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We prove a general expansion formula in Askey-Wilson polynomials using Bailey transform and Bressoud inversion. As applications, we give new proofs and generalizations of some recent results of Ismail-Stanton and Liu. Moreover, we prove a new q-beta integral formula involving Askey-Wilson polynomials, which includes the Nassrallah-Rahman integral as a special case. We also give a bootstrapping proof of Ismail-Stanton's recent generating function of Askey-Wilson polynomials.

Introduction

Andrews [START_REF] Andrews | q-orthogonal polynomials, Rogers-Ramanujan identities, and mock theta functions[END_REF] demonstrates that q-orthogonal polynomials can play an important role in the theory of mock theta functions by applying the following expansion of a terminating, balanced 5 φ 4 in a series of Askey-Wilson polynomials, [2, (1.3)],

5 φ 4 q -N , ρ 1 , ρ 2 , b, c ρ 1 ρ 2 q -N /a, e, f, g ; q, q = (aq/ρ 1 , aq/ρ 2 ; q) N (aq, aq/ρ 1 ρ 2 ; q) N (1.1)

× ∞ n=0
(q -N , ρ 1 , ρ 2 , a; q) n (1 -aq 2n ) (q, aq/ρ 1 , aq/ρ 2 , aq N +1 ; q) n (1 -a) aq N +1 ρ 1 ρ 2 n 4 φ 3 q -n , aq n , b, c e, f, g ; q, q ,

where N is a non-negative integer, and qabc = ef g.

As a follow-up to [START_REF] Andrews | q-orthogonal polynomials, Rogers-Ramanujan identities, and mock theta functions[END_REF], Ismail and Stanton [START_REF] Ismail | Expansions in the Askey-Wilson polynomials[END_REF] show that Andrews' formula (1.1) is one of many similar expansion formulae in the Askey-Wilson polynomials. In particular, they prove the transformation formula:

(1.2) p+1 φ p a 1 , . . . , a p-1 , t 4 /z, t 4 z t 1 t 4 , t 2 t 4 , t 3 t 4 , b 1 , . . . , b p-3

; q, δ = ∞ k=0 P k (x; t|q) (a 1 , . . . , a p-1 ; q) k (t 1 t 4 , t 2 t 4 , t 3 t 4 , b 1 , . . . , b p-3 ; q) k × (-t 4 δ) k q ( k 2 ) (q, t 1 t 2 t 3 t 4 q k-1 ; q) k p-1 φ p-2 a 1 q k , . . . , a p-1 q k b 1 q k , . . . , b p-3 q k , t 1 t 2 t 3 t 4 q 2k ; q, δ , where x = cos θ and z = e iθ , the Askey-Wilson polynomials are defined by P n (x; t|q) = t -n 1 (t 1 t 2 , t 1 t 3 , t 1 t 4 ; q) n4 φ 3 q -n , t 1 t 2 t 3 t 4 q n-1 , t 1 e iθ , t 1 e -iθ t 1 t 2 , t 1 t 3 , t 1 t 4 ; q, q . (1.3) Note that taking p = 4, a 1 = q -N , a 2 = ρ 1 , a 3 = ρ 2 , b 1 = ρ 1 ρ 2 q -N /a, u = 1 and δ = z in (1.2) the p-1 φ p-2 , namely 3 φ 2 , series at the right-hand side of the transformation can be summed by q-Pfaff-Saalschütz sum (7.4), we obtain the following result of Liu [START_REF] Liu | A q-summation formula, the continuous q-Hahn polynomials and the big q-Jacobi polynomials[END_REF]Theorem 10.1], for any non-negative N and |z| < 1, 5 φ 4 q -N , ρ 1 , ρ 2 , b, c ρ 1 ρ 2 q -N /a, e, f, g ; q, z = (aq/ρ 1 , aq/ρ 2 ; q) N (aq, aq/ρ 1 ρ 2 ; q) N (1.4)

× N n=0
(q -N , ρ 1 , ρ 2 , a; q) n (1 -aq 2n ) (q, aq/ρ 1 , aq/ρ 2 , aq N +1 ; q) n (1 -a) aq N +1 ρ 1 ρ 2 n 4 φ 3 q -n , aq n , b, c e, f, g ; q, z .

