
HAL Id: hal-01498578
https://hal.science/hal-01498578v1

Submitted on 30 Mar 2017 (v1), last revised 17 Nov 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Complex-Network properties For Efficient Graph
Analysis

Thomas Messi Nguélé, Maurice Tchuente, Jean-François Méhaut

To cite this version:
Thomas Messi Nguélé, Maurice Tchuente, Jean-François Méhaut. Using Complex-Network properties
For Efficient Graph Analysis. ParCo 2017, Foundation ParCo Conferences and Consortium Cineca,
Sep 2017, Bologne, Italy. �hal-01498578v1�

https://hal.science/hal-01498578v1
https://hal.archives-ouvertes.fr

Using Complex-Network properties For Efficient
Graph Analysis

Thomas Messi Nguélé, Maurice Tchuente, Jean-François Méhaut

March 30, 2017

Abstract

Complex networks are set of entities in a relationship, modeled by
graphs where nodes represent entities and edges between nodes represent
relationships. Graph algorithms have inherent characteristics, including
data-driven computations and poor locality. These characteristics expose
graph algorithms to several challenges; this is because most well stud-
ied (parallel) abstractions and implementation are not suitable for them.
This work shows how we use some complex-network properties, including
community structure and heterogeneity of node degree, to tackle one of
the main challenges: improving performance, by improving memory loca-
tion and by providing proper thread scheduling. In this paper, we firstly
formalize complex-network ordering for cache misses reducing as a well
known NP-Complete problem, the optimal linear arrangement problem;
we then propose cn-order an heuristic that outperforms very recent graph
orders. Secondly, we formalize degree-aware scheduling problem as an-
other well known NP-Complete problem, the multiple knapsack problem;
then we propose two degree-aware heuristics to solve it. We finally validate
our theoretical observations with experiments on a 32 cores NUMA ma-
chine with some graph algorithms and some stanford graph datasets. For
example, some results with Pagerank algorithm and livejournal dataset
show that using cn-order improves performance by reducing cache misses
and hence time by 41%; and when cn-order is combined with degree-aware
scheduling, time is reduced by 50% due to load balancing among threads.

1 Introduction
A complex network (CN) is a set of entities (individuals, organizations) in a re-
lationship (through friendship or message passing). CNs are modeled by graphs
where nodes represent entities and edges between nodes represent relationships.
CNs exhibit many properties, among them we have community structure, low
density of edges and heterogeneity of node degrees [19]. Due to the huge amount
of data, CN algorithms (graph analysis algorithms) are often compute-bound
and require high-performance computers to extract knowledge and understand
the behavior of entities and their relationships in reasonable time. This pa-
per addresses one of the major challenges of graph analysis [17]: improving
performance. We are doing it here through memory locality and threads
scheduling.

1

One way to improve graph analysis program performance is through memory
locality. In different domains, several studies show that memory operations
take most of the time on modern computers: it is shown in [1] that a lot of
time is wasted in CPU cache latency (with database query processing); in [4]
(with SPEC2000 programs) and in [23] (with on-line transaction processing), the
processor is stalled 50% of the time due to cache misses. Thus, writing a program
that uses efficiently caches is often a challenge that, if met, increases program
performances. This challenge is much visible in graph analysis programs because
of poor of locality, which results by the fact that relationships represented by
graphs are often irregular and unstructured [17].

Another way to improve graph analysis performance is by ensuring that
threads which are working together are well scheduled. Several studies show
that improving thread scheduling can reduce time taken by applications: for
example, it is shown in [24, 25] that time is reduced more than 25% due to a
proper thread scheduling. In graph analysis applications with multiple threads,
workload usually consists on given to each thread a same number of nodes
(total number of graph nodes divided number of threads). Due to heterogeneity
of nodes degree in complex network, this workload can induce to unbalancing
load.

1.1 Our contributions
We propose here to improve graph analysis performance by exploiting CN prop-
erties: - community structure to tackle memory locality and - heterogeneity of
nodes degree to tackle thread scheduling. More specifically, our contributions
are as follows:

1. to tackle memory locality,

• we formalize graph ordering problem for cache misses reducing as
optimal linear arrangement problem which is known as NP-complete;

• we present most recent graph ordering heuristics including gorder,
rabbit order and NumBaCo order;

• we present CN-order, a new graph order which combines advantages
of the previous orders;

2. to tackle thread scheduling,

• we formalize degree-aware scheduling problem as multiple knapsack
problem which is known as NP-complete;

• we present deg-scheduling, a heuristic to solve this problem;

• we present comm-deg-scheduling, an improved version of deg-scheduling
that takes into account graph order in scheduling;

3. to validate theoretical observations,

• we present experimental results carried out on a 32 cores NUMA (non
uniform memory access) machine, with graph analysis algorithm such
as Pagerank and Katz score, running on stanford data graphs.

2

1.2 Outline
The remainder of this paper is structured as follows. Section 2 presents the
background that consists of graph analysis challenges, cache management and
graph data structures. Section 3 shows theory about graph ordering for efficient
graph analysis problem and heuristics to solve this problem. Section 4 presents
theory about degree-aware scheduling problem and heuristics designed to solve
it. In other to validate theoretical observations, we present experimental results
in section 5. Section 6 is devoted to related work and we end with the conclusion
and future work in section 7.

2 Background
In this section, we first present graph analysis challenges, then we present how
cache memory is managed and we finish with graph data structures.

2.1 Graph Analysis challenges
Graph analysis also called graph algorithms have inherent characteristics [17]:

• computations performed by a graph algorithm are dictated by the vertex
and edge structure of the graph on which it is operating rather than being
expressed in code;

• data in graph algorithms are unstructured and irregular, that makes the
computations and data access tend to have poor locality.

