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ABSTRACT. This paper proposes an algorithm for identifying and extracting generalised 
technical contradictions from experiments, Contradictions are used as the starting point for 
certain approaches to inventive problem solving. These methods are based on dialectical 
contradictions, which are used for understanding and representing inventive problems. The 
resolution of such problems is actually the resolution of the identified contradictions, which 
cannot be solved by optimisation methods and must be solved using inventive principles. The 
proposed algorithm uses the output data from design of experiments based on statistical 
theory as input data. The objective of this algorithm is to identify the complete set of 
generalised technical contradictions. 
RESUME. Ce papier propose un algorithme d’identification et d’extraction des contradictions 
techniques généralisées utilisées comme point de départ de certaines démarches de résolution 
de problème d’invention. Ces approches basées sur la dialectique identifient les 
contradictions afin de mieux comprendre et représenter les problèmes d’invention. La 
résolution du problème passe ensuite par la résolution de la contradiction qui empêche a 
priori de résoudre le problème par le biais des méthodes d’optimisation et nécessite 
l’utilisation des principes de résolution inventives. L’algorithme proposé utilise comme entrée 
les données issues d’une méthode statistique connue dans le domaine technique comme le 
plan d’expérience. L’objectif de l’algorithme est d’identifier l’ensemble complet des 
contradictions techniques généralisées. Dans le papier nous présentons le problème 
combinatoire, sa complexité et évaluons ses limites sur des exemples. 
KEYWORDS: TRIZ, generalised technical contradiction, design of experiments, binary 
programming. 
MOTS-CLES : TRIZ, contradiction technique généralisée, plan d’expériences, programmation 
binaire. 
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1. Introduction  

Inventive design involves special problem-solving principles for proposing new 
creative solutions that satisfy design requirements. Among these special problem-
solving methods is the theory of inventive problem solving (TRIZ) proposed by 
Altshuller (1988). According to Savransky (2000), the TRIZ ideology is based on 
two major ideas: contradiction and ideality. Contradiction is the basic law of 
materialist dialectics and is linked to technical problem formulation, whereas 
ideality is the essence of idealism and is related to the final solution. Both of these 
concepts should be consciously included in any inventive problem-solving process. 
As a dialectical based theory, the TRIZ attributes the existence of system evolution 
problems to a set of contradictions between system parameters. The principal 
motivations for the use of dialectical based approaches are twofold: identify 
contradictions to better understand and express inventive design problems and to 
view the procedure of inventive problem solving as a procedure of contradiction 
resolution. At the beginning of the problem-solving process, the contradictions must 
be clearly defined and comprehensible. Indeed, a misguided contradiction choice 
may lead to a decrease in the efficiency or even effectiveness of the problem-solving 
process. Hence, contradiction extraction and interpretation play a dominant role in 
the dialectical problem-solving approach.  

Despite the fact that different models of contradictions were introduced by 
Altshuller (1988) based on patent analysis, there are gaps in procedures for 
contradiction gathering and representation. The concept of representing a design 
problem as a network of contradictions and using semantic rules to drive design 
using this network was introduced in (Cavallucci et al. , 2005). A formal definition 
of contradiction and its potential variations was proposed in (Rousselot et al., 2012). 
The concept of a “contradiction cloud” as a three-value graphical representation of a 
set of elementary contradictions was presented in (Cavallucci et al. , 2008). Another 
algorithm for extracting the most important contradiction in a network of problems 
(Khomenko et al., 2007) was proposed in (Baldussu et al., 2011). Almost all of 
these proposals are based on technical contradictions. A technical contradiction that 
occurs between two system parameters is a contradiction in which the improvement 
of one parameter leads to a degradation in the other. Given a set of situations, a 
TRIZ technical contradiction between two parameters Y1 and Y2 exists if each time 
parameter Y1 meets the design objectives, the parameter Y2 does not and vice versa.  

Searching for this type of contradiction is simple because the goal is to find pairs 
of parameters that are never satisfied at the same time. In actuality, this classical 
TRIZ model of technical contradictions does not always exist. Indeed, the general 
trend that is observed can be summarised as follows: the more experiments and 
knowledge about a system there are, the lower the chance of there being a technical 
contradiction is (i.e., an input for inventive problem-solving methods). Moreover, 
this model takes into account only two evaluation parameters. Let us suppose that 
there exists a technical contradiction, we are able to solve it, and we cannot say 
anything about the satisfaction of the other evaluation parameters. Such a case 
exemplifies the interest in generalised technical contradictions (GTCs). The GTC 
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model, which was presented in (Rasovska et al., 2008), replaces the two evaluation 
parameters that exhibit a classical technical contradiction with two concepts of 
evaluation parameters. A concept consists of an evaluation parameter or a logical 
disjunction of several evaluation parameters. One parameter can only participate in 
one of the two concepts involved in a GTC. The desired result is the simultaneous 
satisfaction of the two concepts. In each concept, there is at least one or more 
evaluation parameters, the solution of each generalised technical contradiction 
should satisfy all of the evaluation parameters associated with the two concepts. 
Thus, the result will be better than that in the case of classical technical 
contradictions.  