The above formula is an extension of Watson's transformation (7.9). Moreover, the z = q case corresponds to Andrews's result (1.1) if aqbc = ef g. This paper arose from the desire to understand the Ismail-Stanton formula (1.2) through Bailey's machinery. Actually, Ismail-Stanton derived (1.2) from an expansion formula due to Ismail-Rahman [START_REF] Ismail | Connection relations and expansions[END_REF], see also [START_REF] Ismail | Quadratic q-exponentials and connection coefficient problems[END_REF], which was proved using the orthogonality relation of Askey-Wilson polynomials, while Andrews' original proof of (1.1) used Bailey's transform with a special Bailey pair, which is equivalent to an inversion relation [3, (12.2.8)]. Looking at Ismail-Stanton's formula through Bailey's glance and using an inversion formula due to Bressoud [START_REF] Bressoud | A matrix inverse[END_REF], we are able to generalize formula (1.2) in several ways, see Proposition 2.3, Proposition 2.5 and Theorem 2.6.

A fundamental result about Askey-Wilson polynomials is the Askey-Wilson q-beta integral,

π 0 h(cos 2θ; 1) h(cos θ; t 1 , t 2 , t 3 , t 4 ) dθ = 2π(t 1 t 2 t 3 t 4 ; q) ∞ (q; q) ∞ 1≤r<s≤4 (t r t s ; q) ∞ , (1.5) where max{|t 1 |, |t 2 |, |t 3 |, |t 4 |} < 1 and h(cos θ; t 1 , . . . , t r ) = r j=1
(t j e iθ , t j e -iθ ; q) ∞ .

Nassrallah-Rahman [START_REF] Nassrallah | Projection formulas, a reproducing kernel and a generating function for q-Wilson polynomials[END_REF] obtained the following important generalization of (1.5) 

π 0 h(cos 2θ; 1)h(cos θ; t 6 ) h(cos θ; t 1 , t 2 , t 3 , t 4 , t 5 ) dθ = 2π(t 6 /t 1 , t 6 t 1 , t 1 t 3 t 4 t 5 , t 1 t 2 t 3 t 5 , t 1 t 2 t 3 t 4 , t 1 t 2 t 4 t 5 ; q) ∞ 1≤r<s≤5 (t r t s ; q) ∞ (q, t 2 1 t 2 t 3 t 4 t 5 ; q) ∞ (1.6) × 8 W 7 t
; q) ∞ (q; q) ∞ 1≤r<s≤5 (t r t s ; q) ∞ . (1.7)
By combining Theorem 2.6 and (1.7) we will generalize the Nassrallah-Rahman integral (1.6) in Theorem 2.7, which includes also two integrals of Liu [START_REF] Liu | A q-summation formula, the continuous q-Hahn polynomials and the big q-Jacobi polynomials[END_REF]Theorem 1.6] and Zhang-Wang [START_REF] Zhang | Two operator identities and their applications to terminating basic hypergeometric series and q-integrals[END_REF]Theorem 4.3].

This paper is organized as follows. In Section 2, we first state and prove a general transformation, Proposition 2.3, and then derive two interesting expansions in Theorems 2.5 and 2.6. Moreover, we give a generalization of Nassrallah-Rahman integral (1.6) in Theorem 2.7. In Section 3, we derive some recent known results in [START_REF] Ismail | Connection relations and expansions[END_REF][START_REF] Ismail | Some summation theorems and transformations for q-series[END_REF][START_REF] Ismail | Expansions in the Askey-Wilson polynomials[END_REF] from our main results. In Section 4, we show how to derive some important known q-integrals from (2.10). In Section 5, we give a "bootstrapping proof" of Ismail-Stanton's generating function for Askey-Wilson polynomials. In Section 6, we give two general transformations and show how to recover two transformations of Ismail-Stanton and Verma [START_REF] Ismail | Expansions in the Askey-Wilson polynomials[END_REF][START_REF] Verma | Some transformations of series with arbitrary terms[END_REF].