These characteristics make most parallel abstractions and implementation
not proper graph algorithms. The main challenges [17, 10, 16] met in graph
analysis are:

• capacity: dataset do not fit into a single physical memory;

• performance: due to previous mentioned characteristics, it is not always
easy to develop an efficient implementation of a given algorithm. We call
by efficient implementation the one that produces the least execution time.

This paper tackle performance challenge and focus in the case when graphs
in memory.

2.2 Cache Management
When a processor needs to access to data during the execution of a program,
it first checks the corresponding entry in the cache. If the entry is found in the
cache, there is cache hit and the data is read or written. If the entry is not
found, there is a cache miss.

There are three main categories of cache misses which include - compulsory
misses caused by the first reference to data, - conflict misses, caused by data
that have the same address in the cache (due to the mapping), - capacity misses,
caused by the fact that all the data used by the program cannot fit in the cache.
Hereafter, we are interested in the last category.

3

When there is a cache miss, one of the classical algorithms is executed to
bring the missed data in the cache: – optimal algorithm, the cache line
which will not be used for the greatest period of time is replaced, – random
algorithm, – LRU Least Recently Used, – FIFO First In First Out, –LFU
Least Frequently Used, ...

Since general purpose processors (Intel, AMD, ARM) implement one of these
algorithms in their hardware, to benefit from all the efficiency of the cache
memory, one should make sure that its data structures (graph in our case) are
well organized during programs execution.

2.3 Graph representation
Consider the undirected weighted graph with 8 nodes in Fig. 1.

Figure 1: Example of graph (G1)

2.3.1 Matrix Representation

A simple way to represent this graph is to use a matrix representation M where
M(i, j) = mij is the weight of the edge between i and j. This is not very suitable
for social graphs because the resulting matrices are sparse. For the graph of Fig.
1, the total used space is 8X8 = 64. But 42 i.e 66% are wasted to save zeros.

2.3.2 Yale representation

The representation often adopted by some graph specific languages such as
Galois [20] and Green-Marl [10], is that of Yale [8]. This representation uses
three vectors:

• a vector A representing the edges, each edge being represented by one of
its ends,

• another vector JA that gives the other extremity of each of the edges of
A,

• and a last vector IA which gives the index in vector A of the first nonzero
element of each row of the simulated matrix.

The Yale representation of the above example is in TABLE 1.

4

A a a b a c c e d c a a
- a e a a b c a c d a c

JA 2 5 7 1 7 4 6 8 3 6 1
- 7 3 4 8 1 2 5 8 3 6 7

IA 1 4 6 9 11 13 16 20 23

Table 1: Yale representation of graph (G1)

2.3.3 Adjacency list representations

Other platforms use adjacency list representations. In this case, the graph is
represented by a vector of nodes, each node being connected to:

• a block of its neighbors [22] (see Fig. 2a)-);

• a linked list of blocks (with fixed size) of its neighbors, adapted to the
dynamic graphs, used by the Stinger platform in [7, 3] (see Fig. 2b)-).

Figure 2: Adjacency list representations of (G1)

3 Graph ordering for efficient graph analysis

3.1 Key idea
Common pattern in graph analysis: One common statement used in
graph analysis is as follow:

1: for u ∈ V (G) do
2: for v ∈ Neig(u) do
3: program section to compute/access v
4: end for
5: end for
With this pattern, we can see that, to reduce cache misses, one should make

sure that successive v are closed in memory.

Running example: Figure 3 presents the example used in this section. Sup-
pose an analysis algorithm executes the previous pattern for the first two nodes,
0 with Neig(0) = {4, 11} and 1 with Neig(1) = {10, 13}. The accessing se-
quence is: N6 = (0, 4, 11,1, 10, 13). With the data cache provide in figure 4,

5

Figure 3: Running example
Figure 4: Memory representation

this will cause 6 cache misses (each access of a node will cause a cache miss).
But if we consider one of the orders of the same graph got at figure 6, Rabbit
order for example, the number of cache misses is reduced. In fact, access of
the two first nodes 0 with Neig(0) = {1, 3} and 1 with Neig(1) = {0, 2, 3, 6, 7}
will give the following sequence: N9 = (0, 1, 3,1, 0, 2, 3, 6, 7). This sequence
produces only two cache misses; this is because consecutive nodes are closed in
memory.

3.2 Problem formalization
3.2.1 Cache modeling

We consider capacity cache misses caused by the fact that data used by a pro-
gram cannot fit in the cache memory. This cache model consider also a memory
cache with one line and t blocks in main memory (see figure 4).

Let

• Dc: cache memory size,

• N : set of nodes,

• π: a permutation among N ,

• b: b(x) = x Div Dc, b is a function that gives the belonging block of a
node x in memory (Div is the integer division).

When a node x is being processed (x is in cache memory), two situations
are envisaged while trying to access another node y:

• if x and y are in the same memory block b(x) = b(y), then y is also in
cache memory;

• if x and y are not in the same memory block, there is a cache miss.

A cache miss can be modeled by σ as follow:

σ : N ×N → {0, 1}

(x, y) 7→ σ(x, y) =

{
0 if b(x)− b(y) = 0

1 else

6

3.2.2 Problem complexity

Let P be a program on a graph G = (N,E). P makes reference to an ordered
sequence of nodes Nk = (n1, n2, n3, ..., nk). The number of cache misses caused
by the execution of P is given by:

CacheMiss(Nk) = 1 +
∑k

i=2 σ(ni, ni−1)

We are looking for a permutation π of G’s nodes in such away that the
execution of P produces the minimum number of cache misses (mindc). In
other words,

Let G = (N,E),mindc ∈ N,

− Find

π : N → N
n 7→ π(n)

− such that
∑k

i σ(π(ni), π(ni−1)) ≤ mindc,
with Nk = (n1, ..., nk) and ni ∈ N.

