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Abstract 

We consider electric charge to be a contracted (positive charge) or dilated (negative charge) 

zone of space [1]. This, surprisingly enough, yields the Maxwell theory of electrostatics, with 

no phenomenology. Adopting the idea that space is a lattice (cellular structure), Space Density 

 is defined as the number of space cells per unit volume (denoted 0 for space with no 

deformations). Based on this we define Electric Charge Density as: q=1/4π ∙ (ρ-ρ0)/ρ. This 

charge density is positive if  > 0 and negative if  < 0. This is all we need to derive 

electrostatics. In this paper, by adding the Lorentz Transformation to the definition of q, we 

derive the entire Maxwell Electromagnetic theory with no phenomenology. 
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1 Introduction 

The essence of electric charge has been a mystery. Recently it has been resolved in [1] and 

[2]. Our definition of charge density, in [1], yields the Maxwell theory of electrostatics with 

no phenomenology. It also realizes Einstein’s vision that in “future physics” there will be no 

physical separation between a charge and its field. In this paper we derive the entire theory of 

Electromagnetism by adding the Lorentz Transformation to the definition of.  

By relating the field energy density to charge density our theory becomes non-linear. This is 

the specificity of our theory, which is applicable both for an elementary charge as it is for an 

ensemble of elementary charges. 

Note that reading our papers [1] [2] [3] [4] is helpful for a full understanding of this paper. 

2 The Electric Field of a Moving Charge 

This section is based on [5]. Let a point charge Q reside at the origin of a frame k, Fig. (1). 

The electric field E has the magnitude HQ/r
2
, and for a positive charge it is directed radially 

outward.  

In the xz plane its components at any point (x, z) are: 
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The frame k’ moves in the negative x direction, with speed v. According to the Lorentz 

transformation, the relations between the coordinates of an event (a spacetime point) in the 

two frames are: 
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xxzz E'EandE'E  . We express the field components 
xz 'Eand'E in terms of the 

coordinates in k’ using equations (1) and (2). At the instant t’ = 0, when Q passes the origin  

in k’: 
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(a) A charge at rest in 

space  

(b) A charge moving with 

constant velocity v 

relative to space 

Fig. (1) The Electric Field of a Point Charge, Q 
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Note first that E’z/E’x = z’/x’. This tells us that the vector E’ makes the same angle with the x’ 

axis as does the radius vector r’. Hence E’ points radially outward along a line drawn from 

the instantaneous position of Q, as shown in Fig. (1b). 

To find the strength of the field, we calculate 
2

z

2

x E'E'  , which is the square of the magnitude 

of the field, E’
2
. 
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Let r’ denote the distance from the charge Q, which is momentarily at the origin, to the point 

(x’,z’) where the field is measured:   2122 z'x'r'  . Let ’ denote the angle between this 

radius vector and the velocity of the charge Q, which is moving in the positive x’ direction in 

the frame k’. Then since z’ = r’ sin ’, the magnitude of the field can be written as: 
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Fig. (2) Representation of the Field of a Uniformly Moving Charge 

For low speeds the field reduces simply to E’  HQ/r’
2
. But if 

2
 is not negligible, at the same 

distance from the charge, the field is stronger at right angles to the motion than in the 

direction of the motion, A simple representation of the field is shown in Fig. (2). A cross-

section through the field with some field lines in the x’ z’ plane is indicated. For the field in 

the x’y’ plane we get an identical representation. 
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Purcell (1963)[5]: This is a remarkable electric field. It is not spherically symmetrical, which is not 

surprising because in this frame there is a preferred direction, the direction of motion of the charge. Also, 

it is a field that no stationary charge distribution, whatever its form, could produce. For in this field the 

line integral of E’ is not zero around every closed path. Consider, for example, the closed path ABCD in 

Fig. (2). The circular arcs contribute nothing to the line integral, being perpendicular to the field; on the 

radial sections, the field is stronger along BC than along DA, so the circulation of E’ on this path is not 

zero. 

Fig. (2) is a natural result of the charge being a longitudinal wavepacket. As such it becomes 

contracted in the direction of motion, [3] [6] [7]. Charge density is related to space curvature 

[2], hence the strong field perpendicular to the direction of motion. 