Throughout this paper, we assume that q is a complexe number such that 0 < |q| < 1 and use standard q-notations in [START_REF] Gasper | Basic Hypergeometric Series[END_REF][START_REF] Ismail | Classical and Quantum Orthogonal Polynomials in One Variable[END_REF]. Moreover, in Section 7, for the reader's convenience, we list all summation and transformation formulae used in our proofs.

Main results

Our starting point is the Bailey transform, see [START_REF] Andrews | Special functions[END_REF]Chap. 12] for a gentle introduction.

Lemma 2.1 (Bailey transform). Subject to conditions on the four sequences α n , β n , γ n and δ n which make all the infinite series absolutely convergent, if

β n = n r=0 α r υ n-r ν n+r , (2.1) and γ n = ∞ r=n δ r υ r-n ν r+n , (2.2) then ∞ n=0 α n γ n = ∞ n=0 β n δ n . (2.3)
For our purpose we need to choose suitable sequences (v n , ν n ) so that (2.1) can be inverted. First, we recall the following matrix inversion due to Bressoud [START_REF] Bressoud | A matrix inverse[END_REF].

Lemma 2.2 (Bressoud's inversion). For n, k ≥ 0 let C n,k (a, b) = (1 -aq 2k )(b; q) n+k (b/a; q) n-k (b/a) k (1 -a)(aq; q) n+k (q; q) n-k . (2.4)
The following inversion formula holds true

β ′ n = n k=0 C n,k (a, b)α ′ k ⇐⇒ α ′ n = n k=0 C n,k (b, a)β ′ k . (2.5) Proposition 2.3. We have (2.6) ∞ n=0 β n δ n = ∞ n=0 (1 -aq 2n )(a; q) n (a/b; q) n (b/a) n (1 -a)(bq; q) n (q; q) n × n k=0 (1 -bq 2k )(aq n ; q) k (q -n ; q) k (1 -b)(bq n+1 ; q) k (bq 1-n /a; q) k q k β k • ∞ r=0
(b/a; q) r (b; q) r+2n (q; q) r (aq; q) r+2n δ r+n , subject to conditions on the two sequences β n , δ n which make all the infinite series absolutely convergent.

Proof. Substituting α ′ k by (1-a)(a/b) k (1-aq 2k ) α k and β ′ n by β n in (2.5) we obtain

β n = n k=0 (b/a; q) n-k (b; q) n+k (q; q) n-k (aq; q) n+k α k . (2.7)
Inverting (2.7) using (2.5) we obtain

α n = (1 -aq 2n )(b/a) n (1 -a) n k=0 (1 -bq 2k )(a; q) n+k (a/b; q) n-k (a/b) k (1 -b)(bq; q) n+k (q; q) n-k β k = (1 -aq 2n )(a; q) n (a/b; q) n (b/a) n (1 -a)(bq; q) n (q; q) n n k=0 (1 -bq 2k )(aq n ; q) k (q -n ; q) k (1 -b)(bq n+1 ; q) k (bq 1-n /a; q) k q k β k .
In view of (2.7) and (2.1), we choose two sequences (v n , ν n ) as υ n = (b/a; q) n (q; q) n and ν n = (b; q) n (aq; q) n .

Then, we can compute γ n by (2.2)

γ n = ∞ r=n δ r ν r-n v r+n = ∞ r=0
δ r+n (b/a; q) r (b; q) r+2n (q; q) r (aq; q) r+2n .

Plugging the four sequences α n , β n , γ n and δ n into the Bailey transform (2.3) yields (2.6).

Remark 2.4. The pair (α n , β n ) satisfying (2.7) is called a WP-Bailey pair, see [START_REF] Andrews | Bailey's transform, lemma, chains and tree[END_REF]. When b = 0 a WP-Bailey pair is called a Bailey pair.

Setting δ n = (a 1 ,...,a p-1 ;q)n (b 1 ,...,b p-1 ;q)n δ n in Proposition 2.3, we obtain the following general transformation.