Theorem 3.1 (complexity of the problem) The Numbering Graph Prob-
lem (NGP) to minimize the number of cache misses is NP-complete.

Proof:One can show it with the Optimal Linear Arrangement Problem (OLAP)
known as NP-Complete [9]. As reminder, this problem is defined as follow:

Let G = (N,A),min ∈ N

− Find
π : N → N

n 7→ π(n)

− such that
∑
{ni,nj}∈A |π(ni)− π(nj)| ≤ min

To show that NGP is NP-complete, we have to show that any instance of OLAP
is polynomial time reduced to NGP. In that way, it is easy to remark that any
instance of OLAP is an instance of NGP when considering the execution of the
loop which traverses all the edges of G.

3.3 Graph ordering heuristics
In this section, we first present three recent algorithms: Gorder [26], Rabbit
Order [2] and NumBaCo [18]; These three algorithms were published quite at
the same period and each of them claims to outperform state of the art algo-
rithms. Then, we present a new algorithm which combine the strengths of all
the previous ones.

3.3.1 Gorder

Gorder idea: The goal is to reduce cache misses by making sibling nodes be
close in memory (allow them to fit in cache memory). Consider the graph in
figure 3. Neig(1) = {5, 10, 13}, Neig(5) = {1, 10, 13}. Let consider the data
cache provided in figure 4.

From figure 3, we can see that if the graph algorithm accesses Neig(1) with
subsequence N4 = (1, 5, 10, 13) it will cause 4 CPU cache misses; with Neig(5)
and N4 = (5, 1, 10, 13), it will cause 4 CPU cache misses.

From figure 6, with gorder, π(1) = 5 and π(5) = 6; access to Neig(5) =
{4, 6, 7} with subsequence N4 = (5, 4, 6, 7) will cause 1 CPU cache miss and
access to Neig(6) = {4, 5, 7} with N4 = (6, 4, 5, 7) will cause 1 CPU cache miss.
This example shows that Gorder allows to reduce cache misses.

7

Goder key function: Gorder tries to find a permutation π among all nodes
in a given graph G by keeping nodes that will be frequently accessed together
in a window w, in other to minimize the cpu cache miss ratio.

Hao Wei and co-authors [26] defined a score function S(u, v) = Ss(u, v) +
Sn(u, v), where Ss(u, v) = |Nin(u)∩Nin(v)| is the number of times u and v co-
exist in sibling relationship, the number of their common in-neighbors; Sn(u, v)
is the number of times that u an v are in neighbor relationship, which is 0, 1 or
2 since (u,v) and (v,u) may co-exist in a direct graph.

Based on this score function , the problem is to maximize the locality of two
nodes to be placed closely. And this is to find a permutation π that maximize
the sum of score S(., .), where π(u) assigns every u with an unique number [1, n],
n = |N | is the number of nodes.

Let G = (N,E),

− Find

π : N → N
v 7→ π(v)

− such that F (π) =
∑n

i=1

∑i−1
j=max{1,i−w} S(vi, vj),

is maximal.

Gorder algorithm: Algorithm 1 presents Gorder. Hao Wei and co-authors
[26] showed that this algorithm is 1

2w -approximation and with an appropriated
priority queue, it is O(

∑
u∈V (do(u))

2) time complexity.
Consider the last nodes inserted in P : vi−w, ..., vi−2, vi−1. The next vi to be

inserted is chosen in such away that
∑i−1

j=max{1,i−w} S(vi, vj) is maximal.

Algorithm 1 : Gorder
Input: G = (V,E), w, S(., .)
Output: π a permutation, P [i] = x means π(x) = i

1: Select a node v as the start node p[1]← v
2: Vr ← V (G)− {v}, i← 2
3: while i ≤ n do
4: vmax ← ∅, kmax ←∞
5: for v ∈ Vr do
6: kv ←

∑i−1
j=max{1,i−w} S(P [j], v)

7: if kv > kmax then
8: vmax ← v, kmax ← kv
9: end if

10: end for
11: P [i]← vmax, i← i+ 1
12: Vr ← V (G)− {vmax}
13: end while

Let consider the problem of finding frequent itemsets, itemsets are set of
neighbors; choose the best vi can be seen as choose the frequent itemset of size
2 between {vi−w, vi}, ...{vi−2, vi}, {vi−1, vi}. It is interesting to know how will
be performances if we consider frequent itemsets with size more than 2.

Advantage and disadvantage: The main advantage of gorder is that it
brings closer pairs of nodes appearing frequently in direct neighborhood. But
the main disadvantage is that it doesn’t care about the community structure
which is usually present in real graphs. During the numbering, nodes that

8

belong to same community may be scattered. This is for example the case in
Appendix B with karate graph.

3.3.2 NumBaCo and Rabbit Orders

The main idea of these orders is to make nodes that belong to the same commu-
nity (for NumBaCo) or to the same sub-community (for Rabbit) to be consec-
utive. In that way, nodes belonging to the same community or sub-community
will be close in memory.

Both NumBaCo and Rabbit orders start by detecting communities in a graph
before numbering. If NumBaCo uses Louvain algorithm [5], Rabbit order uses
a light version of Louvain (in other to insure just in time ordering).

Community detection with Louvain: Louvain algorithm [5] is one of the
most popular community detection heuristic. It is based on a quality function
called modularity, that assigns to a partition a scalar value between -1 and
1, representing the density of links inside communities as compared to links
between communities. It starts with a partition where each node is alone in its
community. Then, it computes communities by repeating iteratively the two
following phases:

Step 1) for each node i, evaluate the gain in modularity that may be
obtained by removing i from its current community and placing it in the
community of a neighbor j. Place i in the community for which this gain
(if positive) is maximum.