To extract contradictions, information about the technical system of interest is 
required. Our method uses the outputs of a design of experiments (DoE), which is a 
statistical optimisation method that can be used to describe relations between the 
input and output parameters of a system and/or optimise the output of a system for a 
given set of input parameters (Montgomery, 2001). A theoretical bridge between the 
DoE and generalised technical contradictions was presented in (Dubois et al., 
2009a). 

In an effort to design operational methods using this link, this paper proposes an 
exact algorithm for identifying the entire set of generalised technical contradictions 
that occur in the design of experiments (DoE). To the best of our knowledge, no 
exact algorithm has been developed to address this problem. First, the principals of 
the DoE and generalised technical contradictions are illustrated using the concrete 
example of an electrical circuit breaker. The research space of generalised technical 
contradictions is defined by the number of system parameters and the number of 
experiments involved. The difficulty of resolving the problem is discussed, and we 
will show that the problem is NP-hard. The theoretical assumptions and the binary 
programming model used to extract the generalised technical contradictions and the 
search algorithm are introduced using time and space complexity analysis. The final 
section of the paper introduces the results of the real case of an electrical circuit 
breaker. Moreover, the interpretation of the results for the general population of 
binary matrices is presented in accordance with the principles of the design of 
experiments and with the aid of statistical analysis methods. Finally, different 
experiments in which our algorithm can be implemented are discussed to 
demonstrate the algorithm’s time consumption and its limitations.  

2. Problem description 

2.1. Design of experiments and generalised system of contradictions 

The design of experiments (DoE) (Montgomery, 2001) is based on the analysis 
of experimental data. For the purposes of our study, DoE results were transformed 
and summarised into a binary rectangular matrix. Because generalised technical 
contradictions are not related to action parameters, the binary matrix can be reduced 
to its evaluated form denoted Z, as shown in figure 1a. The rows of the matrix 
represent the experiments, and the columns correspond to the evaluation parameters. 
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The generic term zij of matrix Z equals 1 when the experiment ei meets the design 
requirements for the evaluation parameter yj and 0 otherwise. The design goal is to 
satisfy all of the evaluation parameters, i.e., to find any row of ones. When it is not 
possible to obtain such output using only the action parameters, inventive methods 
must be implemented. 

 
(a)                                      (b) 

Figure 1. Generic matrix Z (a) and the example of an electrical circuit breaker (b) 

The binary matrix used in our case is illustrated using the example of an 
electrical circuit breaker. The circuit breaker is a simple technical system whose 
components are shown in figure 2. 

 

 

Figure 2. Components of electrical circuit breaker 

When an overload occurs, the overload creates a force (due to magnetic and 
electrical fields), which operates a piece called a firing pin. The firing pin opens the 
circuit by activating the switch located in the circuit breaker. In the case of a high 
overload, the firing pin—a plastic stem—cannot be reused. The problem has been 
studied and the main evaluation parameters defined as follows:  

y1: circuit breaker disrepair (satisfied – 1, unsatisfied – 0)  

y2: circuit breaker reusability (satisfied – 1, unsatisfied – 0)   

y3: spring core mounting (satisfied – 1, unsatisfied – 0)  

y4: firing pin bobbin mounting (satisfied – 1, unsatisfied – 0)   



Algorithm for identifying GTC in experiments     5 

y5: normal mode release (satisfied – 1, unsatisfied – 0) 

y6: firing pin initial position return (satisfied – 1, unsatisfied – 0) 

The system’s behaviour under the design parameters was modelled by a DoE, the 
outputs of which were transformed into the binary matrix Z shown in Fig. 1b.  

This experiment does not exhibit any classical TRIZ contradiction. Indeed, each 
pair of evaluation parameters is simultaneously satisfied in at least one experiment 
(for instance, y1 and y2 in experiment e4, as shown in figure 3a). Nevertheless, there 
always exists a generalised technical contradiction (Dubois et al., 2009b). An 
example of a GTC is illustrated in figure 3b: when the first concept of evaluation 
parameters “y1 and y3 fit requirements” is satisfied, the second concept “y2 and y5 
fit requirements” is not satisfied and vice versa. 

 
 

 
y1 y2 y3 y4 y5 y6 

e1 1 0 1 1 1 1 
e3 1 0 1 0 0 0 
e7 1 0 1 0 0 0 
e5 1 0 1 0 1 1 
e8 1 0 0 1 1 1 
e6 0 1 0 1 1 1 
e9 0 1 0 1 1 1 
e2 0 1 0 0 1 1 
e4 1 1 1 1 0 0 

 

  Y1  Y2  Y0  
 

 
y1 y3 y2 y5 y4 y6 

 e1 1 1 0 1 1 1 
E1 e3 1 1 0 0 0 0 
 e7 1 1 0 0 0 0 
 e5 1 1 0 1 0 1 
 e6 0 0 1 1 1 1 
E2 e9 0 0 1 1 1 1 
 e2 0 0 1 1 0 1 
 e4 1 1 1 0 1 0 
E0 e8 1 0 0 1 1 1 

(a) (b) 

  
Figure 3. Example of false classical technical contradiction (a)  

and generalised technical contradiction (b) 

Identifying GTCs in the customised DoE table representation requires defining 
the properties of GTCs. GTCs can be characterised by the set of definitions that 
allow for the extraction of GTCs from a DoE. Let us suppose that there is no 
experiment satisfying all of the evaluation parameters at the same time. Identifying a 
GTC in such a DoE involves searching for: 

1. Three sets of evaluation parameters ( )0,21 , YYY  whose union is the entire set 

of evaluation parameters and whose intersection is an empty set.  