3 Forces between Moving Charges 

We consider, [8], two particles of equal charge, Q, moving with equal uniform velocity v.  Let 

v be along the x-axis of frame k, and let the particles have the same x-coordinate, and their 

separation be r, see Fig. (3a). We expect the charges to exert forces upon one another, a 

repulsive electric force and an attractive magnetic force, as we show.  

Let k’ move with uniform velocity v relative to k along common x-x’ axis, so that the charges 

are at rest in k’, see Fig.(3b). 

 

(a) Two particles of 

equal charge Q move 

with equal uniform 

velocity v in frame k, 

their separation being r. 

(b) The same 

situation in k’, which 

moves relative to k with 

a velocity v. 
 

Fig. (3) The Magnetic Field of a Moving Point Charge 
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Here, there is no magnetic force at all and the electric force is repulsive: the charges would 

tend to move apart along the y’- direction, each exerting a force on the other, of magnitude: 

2

2

y
r

HQ
F'               (6) 

The force on the upper charge is + Fy’ and that on the lower charge is –F’y. Note that charge 

invariance is assumed and that the separation r is unchanged by the transformation from k to 

k’. We now use the general force transformation equations (Equations. 3-33 in [8]) for a force 

with components Fx’, Fy’ and Fz’, in the S’ frame, to obtain the force components Fx, Fy and 

Fz acting on the particle in the k-frame.  

Fx = Fx’ = 0 

Fz = Fz’/ = 0          and: 
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Hence, the net force is in the positive y-direction, but smaller than in (6). The charged 

particles repel one another and the coulomb electric force of repulsion must exceed the force 

of attraction which we call the magnetic force. 

For v < c the electric force is always greater than the magnetic force. Only when v = c does 

the net force become zero. 

When v  0, we return to the static result wherein only an electric force exists.  

The magnetic force, which exists only when v  0, is a second-order effect compared to the 

electric force, that is, it enters as (v/c)
2
. 
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4 The Magnetic Field B, the Vector Potential A and the 

Lorentz Force 

 The Magnetic Field 4.1

The electric field of a moving charge at velocity v, perpendicular to v is: 

2y
r
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E          see equation (5), for the case in which 

2

π
θ  . 

This field applies a repulsive force 
'

yF on another charge Q that runs in parallel, which is: 
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F            On the other hand, equation (7), shows that the net force is smaller:
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where: yyy FFF           and we want to find the attractive force yF  : 
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This result is for v  E, but we can show that the general expression for the attractive force, 

F  , is:  
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Thus the net force F is: 
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For different velocities v1 and v2 of the charged particles, we can show that in general: 
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where v1 is the velocity of the particle that creates the field E and v2 is the velocity of the 

other particle in this field, and vice versa. The expression: 

 EvB 
c

1
  Magnetic Field       (11) 

is defined as the magnetic field created by a particle moving at speed v
’
. 

The dimensions of B and E are the same:  [E] = [B] = LT
-2

 , see [1],  and both express the 

elastic displacement. 

5 The Lorentz Force 

Using (10) and (11) gives the force on a charge Q moving at speed v: 
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






 BvEF

c

1
Q   Lorentz Force      (12) 

6 The Vector Potential A 

The magnetic field is merely the displacement vector u created by a moving charge. In this 

case, u is not considered as a gradient of a scalar function , namely a polar vector, but an 

axial vector which is a rotor of a vector potential A. In the static case: 

E = -               whereas, in the general case, we have to add the axial component: 

B =  x A            [A] = [] = L
2 

T
-2

     Note that: 

u = (1/H) (E+B)          (13) 
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According to (11): 
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and hence: 
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are defined as the electric current and the current density respectively. Hence: 


 




'

d

c

H

rr

j
A           (17) 




 dσji            (18) 

If the electric current flows in a closed circle the displacement B creates a torsional space 

deformation and, hence, space contraction. This phenomenon is related to gravitation [3] and [4]. 

Examples of B and A Created by Constant Currents 

 

Fig. (4) The Vector Potential A 

Fig. (4) shows B and A created by a constant current in a straight wire. 

j

B
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Fig. (5) shows B and A created by a constant current in a circular turn. B is perpendicular to the 

plane. 