Step 2) Generate a new graph where nodes are communities detected in
the first phase. Reapply the first phase of the algorithm to the resulting
weighted network.

These two phases are iterated until the maximum modularity is reached.
Louvain algorithm generates a merged structure corresponding to lower level

and higher level group structures: the lowest level, level one contains structures
got at the first iteration of the two phases and the highest level, last level
contains structures got at the last iteration.

Communities generated by graph in figure 6, is given at figure 5. Level one
has 4 communities {0,1,2,3}, level two (the last) has 3 communities {0,1,2}.
Another example is shown in Appendix A with karate graph.

Rabbit order: Algorithm 2 present Rabbit order. Line 1 generates an hier-
archical set of communities: that is, each community contains sub-communities
which may be divided in sub-sub-communities and so on. Junya Arai and co-
authors [2] propose a parallel community detection, that allows them to ensure
just in time numbering.

Algorithm 2 : Rabbit Order
Input: G = (V,E)
Output: π a permutation on V nodes

1: Com← detect_comm(G)
2: π ← graph_numbering(Com,G)
3: return π

9

Figure 5: Running graph with Louvain

Line 2 of Rabbit order visits each community in DFS fashion and assigns a
new number to each node. This action makes nodes belong to the same sub-
community be close in the memory. Figure 6 gives rabbit order of graph in
figure 3. Nodes that belong to the same sub-community are consecutive, for
example π{0, 4, 6, 11} = {0, 1, 2, 3}.

NumBaCo: The first line of NumBaCo generates communities with Louvain
algorithm. The second line classifies communities to make ones with higher
affinity (number of edge shared) be together. Line three assigns numbers in such
away that nodes belong to the same communities are consecutive. Community
j follows community i if community j has the highest affinity for all j > i.
Before generate a new graph at line 5, line 4 first change neighbors position
according to their appearance in the hierarchy: first store neighbors that are
in level 1, then level two and so on. The total complexity of the algorithm

Algorithm 3 : NumBaCo (Numbering Based on Communities)
Input: G = (V,E)
Output: G′ = π(G), π is a permutation, neighborhood in G′ is stored hierarchically

1: Com ← detect_comm_Louvain(G)
2: Comcl ← classify_comm(Com)
3: π ← graph_numbering(Comcl, G)
4: G1 ← store_neighboors(Com,G)
5: G′ ← new_graph(G1, π)
6: return G′

is O(nlogn + nkc + n(k + 1) + C2). Where n is number of nodes, k is the
mean degree, C the number of communities at last level and c is the number of
communities at level one.

Differences between NumBaCo and Rabbit: In addition to the two
steps, including communities classification and neighborhood storage, Num-
BaCo and Rabbit are different in the numbering. While NumBaCo emphasis
in the last level community, Rabbit ensure that nodes of the first level commu-
nity have consecutive numbers. For example, in figure 3, π{2, 3, 7, 8, 9, 12} gives

10

{4, 5, 6, 7, 8, 9} in figure 6 with NumBaCo order and {7, 4, 5, 8, 9, 6} with Rabbit
order.

To get the benefit of both NumBaCo and Rabbit order, one can change
the emphazing level. That consists on modifying line 2 of NumBaCo algorithm
(refers as NumBaCo-Rabbit in table 3). Instead of classifying the last level
community (as in NumBaCo), we classify level 2. In fact, classify_comm(com)
takes C2 where C is |com|. Level 1 of Louvain algorithm can generate many
sub-communities (more than

√
n). To avoid spending time at this step, we

classify sub-communities level 2 (which has less elements than level 1 but much
elements than last level).

Advantage and disadvantage: The main advantage of NumBaCo or Rabbit
is that they allow nodes belonging to the same community or sub-community
to be closer in memory. The disadvantage is that the numbering within a
community or sub-community is random. May be, a good numbering within
communities can allow better performances.

3.3.3 Strengths and weaknesses of each heuristic

Table 2: Strengths and weaknesses

heuristics Gorder Rabbit NumBaCo
strengths Bring closer Bring closer Bring closer comm nodes

sibling nodes sub-communities nodes and communities
weaknesses scatter communities - sub-communities can be big - communities. can be big

or sub-communities - order in sub-communities - order in communities
is improvable is improvable

Table 2 groups strengths and weaknesses of the three studied order heuristics.
The next paragraph shows how we use these strengths and weaknesses to build
a more powerful order.

3.3.4 A new complex-network ordering (CN-order)

CN-order combines the advantages of all previous studied algorithm (see algo-
rithm 4 below).

Algorithm 4 : Complex Network order (CN-order)
Input: G = (V,E)
Output: G′ = π(G), π is a permutation, neighborhood in G′ is stored hierarchically

1: π1 ← Gorder(G)
2: Com ← detect_comm_Louvain(π1(G))
3: Comcl ← classify_comm(Com)
4: π ← graph_numbering(Comcl, π1(G))
5: G1 ← store_neighboors(Com, π1(G))
6: G′ ← new_graph(G1, π)
7: return G′

With CN-order,

• Sibling nodes are kept close,

11

Figure 6: Example of graph with different orders

12

• Nodes that belong to same community are close,

• And communities with higher affinity are close.

The main disadvantage of CN-order is in its time complexity: gorder time
complexity + numbaco time complexity. This issue can be tackled by paralleliz-
ing cn-order. We leaf this problem as future work.