2. Three sets of experiments ( )0,21 , EEE  whose union is the entire set of 
experiments and whose intersection is an empty set. 

3. The satisfaction of the first set of evaluation parameters Y1 for the first set of 
experiments E1 and the satisfaction of the second set of evaluation parameters Y2 for 
the second set of experiments E2. 

4. At least one evaluation parameter from the second set of parameters Y2 that is 
not satisfied in each experiment of the first and third sets of experiments E1 and E3.  

5. At least one evaluation parameter from the first set of parameters Y1 that is not 
satisfied in each experiment of the second and third set of experiments E2 and E3. 
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2.2. Formulating generalised technical contradiction 

Using the requirements described above, we can formulate the GTC as shown in 
figure 4. 

 

Figure 4. Generalised technical contradiction expressed in DoE 

We denote the original DoE result by matrix Z (the rows are the experiments; the 
columns are the responses). Figure 4 shows the matrix of the DoE derived by 
grouping the columns and the rows. The matrix has been divided into 9 blocks, and 
in the figure, we have formulated the features into blocks. In the blocks E1×Y1 and 
E2×Y2, all of the elements are equal to 1. In the remaining 4 blocks associated with 
Y1 and Y2, there must be at least one element equal to 0 in each row.  

2.3. Difficulty of problem resolution - NP-hard problem 

To identify the generalised technical contradictions, we are first interested in the 
size of our search space. In other words, we are interested in answering the 
following question: how many candidate solutions can we find when searching for 
generalised technical contradictions? If this problem is viewed as a searching 
problem, we can use a brute force algorithm to browse the solution space by an 
enumeration method. Although enumeration is feasible for some small matrices, it 
can be difficult or even impossible for large matrices. In fact, the search space grows 
exponentially with the number of rows M and number of columns N of the matrix Z. 
The following section discusses the analysis of the complexity of a search space. 

Quantifying a search space is mainly a combinatorial problem because all 
possible matrix blocks can be expressed using Stirling numbers of the second kind 
(Brualdi, 2009). In actuality, the sets 00,EY  may be empty. Therefore, row 
combinations and column combinations can be addressed using two types of 
combinatorial models. In the first case, when φ=0Y , the problem can be described 
as a type of Ball-Box Matrix (Brualdi, 2009) , which describes the situation in which 
N (N>2) different balls are placed in two identical boxes and neither box is empty. 
In this case, the number of combinations, expressed as a Stirling number of the 
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second kind, is ( )2,Ns . In the second case, when φ≠0Y , the problem can be 
described by a Ball-Box Matrix that describes the situation in which N different 
balls are placed in three identical boxes and no box is empty; however, here, we 
must select 2 of 3 boxes 1Y and 2Y . Thus, the result is ( ) 3

23, CNs × . The same 
applies to the column number; thus, the number of combinations of column numbers 
is ( ) ( )2,3, 3

2 NsCNs +× . In addition, when we permute two column sets and two 

row sets for 11 YE ×  and 22 YE × , only two distinct cases arise. To summarise, we 
conclude that the search space size is  

( ) ( )( )2,3, 3
2 MsCMs +× ( ) ( )( ) 22,3, 3

2 ×+×× NsCNs . 

According to the equation for Stirling numbers of the second kind [11], 

 ( ) ( ) ( )∑
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

k

t

Nt tk
t
k

k
kNs

0
1

!
1,  (1) 

 ( ) 122, 1 −= −NNs  (2) 

Using equations (1) and (2) and supposing 3,3 ≥≥ MN , we obtain the size of 
our search space: 

 22
2
132

2
13

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+ M
M

N
N

 (3) 

Clearly, the browsing of the search space is an NP-hard problem. 

3. Problem formulation 

3.1. Transformation of the generalised technical contradiction research problem 
into a binary integer program problem 

Our problem is similar to several problems in different research areas. The 
problem can be classified as a data mining problem (methods and models used in 
data mining are reviewed in (Larose, 2006). Data mining is the analysis of 
observational data sets to find relationships between parameters and to represent the 
data in understandable and useful ways for the data owner. Our problem is also quite 
similar to seriation and matrix reordering problems, which seek to reorder objects 
into a sequence along a one-dimensional continuum (Liiv, 2010) by exploratory 
combinatorial data analysis techniques. Our problem can also be approached using 
two-mode clustering methods (Mechelen et al., 2004), (Marcotorchino, 1987). Such 
methods provide a simultaneous clustering of the rows and columns of a rectangular 
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data matrix but cannot restrict other parts of the matrix. All available methods 
associated with the above-mentioned approaches can be used to find one or several 
unique solutions to our problem, but not one can find all of them. In this paper, we 
use the binary integer programming model to analyse our problem, which results in 
a specific algorithm providing all of the solutions of this problem. 

Identifying GTCs is generally considered a problem of defining how to group the 
columns and rows of matrix Z, which is a yes-or-no decision problem that can be 
transformed into a binary integer program, a linear programming problem in which 
all of the variables are restricted to binary values (Chen et al., 2010). Specifically, in 
BIP, each variable can only take a value of 1 or 0 denoting yes or no. Thus, a BIP 
can be used to model real-world situations using logical expression. In our problem, 
a BIP is used to express decision variables that indicate whether the columns or rows 
pertain to the columns and rows of a matrix block. 

