for nodes in Com,;

. select v € Comygj, o_set < Com;.of fset

: [l +o_set] < v, Vi < {x:x € Comy } — {v}

: 14 2, nb_nod < Com;.nb_nod

. while i < nb_nod do

AW =

i—1
S Vmax ¢ argmax y S(P[j],v)
veV: Jj=max{1l,i—w}
6 T[i+o_set] < Viax
7. Ve Vi—{vpax}, i i+1
s: end while

Table 1. Time complexity comparison of all heuristics

Heuristic Gorder Rabbit NumBaCo Cn-order
Time complexity | O(Y,eydZ+n) | O(E —n) | O(nlogn) | O(L,end>+n(1+logn))

time complexities are due to their communities detection algorithm respectively. Since
Cn-order uses Gorder and NumBaCo, it becomes the slowest one. In order to reduce
Cn-order complexity, one should reduce Gorder and NumBaCo complexities. This can
be done by increasing parallelization withing heuristics. It is for example what we did in
the second version of Cn-order.

To benefit to all of these heuristics, we distinguish two types of graph algorithms:
— category 1: graph algorithms which have higher complexity, — category 2: graph al-
gorithms which have lesser complexity. Graph algorithms in category 1 will obviously
benefit to performance improvement due to heuristics, because the time to re-order the
graph is negligible compared to the time the target graph algorithm. But for graph al-
gorithms in category 2, to benefit to one of these heuristics (particularly Cn-order), one
should used it for preprocessing.

4.3. Degree-aware scheduling for load balancing

Degree-aware scheduling problem can be formalized as multiple knapsack problem (a
well known NP-complete problem). That is, the only way to solve it in a reasonable time
is through a heuristic. The goal of the following heuristic is to find the workload of each
thread. This workload is based on nodes degree. This algorithm builds a set of tasks that
will be assigned to threads. Each task is a set of consecutive nodes. The number of nodes
present in this set depends on d,,,,, the maximum degree that should have each task. The
algorithm greedily adds node i to task ¢ nodes collection until }.d; reaches d,.. The
complexity of this algorithm is O(n).

Algorithm 5 : deg-scheduling (Degree-aware scheduling)

Input: G = (N, E),dsm: sum of all nodes degree, nb,,q.: number of tasks
Output: task[], a vector where each task has start and end nodes

1 dypax — n“,’;:::k, t+0,i <0

2. while i < n and 7 < nb,,g do
3 task[t].start < i, dypp < 0
4 while dy;p < dax and i <n do

5: dth (*dtmp+d[;l‘<*i+1

6: end while

7. task[t].deg < dimp, task[t].end <— i+ 1;i < i+1
s: end while

4.4. Graph ordering and scheduling for efficient graph analysis

We saw at section 4.1 that keeping nodes in good ordering allows to reduce cache misses
and hence execution time. Noting the fact that deg-scheduling algorithm keeps nodes
consecutive for each thread, performance will probably be increased if the graph used
for processing has the best order. This observation leads to design algorithm 6. Comm-
deg-scheduling first processes cn-order before scheduling. By that, it ensures that nodes
processed by each thread will be closed in memory.

Algorithm 6 :comm-deg-scheduling
Input: G = (N, E).dsum, nbijread
Output: task[], a vector where each task has start and end nodes

1: T < cn-order(G)
2. task[] <—deg-scheduling(7(G), dsyum, nbspread)

5. Experimental evaluation
For this evaluation, we present results got with the well known graph analysis ap-

plication, Pagerank [13]. We used a posix thread implementation proposed by Nikos
Katirtzis'. This implementation uses adjacency list representation. The experiments were
made on a machine (NUMA4) which has 4 NUMA nodes with 8 cores per node, making
a total of 32 cores for 64 GB of memory. Each node is of type Intel Xeon characterized

by 2.27 GHz, L1 of 32 KB, L2 of 256 KB, L3 of 24 MB, no Hyper-Threading.
5.1. Graph ordering comparison

We did this experimentation on NUMA4 described above; the dataset is livejournal [20]
unoriented graph with 3997962 nodes and 34681189(X2) edges. Graph was represented
with an adjacency list which is O(2m + n) space. So the space taken by graph in memory
is (2*34681189 + 3997962)*4bytes = 279.84 MB (do not fit in L3 cache).