4 Degree-aware scheduling for load balancing

4.1 Scheduling problem
Description and idea: In most graph analysis parallel programs with multi-
ple threads (resulting from graph systems such as Galois [20] or Green-Marl [10]
for example), it was observed that, each thread is in charge of groups of nodes.
In that way the workload of a thread depends of the number of nodes explored
by this thread; this number is usually the same for all the threads, n

nb_thread

(where n is the number of nodes and nb_thread is the number of threads).
Consider the common pattern presented at section 3.1, it is easy to note

that the time spent on a node u depends on |Neig(u)|. This can lead to an
unbalanced load in applications processing on real graphs which usually have
nodes with heterogeneous distribution of degrees. This is for example the case
with social graphs which have "famous" nodes i.e. nodes with a very high degree
compared to the others.

The idea is to take into account the heterogeneity of node degrees of real
graphs to ensure load balancing in loop scheduling of graph analysis.

Formal definition and complexity: Given a graph G = (N, E) and a par-
allel graph analysis program P with t threads running on G, the problem is to
know how to assign nodes to threads in other to ensure balancing load among
threads. Let us denote:

• di = |Neig(i)| degree of node i,

• T = {th1, th2, ..., tht} set of threads,

• xij a decision variable,

xij =

{
1 if node i will be processed by thj

0 else

Let P with t threads on G = (N,E),

Problem : dmax =

n∑
i=1

di

t

maximize sj =
n∑

i=1

xij ,
t∑

j=1

sj = n

subject to
n∑

i=1

xijdi ≤ dmax,

with : xij = {0, 1},
t∑

j=1

xij ≤ 1

and i = {1, ..., n}, j = {1, ..., t}

13

This definition makes it easy to see this problem as multiple knapsack
problem [15] which is NP-hard. Thus trying to schedule threads by ensuring
load balancing with nodes degree is NP-hard. We propose in the following
section heuristics for this problem.

4.2 Scheduling heuristics
Before presenting scheduling heuristics, we are going to show the parallel version
of common pattern presented at section 3.1.

4.2.1 Parallel version of common pattern

Here is a task pattern that will be run by a thread:
1: task_func(s,e)
2: for u ∈ {s, ..., e} do
3: for v ∈ Neig(u) do
4: program section to compute/access v
5: end for
6: end for
There are two cases depending of the number of tasks compare to the number

of threads. If there are equal, then each thread is attached to one task: the
scheduling is static. But if there are not equal (nbthread < nbtask), then one
thread can be attached to more than one thread: the scheduling is dynamic.

Common pattern for static scheduling: Each thread tht (spawned at
line 3) will get exactly one task which corresponds to a slice of nodes from
task_load[t].start to task_load[t].end on which the thread is processing.

1: for t← 1 to nbthread do
2: s← task_load[t].start; e← task_load[t].end
3: spawn_thread(tht, task_func, param(s, e))
4: end for

Common pattern for dynamic scheduling: In this case, each thread tht
may have more than one task t ∈ setOfTask.

1: global setOfTask = {1, ..., t}
2:
3: do_work()
4: while setOfTask 6= ∅ do
5: t← atomic_take_task(setOfTask)
6: s← task_load[t].start; e← task_load[t].end
7: task_func(s, e)
8: end while
9:

10: for t = 1 to nbthreads do
11: spawn_thread(tht,do_work())
12: end for

4.2.2 Scheduling

The goal of the following heuristics is to find the workload of each thread. This
workload is based on nodes degree.

14

Degree-aware scheduling: This algorithm builds a set of tasks that will be
assigned to threads. Each task is a set of consecutive nodes. The number of
nodes present in this set depends on dmax, the maximum degree that should
have each task. The algorithm greedily adds node i to task t nodes collection
until

∑
di reaches dmax.

Algorithm 5 : deg-scheduling (Degree-aware scheduling)
Input: G = (N,E),dsum: sum of all nodes degree, nbtask: number of tasks
Output: task[], a vector where each task has start and end nodes

1: dmax ← dsum
nbtask

, t← 0, i ← 0

2: while i < n and t < nbtask do
3: task[t].start← i, dtmp ← 0
4: while dtmp < dmax and i < n do
5: dtmp ← dtmp + di
6: i← i+ 1
7: end while
8: task[t].deg ← dtmp, task[t].end← i+ 1
9: i← i+ 1

10: end while
11: return task[]

The complexity of this algorithm is O(n).

Community and degree aware scheduling: We saw at section 3 that keep-
ing nodes in good ordering allows to reduce cache misses and hence execution
time. Noting the fact that deg-scheduling algorithm keeps nodes consecutive
for each thread, performance will probably be increased if the graph used for
processing has the best order. This observation leads to design the following
algorithm 6.

Algorithm 6 :comm-deg-scheduling
Input: G = (N,E),dsum, nbthread
Output: task[], a vector where each task has start and end nodes

1: π ← CN-order(G)
2: task[]←deg-scheduling(π(G), dsum, nbthread)
3: return task[]

In this algorithm, we first process CN-order before scheduling. By that, we
ensure that nodes processed by each thread will be closed in memory.

5 Experimental evaluation
For this evaluation, we used two graph analysis applications including Katz
score and Pagerank.The experiments were made on a machine (idrouille) which
has 4 NUMA nodes with 8 cores per node, making a total of 32 cores for 64
GB of memory. Each node is of type Intel Xeon characterized by 2.27 GHz, L1
of 32 KB, L2 of 256 KB, L3 of 24 MB, no Hyper-Threading. Fig. 7 presents a
NUMA node.

15

Figure 7: idrouille node: 8 cores, private L1 and L2, shared L3

Pagerank: Pagerank [21] is an algorithm used by Google to classify pages on
the web. A Pagerank of a page x is given by the following formula:

PR(x) = (1− d) + d
∑

y∈Nin(x)

PR(y)

|Nout(y)|
(1)

Where:

• d is the probability to follow this page, (1− d) is the probability to follow
another.

• Nin(x) is the set of incoming neighbors of x.

• Nout(y) is the set of outgoing neighbors of y.

We used a posix thread implementation proposed by Nikos Katirtzis1. This
implementation uses Bloc data structure.