Suppose that matrix Z has M rows and N columns. Let us denote the parts of a 3-
partition of the columns and rows as { }021 ,, YYY  and { }021 ,, EEE , respectively. 
Our goal is to find all of the 3-partitions of the column set and 3-partitions of the 
row set that meet the requirements indicated in figure 4. 

First, we use two N-dimensional binary vectors C 2,1=i to denote the two sets of 

columns ( 21,YY ). If one vector component of C1 (resp. C2) equals 1, the 
corresponding column belongs to the column set Y1 (resp. Y2); otherwise, it does not 
belong to Y1 (resp. Y2). Second, we use two M-dimensional binary vectors Ri=1,2 to 
denote the two sets of rows ( 21,EE ). If one vector component of R1 (resp. R2) 
equals 1, the corresponding row belongs to the row set E1 (resp. E2). The vectors are 
as follows: 

( )Ni
N

iii
i ccccC ,...,,, 3212,1 == , ( )Mi

M
iii

i rrrrR ,...,,, 3212,1 == ; 

C 2,1=i  represents 2,1=iY , 2,1=iR  represents 2,1=iE . 

For convenience, we assume that ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

j
jcN 1

1 , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

j
jcN 2

2 , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

j
jrM 1

1 , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

j
jrM 2

2 . 

Our problem can then be transformed into an integer programming problem. The 
restrictions regarding block 11 YE × and 22 YE ×  indicated in figure 4 can become 

an objective function, as T
iiZCR is equal to the sum of all elements in the block 

ii YE × . iiMN  is the product of the number of rows and columns of the block 
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( )ii YE , .When the blocks ( )11,YE and ( )22 ,YE  are full of “ones”, the 

quantity ∑∑
==

−
2,12,1 i

ii
i

T
ii MNZCR is equal to zero and negative otherwise. It is clear 

that the maximum value of this equation is zero. 

The restriction for the block 12 YE ×  shown in figure 4 indicates that the 

cardinality of 1Y  is greater than the sum of the elements in each row of the block 

12 YE × . Thus, we have the inequalities for each row of 12 YE × : 

1
1

11 ,1:
1 ≥

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
− ∑

∈= Cccj
ij

jj

zN . 

Using the same method to model the block 21 YE × , 20 YE × and 10 YE × provide 
three additional groups of inequalities. It should be noted that the membership of a 
row to 0E  is determined by the complementary set 21 EE ∪ . 

3.2. Definition of integer programming problem 

To summarise, the search problem subject to the restrictions shown in figure 4 
becomes a problem of calculating all of the solutions of the following integer 
programming problem: 

Decision variables: 

( )11
3

1
2

1
11 ,...,, nccccC = , ( )22

3
2
2

2
12 ,...,, nccccC = , ( )11

3
1
2

1
11 ,...,, mrrrrR = ,

( )22
3

2
2

2
12 ,...,, mrrrrR = . 

Input parameter: matrix Z 

Objective function: 

 Maximise ∑∑
==

−
2,12,1 i

ii
i

T
ii MNZCR  (4) 

subject to 

 1
1

11 ,1:
1 ≥

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
− ∑

∈= Cccj
ij

jj

zN , { }222 ,1| Rrrii ii ∈=∈∀  (5) 
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 1
2

22 ,1:
2 ≥

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
− ∑

∈= Cccj
ij

jj

zN , { }111 ,1| Rrrii ii ∈=∈∀  (6) 

 1
1

11 ,1:
1 ≥

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
− ∑

∈= Cccj
ij

jj

zN , { }111
2

22 ,0,,0| RrrRrrii iiii ∈=∈=∈∀  (7) 

 1
2

22 ,1:
2 ≥

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
− ∑

∈= Cccj
ij

jj

zN , { }111
2

22 ,0,,0| RrrRrrii iiii ∈=∈=∈∀  (8) 

 ( )MRR 1,...,1,121 ≤+  (9) 

 ( )NCC 1,...,1,121 ≤+  (10) 

 1,0;1,0 == j
i

j
i rc  (11) 

 0,,, 2121 ≠RRCC  (12) 

This BIP is nonlinear because the object function is a polynomial; however, the 
program can be transformed into a linear one according to the procedure described 
in reference (Chen et al., 2010). 

3.3. Relaxation of binary programming problem into sub-problems 

The binary programming problem described above cannot be solved by any 
ordinary method. On the one hand, the search space grows exponentially with the 
parameters N and M; therefore, the problem cannot be solved by brute force 
searching. On the other hand, our goal is to obtain all solutions meeting the 
maximum number of conditions; thus, the basic approach to linear BIPs, such as 
branch and bound or branch and cut, are invalid, giving rise to the design of a new 
algorithm for solving this problem. 

 

Figure 5. Sub-problem blocks in matrix Z 
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According to the observations made above for the BIP, the restrictions of 
variables ( )11,RC , ( )22,RC  are symmetrical, and the result must be the same by 

exchanging the 21,YY  and 21,EE ; thus, we want to simplify the binary problem to 
a set of sub-problems, the merging of which provides the solution to the original 
problem. The generic search sub-problem is illustrated in figure 5. 