Theorem 2.5. Let δ, a i , b i be any complex numbers such that

|a i | < 1, |b i | < 1 (1 ≤ i ≤ p -1)
and |δ| < 1. Under suitable convergence conditions, for any complex sequence {β n }, we have

∞ n=0 (a 1 , . . . , a p-1 ; q) n (b 1 , . . . , b p-1 ; q) n δ n β n = ∞ n=0
(a, a/b; q) n (1 -aq 2n )(b; q) 2n (q, bq; q) n (1 -a)(aq; q) 2n × (a 1 , . . . , a p-1 ; q) n (b 1 , . . . , b p-1 ; q) n (bδ/a) n n k=0

(1 -bq 2k )(aq n ; q) k (q -n ; q) k (1 -b)(bq n+1 ; q) k (bq 1-n /a; q) k q k β k × p+1 φ p a 1 q n , . . . , a p-1 q n , b/a, bq 2n b 1 q n , . . . , b p-1 q n , aq 2n+1 ; q, δ .

If we choose b = 0, β n = (g, h; q) n (q, c, d, e; q) n u n , b p-1 = b p-2 = 0,
in Theorem 2.5, then we obtain the following generalisation of (1.2), which is our first main result.

Theorem 2.6. Let δ, u, c, d, e, g, h, b i , a i (i ∈ N) be any complex numbers such that |δ| < 1, |u| < 1 |a i | < 1, |b i | < 1 (1 ≤ i ≤ p -1)
. Then the following identity holds

(2.8) p+1 φ p a 1 , . . . , a p-1 , g, h c, d, e, b 1 , . . . , b p-3 ; q, δu = ∞ n=0 (-1) n q ( n 2 ) (a 1 , . . . , a p-1 ; q) n (q, aq n , b 1 , . . . , b p-3 ; q) n δ n × 4 φ 3 q -n , aq n , g, h c, d, e ; q, qu p-1 φ p-2 a 1 q n , . . . , a p-1 q n b 1 q n , . . . , b p-3 q n , aq 2n+1 ; q, δ .
We recover Ismail-Stanton's result (1.2) by choosing, in the above transformation,

u = 1, a = t 1 t 2 t 3 t 4 /q, g = t 4 /z, h = t 4 z, c = t 1 t 4 , d = t 2 t 4 , e = t 3 t 4
(thus aqgh = cde) and then applying Sears' transformation (7.5).

By using the expansion formula (2.8) and integral formula (1.7) we can derive a generalization of Nassrallah-Rahman integral (1.6) in Theorem 2.7, which is our second main result. For convenience we shall use the following compact notation 

A(t) := 2π(t 1 t 2 t 3 t 4 , t 1 t 2 t 3 t 5 , t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5 ; q) ∞ (q, αq; q) ∞ 1≤r<s≤5 (t r t s ; q) ∞ . (2.9) Theorem 2.7. Let αq = t 2 1 t 2 t 3 t 4 t 5 . If |g| = |h| and max{|t i |} < 1 (1 ≤ i ≤ 5), then π 0 h(cos 2θ; 1) h(cos θ; t 1 , t 2 , t 3 , t 4 , t 5 ) 4 φ 3 g, h, t 1 e iθ , t 1 e -iθ c, d, αqgh/cd ; q, t 2 t 3 t 4 t 5 dθ (2.10) = A(t) ∞ n=0 (1 -αq 2n ) (1 -α) (α, t 1 t 2 , t 1 t 3 , t 1 t 4 , t 1 t 5 ; q) n (-1) n q ( n 2 ) (t 2 t 3 t 4 t 5 ) n (q, t 1 t 2 t 3 t 4 , t 1 t 2 t 3 t 5 , t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5 ; q) n × 4 φ 3 q -n , αq n , g, h c, d, αqgh/cd ; q, q . Taking g = s 4 /z, h = s 4 z, c = s 1 s 4 , d =
= A(t) ∞ n=0 (1 -αq 2n ) (1 -α) (α, t 1 t 2 , t 1 t 3 , t 1 t 4 , t 1 t 5 ; q) n (-1) n q ( n 2 ) (t 2 t 3 t 4 t 5 s 4 ) n P n (y; s|q) (q, t 1 t 2 t 3 t 4 , t 1 t 2 t 3 t 5 , t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5 , s 1 s 4 , s 2 s 4 , s 3 s 4 ; q) n ,
where z = e iϕ , y = cos ϕ and P n (y; s|q) are Askey-Wilson polynomials.