Katz score: Katz Score [14] can be used as a similarity measure based on the
distances between the nodes. Katz score between two nodes x and y is given by
following formula:

katz_score(x, y) =
L∑

l=1

(βl.|paths<l>
x,y |) (2)

Where:

• L represents the maximum path size.

• paths<l>
x,y is the set of paths of length l between x and y, and |paths<l>

x,y |
represents its cardinality.

1https://github.com/nikos912000/parallel-pagerank

16

• 0 < β < 1. β is chosen such that the paths with a big l contribute lesser
to the sum than the paths with a small l.

For any node x ∈ G, it can be shown that the cardinalities of the sets of
paths from this node to the other nodes are computed as follow (at each step i,
Ni is the set of neighbors and Li is the set of cardinalities of the paths set):

i = 1 Ni = Neig(x)

Li[y] = 1,∀y ∈ Ni

2 ≤ i ≤ L Ni = {z/z ∈ Neig(y) ∧ y ∈ Ni−1}
Li[z] =

∑
y Li−1[y]/{y∈Ni−1∧z∈Neig(y)}

(3)

5.1 Graph ordering comparison
Comparison on a single core: We did this experimentation on idrouille
described above (with L1 of 32 KB, L2 of 256 KB, L3 of 24 MB); the dataset
is livejournal [27] unoriented graph with 3997962 nodes and 34681189 edges.
Graph was represented with an adjacency list which is O(2m + n) space. So the
space taken by graph in memory is (2*34681189 + 3997962)*4bytes = 279.84
MB (do not fit in L3 cache).

Table 3: Performances comparison (Pagerank, 1 thread)

Numbering algorithm Original Gorder Rabbit NumBaCo Rabbit-NumBaCo CN-Order
L3 cache-references 8,023M 5,688M 6,224M 7,322M 6,715M 5,561M

Earned % 29.10% 22.42% 8.74% 16.30% 30.68%
L3 cache-misses 3,569M 2,985M 2,234M 2,014M 2,050M 1,897M

Earned % 16.36% 37.41% 43.57% 42.56% 46.84%
Execution time 348.516s 305.626s 265.691s 261.099s 259.849s 243.442s

Earned % 12.31% 23.77% 25.08% 25.44% 30.14%

Results in table 3 confirm the strengths and weaknesses of each algorithm
presented in table 2.

• All the three orders outperform the original order.

• Gorder allows to have least references to L3 than Rabbit and NumBaCo.
That means it allows to have a higher reference to L1 and L2 (with cache
hit). It confirms the fact that Gorder brings sibling nodes close compared
to the others.

• NumBaCo has the least cache misses, close to Rabbit order.

• When we combine Rabbit and NumBaCo, we have performances between
the both.

• CN-order outperforms all the orders, since it combines all the advantages:
30.68% of cache references, 46.84% of cache misses and 30.14% of execution
time.

17

Comparison on multiple cores: Observations done with one thread (on one
core) are quite the same with multiple threads (from 2 to 32). Figure 8 shows
the execution time with different orders. In this figure, cn-order curve remains
almost below all the other curves, which confirms it is the best order compared
to the others. Rabbit, numbaco and rabbit-numbaco curves are switching posi-
tions; this can be explained by the architecture used (see Fig. 7), more precisely
by the L3 cache which is shared among the cores: cores benefit more and more
to data loaded by others. Gorder cure, which is far compared to the last three
is also switching its position with original order; this switching is also explained
by the architecture.

In figure 9, we see the variations of reduced time with cn-order and rabbit-
numbaco order. For example with 32 threads, cn-order reduced time by 41%
and rabbit-numbaco order reduced time by 30%.

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35

Ti
m

e
(s

)

Number of Thread

Time comparison, pagerank

original
gorder
rabbit

numbaco
rabbit-numbaco

cn-order

Figure 8: Time comparison with graph orders

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35

ga
in

 in
 p

er
ce

nt
ag

e

Number of Thread

Reduced time, pagerank

original
rabbit-numbaco

cn-order

Figure 9: Reduced time with cn-order vs rabbit-numbaco

As already observed with one thread, time is reduced because cache misses

18

(and cache references) are reduced. Figure 10 shows cache misses with different
orders. Note that, curves display the mean number of cache-misses (at each y,
we have Total number cache−misses

number of threads).
Figure 11 shows that with cn-order (the best order), cache-misses are reduced

from 25% to 47%. Curves comparing cache-references are shown at Appendix
C.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30 35

Ca
ch

e-
m

is
se

s
(m

ill
io

ns
)

Number of Thread

Cache-misses comparison, pagerank

original
gorder
rabbit

numbaco
rabbit-numbaco

cn-order

Figure 10: Cache misses comparison with graph orders

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35

ga
in

 in
 p

er
ce

nt
ag

e

Number of Thread

Reduced cache-misses, pagerank

original
rabbit-numbaco

cn-order

Figure 11: Reduced cache misses with cn-order vs rabbit-numbaco

5.2 Graph ordering and degree-aware scheduling
We show in this section how degree-aware scheduling improves performances by
reducing execution time.

19

5.2.1 Impact of degree-aware scheduling in load balancing

In figure 12, each thread receives number of nodes
number of thread nodes as its workload. Due

to heterogeneity of nodes degree in complex network, this workload leads to
unbalancing load. Some threads take higher time and others smaller time. For
example, in figure 12, threads 0, 1, 2, 3 and 4 take more than 5% of total
time; and threads 31, 30, 32 take less than 1.5 % of total time. There is a
high variation around the mean 3.12% that should take each of 32 threads in
case of load balancing. The standard deviation of different times is 1.66. It is
interesting to note that time taken by a thread is almost proportional to the
sum of degree of nodes it processed. This observation is used in figure 13 to
reduce unbalancing load.