Results in table 2 (with one thread) confirm the strengths and weaknesses of each
algorithm presented in section 3.3: — All the three orders outperform the original order;
— Gorder allows to have least references to L3 than Rabbit and NumBaCo; that means
it allows to have a higher reference to L1 and L2 (with cache hit); it confirms that Gorder
brings sibling nodes close compared to the others; — NumBaCo has the least cache
misses, close to Rabbit order. Numbaco does better than Rabbit because after detecting
communities, it also classifies them according to their affinities. — CN-order (simple
version) outperforms all the orders, since it combines all the advantages: 33.38% of cache
references, 45.02% of cache misses and 29.60% of execution time.

'https://github.com/nikos912000/parallel-pagerank

Table 2.

Performances comparison (Pagerank, 1 and 32 threads)

Heuristic Original Gorder Rabbit NumBaCo cn-order com-deg-sched
L3 cache 1 7,689 5,686 (26.05%) 6,201 (19.35%) 5,888 (23.42%) 5,122 (33.38%) 5,129 (33.29%)
refM) 32 | 8277 6,028 (27.17%) 6,907 (16.55%) 6,465 (21.89%) 5,454 (34.10%) 5,402 (34.73%)
L3 cache 1 3,356 2,997 (10.69%) 2,153 (35.84%) 1,845 (45.02%) 1,809 (46.09 %) 1,811 (46.03%)
miss(M) 32 4212 3,342 (20.65%) 3,359 (20.25%) 2,914 (30.81%) 2,591 (38.48 %) 2,736 (35.04%)
Time (s) 1 345.297 310.851 (09.97%) | 273.832(20.69%) | 250.313 (27.56%) 243.070 (29.60%) | 242.997 (29.62%)
32 71.105 53.843 (24.27%) 42.981 (39.55%) 47.071 (33.80%) 44.638 (37.22%) 34.779 (51.08%)
log(time) comparison, pagerank reduced time, live journal, pagerank
‘ ‘ ‘ ‘ origin;\ » ‘ ‘ degrsche‘d
gorder 70 b rabbit + v
rabbit v+ com-deg-sched ===
256 ¢ numbaco 1 1
\ cn-order ==+
A com-deg-sched = - = ~. o
\, v

128 -

Time (s)

log(time)

64

35 0 5 10 15 20 25 30 35
Number of Threads

Number of Threads

Figure 3. Time comparison with graph orders Figure 4. Performance due to scheduling & ordering
Observations done with one thread are quite the same with multiple threads (from 2
to 32) in terms of cache misses reduction and cache references reduction. It is different
with execution time reduction. In figure 3, cn-order, Rabbit, Numbaco curves are switch-
ing their positions; this is explained by the imbalance load that arises among threads:
according to the number of threads, the curve below the others corresponds to the one
which is associate to the best load balancing among threads. This is the reason why,
comm-deg-scheduling (which ensures load balancing among threads) is almost belong
the others (cn-order, Numbaco, Rabbit, Gorder).
5.2. Graph ordering and degree-aware scheduling

Figure 4 presents the reduced time (in percentage) due to degree-aware scheduling. Con-
sider time obtained with 32 threads: — compared to node-aware scheduling, when us-
ing degree-aware scheduling, time is reduced by 13.04%; — compared to node-aware
scheduling, using comm-deg-scheduling allows to reduce time from 37.22% (with Cn-
order) to 51.08% (with Cn-order and deg-scheduling). This figure also show that it out-
performs Rabbit by 11.53%.

The first observation shows that degree-aware scheduling *alone’ improves perfor-
mances. And the second observation shows that performances due degree-aware schedul-
ing and performances due to cn-order are also combined.

6. Conclusion
In this paper, we first propose Cn-order, a heuristic that combines advantages of the most
recent algorithms (Gorder, Rabbit and NumBaCo) to solve the problem of complex-
network ordering for cache misses reduction, a problem formalized as the optimal linear
arrangement problem (a well known NP-Complete problem).