In Theorem 2.7 choosing g = s, h = adt/q, c = st and then letting d → ∞, we obtain Theorem 2.9. 

If max{|t i |, |at 2 1 t 2 t 3 t 4 t 5 /q|} < 1, (1 ≤ i ≤ 5) and αq = t 2 1 t 2 t 3 t 4 t 5 , then π 0 h(cos 2θ; 1) h(cos θ; t 1 , t 2 , t 3 , t 4 , t 5 ) 3 φ 2 s, t 1 e iθ , t 1 e -iθ st, at 2 1 t 2 t 3 t 4 t 5 /q ; q, at 2 t 3 t 4 t 5 /q dθ = A(t) ∞ n=0 (1 -αq 2n ) (1 -α) (α, t 1 t 2 , t 1 t 3 , t 1 t 4 , t 1 t 5 ; q) n (-1) n q ( n 2 ) (t 2 t 3 t 4 t 5 ) n (q, t 1 t 2 t 3 t 4 , t 1 t 2 t 3 t 5 , t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5 ; q) n (2.12) × 3 φ 2 q -n , αq n , s st, αa ; q, at = A(t) ∞ n=0 (1 -αq 2n ) (1 -α) (α, q/a,
× 3 φ 2
q -n , αq n , t st, q/a ; q, q .

Note that (2.13) follows from applying the transformation (7.6) to the last 3 φ 2 in (2.12) with c = αq n , b = t, d = st, e = q/a. A proof and further applications of Theorem 2.7 will be given in section 4.

Applications of Theorem 2.6

In this section, we show that Theorem 2.6 encompasses some results of Ismail-Rahman and Ismail-Stanton in [START_REF] Ismail | Connection relations and expansions[END_REF][START_REF] Ismail | Expansions in the Askey-Wilson polynomials[END_REF]. Theorem 3.1. For any non-negative N , we have

(b 1 /b, b 1 /c; q) N (b 1 /bc, b 1 ; q) N = N n=0
(q -N , e, f, g; q) n q n (-1) n q ( n 2 ) (q, aq n , b 1 , bcq 1-N /b 1 ; q) n 4 φ 3 q -n , aq n , b, c e, f, g ; q, q (3.1)

× 4 φ 3
q -N +n , eq n , f q n , gq n b 1 q n , bcq 1-N +n /b 1 , aq 2n+1 ; q, q , and, for

|b 1 /bc| < 1, (b 1 /b, b 1 /c; q) ∞ (b 1 /bc, b 1 ; q) ∞ = ∞ n=0 (e, f, g; q) n (b 1 /bc) n (-1) n q ( n 2 ) (q, aq n , b 1 ; q) n 4 φ 3 q -n , aq n , b, c e, f, g ; q, q (3.2) × 3 φ 2
eq n , f q n , gq n b 1 q n , aq 2n+1 ; q, b 1 /bc .

Proof. Taking p = 5, a 1 = q -N , a 2 = e, a 3 = f and a 4 = g in Theorem 2.6, we have

3 φ 2 q -N , b, c b 1 , b 2 ; q, δu = N n=0
(q -N , e, f, g; q) n δ n (-1) n q ( n 2 ) (q, aq n , b 1 , b 2 ; q) n 4 φ 3 q -n , aq n , b, c e, f, g ; q, qu × 4 φ 3 q -N +n , eq n , f q n , gq n b 1 q n , b 2 q n , aq 2n+1 ; q, δ .

When b 2 = bcq 1-N /b 1 , δ = q and u = 1, the above 3 φ 2 series can be summed by q-Pfaff-Saalschütz sum (7.4) and we obtain (3.1). Letting N → ∞ in (3.1) yields (3.2), where taking the limit inside the sum is justified by Tannery's theorem, the discrete analogue of the Lebesgue dominated convergence theorem. We omit the details.