 0

 5

 10

 15

 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

pe
rc

en
ta

ge

thread number

Workload with #nodes

time
degree

Figure 12: Scheduling nodes

In figure 13, each thread receives Total of nodes degree
number of thread as it workload. This

workload contributes to reduce unbalancing load. Each thread now takes be-
tween 1.63% and 4.3 % of time. In this case, the standard deviation is 0.64.

 0

 5

 10

 15

 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

pe
rc

en
ta

ge

thread number

Workload with node degree

time
nodes

Figure 13: Scheduling degree

20

5.2.2 Impact of degree-aware scheduling in time reducing

Figures 14 and 15 compare the execution time between scheduling with nodes
and scheduling with degree. Consider time obtained with 32 threads:

• compare to node-aware scheduling, with original order, when using degree-
aware scheduling, time is reduced by 20%;

• compare to node-aware scheduling, with cn-order, time is reduced from
41% to 50%.

The first observation shows that degree-aware scheduling ’alone’ improves
performances. And the second observation shows that performances due degree-
aware scheduling and performances due to cn-order are also combined.

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35

Ti
m

e
(s

)

Number of Thread

Execution time, live journal, pagerank

nod-original
deg-original
nod-cn-oder

deg-cn-order

Figure 14: Scheduling with degree (deg) vs scheduling with nodes (nod)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35

ga
in

 in
 p

er
ce

nt
ag

e

Number of Thread

reduced time, live journal, pagerank

nod-original
deg-original

nod-cn-order
deg-cn-order

Figure 15: Reduced time due to scheduling and ordering

21

6 Related work
Graph orders: We have already mentioned most recent graph orders: Gorder
[26], Rabbit Order [2] and NumBaCo [18]; each of them claims to outperform
state of the art algorithms such as BFS order [12], graph partition order with
METIS [13]. We presented in this paper a new graph order that outperform the
most recents, and by that way graph orders of the state of the art.

Perfomances and scheduling: In this paper, to ensure load balancing in
graph analysis applications, we define degree-aware scheduling as multiple knap-
sack problem and then propose heuristics to solve it. There are other works using
scheduling to improve performances:

• Song and co-authors [24, 25] propose an approach based on memory trace
analysis and graph partitioning in other to generate and optimized sched-
ule to run threads on NUMA systems.

• Yenke and co-authors [28] define scheduling of computing services as knap-
sack problem and propose an algorithm to solve it. This algorithm pro-
duces a very small overhead when using on checkpointing process.

Perfomances and community structure: In other to reduce cache misses,
we make sure (through CN-order in algorithm 4) that nodes belonging to the
same community are close in memory. In other works:

• Duong and co-authors [6] propose an algorithm that takes advantage of the
community structure to shard social graphs across a distributed system.

• Hoque and co-authors [11] design an organizational technique of hard drive
based on community structure of social graphs data. This technique al-
lowed them to reduce the number of movement of the read head and thus
improve disk access (48% faster).

7 Conclusion
In this paper, we showed how we used complex-network properties – commu-
nity structure and heterogeneity of node degree – to improve graph analysis
performance.

We firstly defined complex-network ordering for cache misses reducing as the
optimal linear arrangement problem, a well known NP-Complete problem. We
then studied the most recent graph ordering heuristics including gorder, rabbit
order and NumBaCo order, each of them claiming to outperform state of the
art graph orders such as BFS order, graph partitioning order with METIS. This
study leads us to design CN-order, a new graph order which combines advan-
tages of the most recent orders. Experimental results on a 32 cores NUMA
machine (with Pagerank and livejournal for example) showed that cn-order out-
performs the recent orders and compared to original order, cn-order allows to
reduce cache-misses and hence execution time by 41%.

We secondly defined degree-aware scheduling problem as multiple knapsack
problem which is also known as NP-complete. We first proposed deg-scheduling,

22

a heuristic to solve this problem; then we proposed comm-deg-scheduling, an im-
proved version of deg-scheduling that takes into account graph order in schedul-
ing. Then experimental results showed that the last heuristic improves time
reducing by 9%, making the total time reducing by 50%.

Algorithms presented above are intended to be executed before a graph al-
gorithm, for preprocessing. This is to have an organization of nodes in memory
that minimizes cache misses; and also a proper scheduling to ensure load bal-
ancing among threads. In this paper, we didn’t care about the time taken by
proposed heuristics, cn-order and comm-deg-scheduling. In terms of complexity
compared to cn-order and comm-deg-scheduling, we distinguish two types of
graph algorithms:

• category 1: graph algorithms which have higher complexity,

• category 2: graph algorithms which have lesser complexity.

Graph algorithms in category 1 will obviously benefit to our performance
improvement. But for graph algorithms in category 2, our proposed heuristics
should be tuned. This can be done for example by parallelizing heuristics. It is
left as future work.

References
[1] Anastassia Ailamaki, David J DeWitt, Mark D Hill, and David A Wood.

Dbmss on a modern processor: Where does time go? In VLDB" 99,
Proceedings of 25th International Conference on Very Large Data Bases,
September 7-10, 1999, Edinburgh, Scotland, UK, number DIAS-CONF-
1999-001, pages 266–277, 1999.

[2] Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka, and
Sotetsu Iwamura. Rabbit order: Just-in-time parallel reordering for fast
graph analysis. In Parallel and Distributed Processing Symposium, 2016
IEEE International, pages 22–31. IEEE, 2016.

[3] David A Bader, Jonathan Berry, Adam Amos-Binks, Daniel Chavarría-
Miranda, Charles Hastings, Kamesh Madduri, and Steven C Poulos.
Stinger: Spatio-temporal interaction networks and graphs (sting) exten-
sible representation. Georgia Institute of Technology, Tech. Rep, 2009.