We use the vectors ( )MMrrrR ,...,, 211 = , =1C ( )NNcccc ,...,, 321  to denote 

1Y  and 1E  in figure 5. If the vector component is equal to 1, the corresponding 

column or row belongs to 1Y or 1E . 

For convenience, we assume that ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

j
jrM1  and that ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑

j
jcN1 . Our 

goal is to seek the block expressed by ( )11,YE  in which all of the elements in the 
block are equal to 1. 

We can use the same approach used previously to define the object 
function: 1111 NMZCR T − , the maximum value of which is zero. Moreover, its 

accompanying block ( )YE,  underneath has at least one element equal to 0 for each 
row, which can be formulated by the 

inequalities: 1
1,1:

1 ≥⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
− ∑

∈= Cccj
ij

jj

zN , { }1,1| Rrrii ii ∈=∈ . 

Decision variables: 

( )MMrrrR ,...,, 211 = , ( )NNccccC ,...,, 3211 =  

Input parameter: matrix Z; 

 Maximise: 1111 NMZCR T −  (13) 

Subject to: 

 1
1,1:

1 ≥⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
− ∑

∈= Cccj
ij

jj

zN , { }1,0| Rrrii ii ∈=∈   (14) 

 1,0;1,0 == ii cr  (15) 

 ；R φ≠1 φ≠1C  
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After all of the results of the sub-problems are gathered, we need to combine the 
blocks to solve the original problem. The combinatorial strategy is to examine all of 
the combinations of the two results of the sub-problem with the following rule: If the 
intersection of their row sets and column sets are empty 
( φ=∩ 21 EE φ=∩ 21, YY ), the blocks ( )11,YE  and ( )22,YE  constitute a 
solution of the original problem. Correctness of the strategy: if the solution sets of 
two problems include each other, they are equal. 

4. Problem resolution 

4.1. Search algorithm for the sub-problem 

Now, we describe the method for addressing the sub-problem. We can generally 
search the pattern along two directions: along columns and rows. Because our 

problem has a restriction regarding E , we search the blocks row by row. 

The searching procedure consists of five steps:  

1. Let i =1. 

2. Select the columns’ set, the elements of which equal 1 in row i. 

3. Select one subset of the columns’ set defined in step 2. If the column set was 
previously selected in another row, reselect the subset. If not, mark the column 
set as having been checked. 

4. Store this column set as the block column set, and add row number i to the row 
set of the block. Look up the row k, k>i, if it has the same column set in which 
elements equal 1, add the row number in the block row set. 

5. Output block as one solution: if the column set in row i does not finish 
traversing, return to 3. Else, if i=M, the algorithm terminates; otherwise 
increment i by 1, and return to 2. 

In step 3, another problem that must be addressed is traversing the subsets of 
subsets. The problem is essentially a Generating All n-Tuples Problem. 
Equivalently, we want to visit all n-Tuples ( )nyyy ,..., 21  where each 1or  0=iy . 
One can find more details in reference (Knuth, 2011).  

In the following, we explain why the search algorithm can obtain all of the 
solutions of the sub-problem. First, we prove that the blocks are solutions of the sub-
problem. It is explicit that the elements in block are equal to 1; thus, they meet the 
requirements of the objective function. Equivalently, it is clear that each row in 
block ( )YE,  has at least one element equal to 1; if not, according to the algorithm, 
the row whose elements are equal 1 will be added to the block row set. Second, we 
prove that the algorithm can gather all of the solutions. Suppose that there exists a 
block that is the solution of the sub-problem. Thus, all of its elements are equal to 1 



Algorithm for identifying GTC in experiments     13 

to meet the requirements of the objective function, and each row in the block 
( )YE,  has at least one element equal 1 to satisfy the restriction. The block’s row 
number set must have its smallest element ranked above the others; when the 
algorithm operates on this row, the block column set pertains to this row column set, 
as long as it has not been previously checked. Thus, this algorithm yields all of the 
solutions.  

 

i=1

Select column set C, in 
which Z[i][j]=1,j∈C,insert 

i into row set R

Checking row k>i, if 
Z[k][j]=1,j∈C, k joins row 

set R

output the block 

(R×C)

for row i, column set whose 
Z[i][j]=1 have finished traversing?

i=Z?

Yes

end

Yes

No

i=i+1

No

Input binary 
Matrix Z

No

Set C is checked 
before

Yes

 

Figure 6. Flow chart of algorithm 
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4.2. Time and space complexity analysis 

We presume that the maximum number of elements equal to 1 in each row is n  
and the row number is M ; thus, the time consumed by visiting all of the possible 
combinations of elements equal to 1 is ( )nMO 2× . Moreover, we must scan the 
remaining rows (fewer thanM  rows remain). Therefore, the time complexity in the 
searching phase is ( )nMMO 2×× . Suppose that the number of blocks in the 

searching phase is S ; thus, time complexity in the comparing phase 

is ( ) ( )2
2
1 SOSSO =⎟
⎠

⎞
⎜
⎝

⎛ − . In conclusion, the time complexity is 

( )22 2 SMO n +× .The principal space cost is related to the storage of the blocks 

in the searching step. Because the number of blocks is lower than N2 , the space 
complexity is ( )NO 2  