Note the relation of the current to the helical motion of a positron (or that of an electron 

moving in the opposite direction).This helical motion creates B, which is a component of the 

displacement vector u. 

 

Fig. (5) The Vector Potential A 

7 The Current Equation of Continuity 

We have seen, (18), that: 




 dσji             (18) 

For a given zone , with a surface , in which there is a charge Q we get: 
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     , but: 
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where n is the unit vector perpendicular to the surface  at a given point. 

According to Gauss Lemma: 

A

j
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 j          Current Equation of Continuity     (20) 

In the GDM, both j and q include the contribution of the field energy. 

8 Ampère’s Law 
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The identity x(xA) = -(A) -
2
A for an arbitrary vector A, transforms (23) into: 
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If we use, see [9], the relations: 
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But for steady-state magnetic phenomena   j = 0 , hence: 

jB H4       Maxwell equation        (25) 

From (25), by applying Stokes’ theorem, we obtain the integral equation:  

  

 drjdσΒ H4            (26) 

and transforming (26) into:   
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
c

H4 djdlB   gives: 

 
c

H4 idlB       Ampère’s law        (27) 

Maxwell “fixed up” (25) by adding to it the displacement current    
tc

1



E
: 

tc

1

c

H4









E
jB         Maxwell equation       (28) 

9 Comments on the Electric Field E, Magnetic Field B, 

Potential Vector A and Lorentz Force 

Equation (13), notated here (29), is: 

u = (1/H) (E+B)          (29) 

E expresses the polar displacement and B the axial displacement. This is compatible with E 

and B being the components of the four-field anti-symmetric EM tensor:  

kijkijioi BFEF           (30) 
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where ε is the anti-symmetric Levi-Civita symbol , see [9]. 
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
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Space has an interesting feature: the vector potential A expresses a kind of potential 

momentum, that creates an axial displacement AB  . This situation is similar to the well-

known behavior of a spring: load it and it twists (the radius increases), see Fig. (6). 

 

Fig. (6) The Vector Potential as a Potential Momentum 

Note that equation (12), which here is notated (32), can be written as (33): 






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 B

v
EF

c
Q               Lorentz force       (32) 

F  







 A

v


c
Q                (33) 

10 Faraday’s Law of Induction 

When currents change, there is also a change in A and B. But a change in B means a change 

in the displacement u. In this case, a charge is not displaced because of a direct force, but 

because of a displacement of the zone of space in which it is immersed. In other words, the 

background in which the charge is immersed moves. 

In this case, we should look upon qA as the momentum potential density in space of the 

M
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charge density, q, immersed in it, and on the time derivative of qA as the force required to 

move it. A good guess of the force density is, therefore, the expression: 

t

A

c

q
q




                       (34) 

and for the force: 

tc

Q
Q






A
F               (35) 

F = QE, and therefore: 

t

A

c

1
E




                        (36) 

By applying the operator  to both sides, we get the:  
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1






B
E                Maxwell equation       (37) 

From the Maxwell differential equation, we get the integral relation: 

 
cσ

    E d E dl                  (38) 

and on the other hand: 

  






  dBdE
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1
             (39) 

and therefore:  

∮ E∙dl= −
1

cc

∂

∂t
∫ B∙dσ
σ

                  Faraday’s law of induction    (40) 



   B d                                           (41) 

where  is the magnetic flux through the surface  . 
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11 The Vector Potential as the Momentum Potential in Space 

We show that  A
c

Q
  can be considered as the potential momentum of the electromagnetic 

field, i.e., the momentum stored in space, momentum available for conversion to kinetic 

energy, see [10].  