[4] Kristof Beyls and Erik H D’Hollander. Platform-independent cache opti-
mization by pinpointing low-locality reuse. In International Conference On
Computational Science, pages 448–455. Springer, 2004.

[5] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of
Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008.

[6] Quang Duong, Sharad Goel, Jake Hofman, and Sergei Vassilvitskii. Shard-
ing social networks. In Proceedings of the sixth ACM international confer-
ence on Web search and data mining, pages 223–232. ACM, 2013.

23

[7] David Ediger, Robert McColl, E. Jason Riedy, and David A. Bader. Stinger:
High performance data structure for streaming graphs. HPEC, pages 1–5,
2012.

[8] Stanley C Eisenstat, MC Gursky, MH Schultz, and AH Sherman. Yale
sparse matrix package. i. the symmetric codes. Technical report, DTIC
Document, 1977.

[9] Michael R Garey, David S. Johnson, and Larry Stockmeyer. Some simplified
np-complete graph problems. Theoretical computer science, 1(3):237–267,
1976.

[10] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. Green-
marl: a dsl for easy and efficient graph analysis. In ACM SIGARCH Com-
puter Architecture News, volume 40, pages 349–362. ACM, 2012.

[11] Imranul Hoque and Indranil Gupta. Social network-aware disk manage-
ment. 2010.

[12] Konstantinos I Karantasis, Andrew Lenharth, Donald Nguyen, María J
Garzarán, and Keshav Pingali. Parallelization of reordering algorithms
for bandwidth and wavefront reduction. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, pages 921–932. IEEE Press, 2014.

[13] George Karypis and Vipin Kumar. Multilevelk-way partitioning scheme for
irregular graphs. Journal of Parallel and Distributed computing, 48(1):96–
129, 1998.

[14] Leo Katz. A new status index derived from sociometric analysis.
Psychometrica-vol.18, No.1, 18(1), March 1953.

[15] Hans Kellerer, Ulrich Pferschy, and David Pisinger. knapsack problems.
Springer, 2004.

[16] Andrew Lenharth, Donald Nguyen, and Keshav Pingali. Parallel graph
analytics. Communications of the ACM, 59(5):78–87, 2016.

[17] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan
Berry. Challenges in parallel graph processing. Parallel Processing Letters,
17(01):5–20, 2007.

[18] Thomas Messi Nguélé, Maurice Tchuente, and Jean-François Méhaut. So-
cial network ordering to reduce cache misses. under reviewing in arima,
Accept after minor changes (in first round review, in oct 2016), 2016.
https://hal.archives-ouvertes.fr/hal-01304968.

[19] Mark EJ Newman. The structure and function of complex networks. SIAM
review, 45(2):167–256, 2003.

[20] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight
infrastructure for graph analytics. In Proceedings of ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 456–471, 2013.

24

[21] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: bringing order to the web. 1999.

[22] Jason Riedy, David A. Bader, and Henning Meyerhenke. Scalable multi-
threaded community detection in social networks. IEEE Computer So-
ciety Washington, DC, USA 2012, 18(1):1619–1628, 2012. IPDPSW ’12
Proceedings of the 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum.

[23] Mendel Rosenblum, Edouard Bugnion, Stephen Alan Herrod, Emmett
Witchel, and Anoop Gupta. The impact of architectural trends on op-
erating system performance. ACM SIGOPS Operating Systems Review,
29(5):285–298, 1995.

[24] Fengguang Song, Shirley Moore, and Jack Dongarra. Feedback-directed
thread scheduling with memory considerations. In Proceedings of the 16th
international symposium on High performance distributed computing, pages
97–106. ACM, 2007.

[25] Fengguang Song, Shirley Moore, and Jack Dongarra. Analytical model-
ing for affinity-based thread scheduling on multicore platforms. Symposim
onPrinciples and Parctice of Parallel Programming, 2009.

[26] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. Speedup graph process-
ing by graph ordering. In Proceedings of the 2016 International Conference
on Management of Data, pages 1813–1828. ACM, 2016.

[27] Jaewon Yang and Jure Leskovec. Defining and evaluating network com-
munities based on ground-truth. Knowledge and Information Systems,
42(1):181–213, 2015.

[28] Blaise Omer Yenke, Jean-François Mehaut, and Maurice Tchuente.
Scheduling of computing services on intranet networks. IEEE Transactions
on Services Computing, 4(3):207–215, 2011.

A Karate hierarchy with Louvain
Figure 17 show karate hierarchy.

B Karate with different orders

B.1 Karate with goder
With gorder in figure 18, nodes belonging to the same community in figure 16 do
not necessarily have consecutive numbers. For example, node 1 in community
C4 is followed by node 2 which is community C2.

B.2 Karate with rabbit order
Figure 18 gives karate graph with rabbit order. Nodes that belong to the same
sub-community are consecutive, for example π{0, 1, 11, 17, 19, 21} = {0, 1, 2, 3, 4, 5}.

25

Figure 16: karate graph

Figure 17: Hierarchy with Louvain

C Cache references reduction
Figure 19 shows cache references with different orders.

Figure 20 shows cache references with different orders.

26

Figure 18: karate graph with different orders

27

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 5 10 15 20 25 30 35

C
ac

he
-r

ef
er

en
ce

s
(m

ill
io

ns
)

Number of Thread

Cache-references comparison, pagerank

original
gorder
rabbit

numbaco
rabbit-numbaco

cn-order

Figure 19: Cache references comparison with graph orders

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35

ga
in

 in
 p

er
ce

nt
ag

e

Number of Thread

Reduced cache-references, pagerank

original
rabbit-numbaco

cn-order

Figure 20: Reduced cache references with cn-order vs rabbit-numbaco

28