5. Illustration of results in the case of electrical circuit breaker 

The purpose of this section is twofold: in the first part, we will use a circuit 
breaker example to illustrate the various concepts of technical contradictions 
presented in the paper. The algorithm used on the concrete case helps us to measure 
the number of technical contradictions as well as generalised technical 
contradictions in the real case. In the second part, we will examine a sample of 
matrices with the same number of rows and columns as the matrix considered in the 
electrical circuit breaker example but with different numbers of evaluation 
parameters equal to 1. This study is done to confirm the real case results and to 
measure and compare different possible but quite similar cases. In our future 
research we want to compare the results of our automatic approach with the results 
of human expert’s analysis. For the moment our study points out the complexity of 
such a search and relatively small number of found technical contradictions versus a 
big quantity of found generalised technical contradictions. Furthermore, the effect of 
the density of ones (the number of satisfied evaluation parameters) on the number of 
technical and generalised technical contradictions will be studied.  

5.1. Generalised technical contradictions 

The first set of experiments concerned the search for generalised technical 
contradictions in the case of an electrical circuit breaker (figure 7). We identified 
117 generalised technical contradictions within the 341 possible pairs of concepts. 
As an example, we discuss four different GTCs, which can be interpreted as follows.  

GTC #1 represents the contradiction between the circuit breaker reusability y2 
and both the spring core mounting y3 and normal mode release y5. GTC #2 
represents the contradiction between the following pairs of parameters: the circuit 
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breaker reusability y2 and normal mode release y5 and the couple circuit breaker 
disrepair y1 and spring core mounting y3. GTC #3 represents the contradiction 
between the couple circuit breaker reusability y2 and firing pin initial position return 
y6 and the couple spring core mounting y3 and normal mode release y5. Finally, 
GTC #4 represents the contradiction between the couple circuit breaker reusability 
y2 and firing pin initial position return y6 and the rest of the evaluation parameters. 

 
y2 y3 y5 y1 y4 y6   y2 y5 y1 y3 y4 y6 

e2 1 0 1 0 0 1  e2 1 1 0 0 0 1 
e4 1 1 0 1 1 0  e6 1 1 0 0 1 1 
e6 1 0 1 0 1 1  e9 1 1 0 0 1 1 
e9 1 0 1 0 1 1  e1 0 1 1 1 1 1 
e1 0 1 1 1 1 1  e3 0 0 1 1 0 0 
e5 0 1 1 1 0 1  e4 1 0 1 1 1 0 
e3 0 1 0 1 0 0  e5 0 1 1 1 0 1 
e7 0 1 0 1 0 0  e7 0 0 1 1 0 0 
e8 0 0 1 1 1 1  e8 0 1 1 0 1 1 

 

 
GTC #1 

 

 

 

 
GTC #2 

 

 
y2 y6 y3 y5 y1 y4   y2 y6 y1 y3 y4 y5 

e2 1 1 0 1 0 0  e2 1 1 0 0 0 1 
e6 1 1 0 1 0 1  e6 1 1 0 0 1 1 
e9 1 1 0 1 0 1  e9 1 1 0 0 1 1 
e1 0 1 1 1 1 1  e1 0 1 1 1 1 1 
e5 0 1 1 1 1 0  e3 0 0 1 1 0 0 
e3 0 0 1 0 1 0  e4 1 0 1 1 1 0 
e4 1 0 1 0 1 1  e5 0 1 1 1 0 1 
e7 0 0 1 0 1 0  e7 0 0 1 1 0 0 
e8 0 1 0 1 1 1  e8 0 1 1 0 1 1 

 
 

GTC #3 
 

 GTC #4 
 

Figure 7. Four examples of GTCs in the case of an electrical circuit breaker 

5.2. Relationship between TC /GTC and density of ones 

We randomly created 377 matrices that were similar to the circuit breaker matrix 
except with respect to their density of ones: 9 rows and 6 columns with no column 
full of zeros and no row full of ones. Figure 8 shows the evolution of the number of 
TCs/GTCs with the density of ones. Some trends can be observed: the number of 
TCs decreases with the density and tends to zero at a density of up to 50%. The 
average number of GTCs increases up to a density of 50% and then decreases. The 
mean values of each population are correlated to observe the general trend. The 
points indicated by a star point in figure 8 represent the real characteristics of the 
electrical circuit breaker matrix; the results confirm that this example is not an 
exception. 
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GTC, TC number
for circuit breaker
GTC moyenne
TC moyenne

GTC

TC

 

Figure 8. TC/ GTC number versus density for 9 x 6 matrices 

To study the dispersion of the GTC and TC number in greater detail, the two box 
plots shown in figure 9 were created. The plots show the interval extent, the 
interquartile box, the linked mean values, and the abnormal points for each 
population. 
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Figure 9. Relation between GTC/TC number and density of ones  
in general population 
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6. Factors affecting GTC and TC number: generalisation 

As mentioned before the results of our algorithm shows the big complexity in the 
search of technical and generalised technical contradictions. In some conditions we 
can be faced with the situation that there is no technical contradiction and so we 
cannot solve the inventive problem overcoming no existing technical contradiction. 
On the contrary, at the same time there is a lot of generalised technical 
contradictions and the human expert is not able to deal with so many possibilities. 
Then we should choose in our future work the “best” set of generalised technical 
contradictions to solve the inventive problem. For this we will identify the important 
factors influencing the number of technical and generalised technical contradictions 
in order to reduce this complexity.  