By substituting: AB    and: 
tc

1






A
E       in the Lorentz law of force: 

B
v

EF 
c

QQ       we obtain: 

Av
A

F 



 

c

Q

tc

Q
Q .               (42) 

Note identity (8) in the book [11]:  

         vAAAvvAAvAv        (43) 

Assuming that Q moves at a constant velocity, v, in a field with a uniform A, the second, third 

and fourth terms in (43) equal zero. We therefore get: 

   AvAv             (44) 

Substituting (44) in (42) enables the reorganization of (42) such that: 


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

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




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c

1
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c

Q
M

dt

d
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We can relate to (45) as follows: 

The force is the time derivative of the generalized momentum: 









 AvP Q

c

1
M          that is equal to the gradient of the potential energy: 
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







 Av

c

1
QU        hence: U

t




P
    Let us adopt the known expressions:  

Av
c

Q
M                        Conjugate Momentum       (46) 









 Av

c

1
Q                Interaction Energy         (47) 

To the Potential Energy: 

Qφ                                            (48) 

we can add Potential Momentum: 

A
c

Q
                                       (49) 

Which, in quantum theory, is related to the operator 
i


. 

12 The Electromagnetic Equations  

 Classical Electromagnetism 12.1

Electromagnetic theory can be fully expressed by the four Maxwell’s equations: 

I       q4E  Coulomb’s Law                                   see [1] 

II     
tc

1






B
E  Faraday’s Law     (37) 

III    B = 0 No magnetic monopoles 

IV    
tc

1

c

4









E
jB  Ampère’s Law  (28) 

These equations can also be expressed in terms of differential equations for the scalar and 

vector potentials: 
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 q4            (48) 

 jA
c

4
            (49) 

Using the potential 4-vector  A,A   and the current density 4-vector    jj cq,,jj 0   

we get: 


 

 j
c

H4
A                    as the potential 4-vector equation. Since:  

F = A - A     
 

the covariant Maxwell’s equation can also be written as: 





 j

c

4
F            (50) 

 Gauge Transformation 12.2

The correspondence between Fμ and Aμ is not unique. Maxwell’s equations are invariant 

under the gauge transformation: 

Aμ → Aμ’ = A μ− ∂μψ          (51) 

where ψ is an arbitrary spacetime dependent scalar function (the gauge function). A change of 

Aμ does not change the EM representation by E and B fields. The relevant electric field E, in 

this case, is 
t

A

c

1




E  and the magnetic field is simply B =  x A. 

13 The GDM ElectroMagnetic Equations  

 The Equivalence of Energy Density and Charge Density 13.1

In the GDM charge density is q=1/4π ∙ (ρ-ρ0)/ρ. This charge density is positive if  > 0 and 

negative if  < 0 . But space density  depends on the space energy density ϵ , [12]. 
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 GDM EM equations 13.2

To obtain the GDM EM non-linear equations we use Maxwell’s equations and modify the 

expression    vj q,cqcq,j   by adding the contribution of the field energy (this, however, 

is out of the scope of this paper). 

 2
2source

sH8
qq 




           

, where H = 1 [H] = T
-2

 see [1], [  ] = LT
-2

 ,  s = 1 , [s] = LT
-1

, see [2] and [q] = 1. 

Thus both gauge invariance and charge conjugation are lost. 

 On Charge Conjugation and Gauge Invariance 13.3

The GDM-modified classical potential field equation includes the contributions of the energy 

density and the current of energy density of the field, which are equivalent to the charge density 

and current density, respectively. Maxwell’s equations are the approximated equations of GDM 

Electromagnetism where the energy density of the field is neglected. The electric charge, Q, 

of an elementary particle is not a constant. As the distance from the particle increases, the 

absolute value of the charge decreases.  E is, therefore, proportional not only to1/r
2
  but also to 

the changing Q. 

In the field there is a change in space density that affects c.  Thus, c depends on the potential 

as in the case of gravitation, and we can therefore expect light bending. However, this 

bending is different for positive and negative charges. Thus, there is no charge conjugation, 

nor gauge invariance close to a charged particle.  

Charge conjugation: the results of experiments are independent of alternating the sign of all 

charges. 

Gauge invariance: the results of experiments are independent of the choice of the gauge for 

the potentials. 
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14 Summary 

In the classical Maxwell EM, space does not play any role, whereas in our theory EM is 

merely the Geometrodynamics of space. This new understanding enables the turning of the 

form of the equations from linear into non-linear, which is also the case for QED. This is the 

specificity of the theory. The new understanding adds tangibility and enables the derivation of 

the theory from merely the definition of charge density and the Lorentz Transformation. 
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