Second, we proposed deg-scheduling, a heuristic to solve degree-aware schedul-
ing problem, a problem formalized as multiple knapsack problem (also known as

NP-complete). Then we proposed comm-deg-scheduling, an improved version of deg-
scheduling that uses Cn-order to take into account graph order in scheduling.

Experimental results on a 32 cores NUMA machine (with Pagerank and livejournal
for example) showed that Cn-order used with deg-scheduling (comm-deg-scheduling)
outperforms the recent orders: with 32 threads, we reduce time by 26.81% compared to
Gorder, 17.28% compared to Numbaco and 11.53% compared to Rabbit.

As future work, we plan to implement these heuristics in graph analysis platforms
such as Galois [12] or Green-Marl [6] in order to improve their performances.

References

[1] Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka, and Sotetsu Iwamura. Rabbit
order: Just-in-time parallel reordering for fast graph analysis. In Parallel and Distributed Processing
Symposium, 2016 IEEE International, pages 22-31. IEEE, 2016.

[2] David A Bader, Jonathan Berry, Adam Amos-Binks, Daniel Chavarria-Miranda, Charles Hastings,
Kamesh Madduri, and Steven C Poulos. Stinger: Spatio-temporal interaction networks and graphs (sting)
extensible representation. Georgia Institute of Technology, Tech. Rep, 2009.

[3] V. Blondel, J-L Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008.

[4] David Ediger, Robert McColl, E. Jason Riedy, and David A. Bader. Stinger: High performance data
structure for streaming graphs. HPEC, pages 1-5, 2012.

[5] Stanley C Eisenstat, MC Gursky, MH Schultz, and AH Sherman. Yale sparse matrix package. i. the
symmetric codes. Technical report, DTIC Document, 1977.

[6] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. Green-marl: a dsl for easy and efficient
graph analysis. In SIGARCH Computer Architecture News, volume 40, pages 349-362. ACM, 2012.

[71 K. Karantasis, A. Lenharth, D. Nguyen, M. Garzaran, and K. Pingali. Parallelization of reordering
algorithms for bandwidth and wavefront reduction. In Proceedings of the IC HPC, Networking, Storage
and Analysis, pages 921-932. IEEE Press, 2014.

[8] George Karypis and Vipin Kumar. Multilevelk-way partitioning scheme for irregular graphs. Journal of
Parallel and Distributed computing, 48(1):96—129, 1998.

[9] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan Berry. Challenges in parallel
graph processing. Parallel Processing Letters, 17(01):5-20, 2007.

[10] T. Messi Nguélé, M. Tchuente, and J-F Méhaut. Social network ordering based on communities to
reduce cache misses. Revue ARIMA, Volume 24 - 2016-2017 - Special issue CRI 2015, May 2017.

[11] Mark EJ Newman. The structure and function of complex networks. SIAM, 45(2):167-256, 2003.

[12] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastructure for graph analytics.
In Proceedings of ACM Symposium on Operating Systems Principles, SOSP 13, pages 456471, 2013.

[13] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
bringing order to the web. 1999.

[14] Jason Riedy, David A. Bader, and Henning Meyerhenke. Scalable multi-threaded community detection
in social networks. IEEE Computer Society Washington, DC, USA 2012, 18(1):1619-1628, 2012.

[15] M. Rosenblum, E. Bugnion, S. Alan Herrod, E. Witchel, and A. Gupta. The impact of architectural
trends on operating system performance. SIGOPS Operating Systems Review, 29(5):285-298, 1995.

[16] Hiroaki Shiokawa, Yasuhiro Fujiwara, and Makoto Onizuka. Fast algorithm for modularity-based graph
clustering. In AAAI, pages 1170-1176, 2013.

[17] Fengguang Song, Shirley Moore, and Jack Dongarra. Feedback-directed thread scheduling with memory
considerations. In 16th international symposium on HPDC, pages 97-106. ACM, 2007.

[18] Fengguang Song, Shirley Moore, and Jack Dongarra. Analytical modeling for affinity-based thread
scheduling on multicore platforms. Symposim on Principles and PPP, 2009.

[19] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. Speedup graph processing by graph ordering. In
Proceedings of the 2016 ICMD, pages 1813-1828. ACM, 2016.

[20] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-truth.
Knowledge and Information Systems, 42(1):181-213, 2015.