This section reveals how the number of columns (parameters) and rows 
(experiments) and the density of ones (number of satisfied parameters) affect the 
number of found TCs and GTCs. We generated several populations of random 
matrices according to the three previously mentioned influencing factors. Each 
factor has three levels (i.e., 6, 9, and 13 columns—50, 100, and 200 rows—20%, 
50%, and 80% density). Finally, for each combination, 15 matrices with no line full 
of ones and no column full of zeros were created randomly. Overall, the sample 
contained a total of 405 different matrices.  

6.1. Factors affecting the number of TCs in the general population 

To identify the main factors affecting the number of TCs, we used the general 
complete factorial design of experiments and variance analysis. Three factors were 
studied, i.e., the column number, the row number, and the density of ones in the 
matrix. The results obtained for the design of experiments revealed three different 
populations and thus three Henry’s curves (figure 10a). Each population should be 
treated independently because the populations do not show similar behaviour (their 
variances are not the same, as shown in figure 10b). There is a large variance in the 
number of TCs for the matrices with a small number of rows, and the variance in the 
number of TCs also increases with the number of columns. The variance in the 
density was not studied because technical contradictions were identified only for the 
case of 20% density and the number of TC varied from 0 to 19. The matrices with 
200 rows and the matrices with densities greater than 50% almost never featured any 
TCs.  

With the aid of an interaction diagram, a graphical representation of the main 
effects, and the ANOVA table, different hypotheses were tested for each factor. As 
shown in figure 11a, the column number has a positive factual effect on the number 
of possible technical contradictions, but it is correlated with the negative effect of 
the number of rows and the density, especially for the matrices with fewer than 100 
rows and a density less than 50%. At densities greater than 50%, the number of 
technical contradictions is always zero; thus, other effects are counteracted against. 
These results confirm intuition and seem to generalise the average limiting zone for 
the existence of TCs. 
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Figure 10. Residual values (a) and test of the variance equality (b) for TC number 
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 (b) 

Figure 11. Principal effects of factors (a) and interactions 
 between the factors (b) for TCs 

6.2. Factors affecting the number of GTCs in the general population 

We identified the main influencing factors for the number of GTCs using the 
same procedure followed for TC case. The general complete factorial design of 
experiments and variance analysis were used to study three factors: the column 
number, the row number, and the density of ones in the matrices. As in the case of 
the TCs, three different populations and thus three Henry’s curves (figure 12a) were 
detected. Their variances were compared by the test of variance equality, as shown 
in figure 12b. The variance in the number of GTCs increases with the number of 
columns, whereas the variance does not change with row number. The variance is 
smaller at densities of 20% and 80% but large at a density of 50%. 

 

 (a) 
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Figure 12. Residual values (a) and test of the variance equality (b) for GTC 
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Figure 13. Principal effects of factors  
(a) and interactions between the factors (b) for GTCs 
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The variance tests confirm the results of the main effect analysis and interaction 
diagram shown in figure 13. As shown, the number of rows does not have a 
significant effect on the number of GTCs. The most positive significant effect is the 
number of columns. The second most significant effects are the density and the 
interaction between the density and the number of columns. It appears that the shape 
of the number GTC versus density curve does not change with the number of 
columns and rows: it increases up to a density of 50% and decreases thereafter. This 
behaviour will have an impact on our future strategy for filtering for GTCs. 

7. Time consumption of the algorithm 

To estimate the algorithm’s time consumption for a given matrix, we consider 
that the block number mainly affects the searching time. In the following, we 
analyse the interaction between the block number, the density of ones, and the 
maximum density of ones per row for the general population of matrices similar to 
the matrix for the electrical circuit breaker. 

7.1. Relationship between block number and density of ones in the case of the 
electrical circuit breaker 

In the case of the electrical circuit breaker, we studied the relationship between 
the number of blocks, which indicates the time consumption of the algorithm and the 
density of ones in the matrix. Figure 14a shows that the number of blocks and thus 
the time consumption increase almost linearly with the density of ones, by 
monitoring the mean values. In figure 14b, the number of blocks is plotted as a 
function of the maximum density of ones per row in the matrix. For convenience, we 
use MDOPR to denote the maximum density of ones per row. In summary, for a 
given matrix similar to that of the electrical circuit breaker, the most influential 
factor affecting the algorithm’s time consumption is block number. Moreover, the 
results of the experiments indicate that the time consumption is approximately 
proportional to the density of ones in the matrix. 
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Figure 14. Scatter plots of block number versus density of ones (a)  
and versus maximum density of ones per row (b) 
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7.2. Relationship between block number and NC/NR/density in the general 
population  

We identified the main influencing factors for the number of blocks in the same 
manner as that for TCs and GTCs. The general complete factorial design of 
experiments and variance analysis were used to study three factors: the column 
number, the row number, and the density of ones. Three different populations and 
thus three Henry’s curves (figure 12a) were detected; their variances were compared 
by the test of variance equality, as shown in figure 12b. The variance in the number 
of block increases with the number of columns. The variance does not change with 
different row numbers and increases only slightly with the density of ones. 
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Figure 15. Residual values (a) and test of the variance equality (b) for block number 
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We cannot conclude that the number of rows has a significant effect on the block 
number. The most positive significant effects are the number of columns and the 
density. The interaction between the density and the number of columns also has a 
significant effect.   

 (a) 

 (b) 

Figure 16. Principal effects of factors 
 (a) and interactions between the factors (b) for block number 

7.3. Large-scale matrices and time consumption of our algorithm 

This part of the study concerns large-scale matrices and the relation between the 
number of satisfied evaluation parameters (equal to 1) and the time cost of the 
algorithm. We used matrices in which each element is equal to 1 owing to the 
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dominating effect of the number of evaluation parameters whose values equal 1 on 
the time complexity. We performed the test for five large-scale matrices and present 
the time consumption —the matching time and searching time— in Table 1. The test 
was performed on five matrices containing only ones as the elements and with an 
increasing number of evaluation parameters (columns). The number of matrix 
blocks is proportional to the maximum of satisfied parameters in each row.  

Table 1. Experimental Results 

 Num of Columns Matching time(s) Num of Blocks Searching time(s) 
Data1 5 0.007 31 0.190 
Data2 8 0.240 255 0.197 
Data3 10 3.632 1023 0.234 
Data4 12 50.159 4095 0.401 
Data5 15 3666.167 32767 2.283 

 
 

Data 1 has 5 evaluation parameters (columns) and 1500 experiments (rows). 
Data 2 has 8 evaluation parameters and 1500 experiments. Data 3 has 10 evaluation 
parameters and 1500 experiments. Data 4 has 12 evaluation parameters and 1500 
experiments. Data 5 has 15 evaluation parameters and 1500 experiments. The 
computer used to run the tests was 64-bit machine with 8G of memory and a dual-
core CPU operating at 3.4 GHz. 

From Table 1, we draw the following conclusion: the time cost grows 
exponentially with the number of evaluation parameters equal to 1; the time 
consumed in the searching block is less than that consumed in the matching block. 
Thus, in these experiments, the time cost is determined by the matching phase. 
Because we need to store all of the blocks in memory during the matching phase, the 
space consumption is beyond the capability of the experimental computer (8G) 
when the number of evaluation parameters is greater than 15 and the number of 
experiments is equal to 1500.  

8. Conclusions 

In the design of a technical system, two types of optimisation problems are 
confronted: one can be solved by improving the engineering parameters of existing 
systems, and the other concerns the reconstruction of the technical system. When the 
design objective cannot be attained by improving the stated parameters, we must use 
inventive problem-solving principles. In this study, we used the principle based on 
the dialectical approach, which identifies contradictions to understand and represent 
design problems better. The design problem-solving procedure involves the 
resolution of the best contradiction.  

Our goal was to identify the complete set of generalised technical contradictions. 
The results of the experiments indicate that the more technical parameters and 
experiments describing the technical system there are, the greater the number of 
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possible combinations there is. Thus, a human expert is not able to identify and 
consider all of the combinations, which is why we tried to automate the search for 
generalised technical contradictions. The method is reliable when the maximum 
number of evaluation parameters is less than 15. The matching time is the main 
factor affecting the algorithm’s speed. Thus, to improve the algorithm, we should 
find some restriction for discarding blocks before the matching phase. This problem 
can also be classified as a data mining problem and is quite similar to seriation and 
matrix reordering problems, such as the two-mode clustering problem; however, 
these methods do not propose to find all possible solutions. 

Thanks to the algorithm it becomes possible to evaluate quantitatively the 
volume of contradictions and check the hypothesis about rarity of TC existence. In 
the experimental section of this paper, first is provided the result of our algorithm 
for the case of an electrical circuit breaker. It confirms the large number of GTCs. 
Second an analysis of the number of GTCs and TCs versus density of ones for the 
population of binary matrices with the same number of rows and columns than the 
circuit breaker was performed. The result shows that the average number of GTCs 
increases with density until 50% and then decreases, while the number of TCs 
decreases with density and is generally equal to zero after 60%. The values of TC 
and GTCs of the circuit breaker example are consistent with the results of this 
general population of matrices. Third, in order to generalise previous results, we 
evaluated the impact of the number of columns, density and rows on the number of 
GTCs and TCs. The analysis of the results shows that, for a given number of rows 
and columns, the average value of GTCs and TCs evolve in the same way than for 
the circuit breaker (i.e. the average number of GTCs increases with density until 
50% and then decreases, while the number of TCs decreases with density and is 
generally equal to zero after 60%). Nevertheless, the number of columns acts as a 
shape factor. For instance, the maximum value of GTCs, which is obtained for 
density equal to 50%, increases exponentially with the number of columns. The 
main factors affecting the number of technical contradictions and generalised 
technical contradictions was identified with the aid of the principles of the design of 
experiments and statistical analysis tests. These results will have an impact on our 
strategy for solving inventive design problems and selecting the most appropriate 
technical or generalised technical contradictions to solve such problems. 

Once all generalised technical contradictions are identified, several elimination 
strategies are subsequently needed to choose only the GTCs leading to resolution of 
the design problem. Two different criteria were proposed in [18] to select the most 
meaningful generalised technical contradictions. Nevertheless, generalised technical 
contradictions provide only a partial solution in TRIZ problem solving. To resolve 
the contradictions, we need more details about the system parameters and the 
relationships thereof. The next step in our research will be the identification of 
physical contradictions according to the identified GTCs. 
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