The following connection formula (3. 

(be iθ , be -iθ ; q) n = n k=0 f n,k (b, t)P k (x, t|q) (3.3) where f n,k (b, t) = (-b) k q ( k 2 ) (q; q) n (b/t 4 , bt 4 q k ; q) n-k (q, t 1 t 2 t 3 t 4 q k-1 ; q) k (q; q) n-k 4 φ 3 q k-
n , t 2 t 4 q k , t 1 t 4 q k , t 3 t 4 q k bt 4 q k , t 4 q 1-n+k /b, t 1 t 2 t 3 t 4 q 2k ; q, q , and (be iθ , be

-iθ ; q) ∞ (bt 4 , b/t 4 ; q) ∞ = n k=0 P k (x, t|q) (-b) k q ( k 2 ) (q, bt 4 , t 1 t 2 t 3 t 4 q k-1 ; q) k (3.4) × 3 φ 2 t 2 t 4 q k , t 1 t 4 q k , t 3 t 4 q k bt 4 q k , t 1 t 2 t 3 t 4 q 2k ; q, b t 4 .
Proof. Let a = t 1 t 2 t 3 t 4 /q, b = t 4 z, c = t 4 /z, b 1 = bt 4 , e = t 2 t 4 , f = t 3 t 4 and g = t 1 t 4 and z = e iθ in (3.1). Then, Sears' transformation (7.5) infers that 4 φ 3 q -n , aq n , b, c e, f, g ; q, q = (t 1 t 3 , t 1 t 2 ; q) n q -( n 2 ) (t 2 t 4 , t 3 t 4 ; q) n 4 φ 3 q -n , t 1 t 2 t 3 t 4 q n-1 , t 1 z, t 1 /z t 1 t 4 , t 1 t 3 , t 1 t 2 ; q, q . Now, replacing n by k and N by n in (3.1) we get (3.3) after simplification. Clearly (3.4) is the limit n → ∞ case of (3.3).

We can also derive a transformation of Ismail-Rahman-Suslov [10, Theorem 5.3] from Theorem 2.6. Theorem 3.3 (Ismail-Rahman-Suslov). We have (α, αab/q; q) ∞ (αa, αb; q) ∞ 3 φ 2 q/a, q/b, s st, αc ; q, αabct/q 2 (3.5)

= ∞ n=0
(1 -αq 2n )(αabc/q 2 ) n (α, q/a, q/b, q/c; q) n (q, αa, αb, αc; q) n 3 φ 2 q -n , αq n , t st, q/c ; q, q .

Proof. In (2.8), setting p = 3 and substituting a → α, a 1 → q/a, a 2 → q/b, e → αqgh/dc, δ → αab/q and u = 1 we can sum the 2 φ 1 by the Gauss sum (7.1) and obtain (α, αab/q; q) ∞ (αa, αb; q) ∞ 4 φ 3 q/a, q/b, g, h c, d, αqgh/dc ; q, αab/q

(3.6) = ∞ n=0 (1 -αq 2n )(-1) n q ( n
2 ) (αab/q) n (α, q/a, q/b; q) n (q, αa, αb; q) n 4 φ 3 q -n , αq n , g, h d, c, αqgh/dc ; q, q .

By Sears' transformation (7.5)

4 φ 3 q -n , αq n , g, h d, c, αqgh/dc ; q, q = (cq -n /α, q 1-n gh/dc; q) n (c, αqgh/dc; q) n (αq n ) n × 4 φ 3 q -n , αq n , d/g, d/h d, αq/c, dc/gh ; q, q . (3.7)
Now, plugging (3.7) into (3.6) and substituting g → s, d → st, c → αc we obtain (α, αab/q; q) ∞ (αa, αb; q) ∞ 4 φ 3 q/a, q/b, s, h st, αc, qh/ct ; q, αab/q

= ∞ n=0
(1 -αq 2n )(αabc/q 2 ) n (α, q/a, q/b, q/c; q) n (q, αa, αb, αc; q) n (q 1-n h/αtc; q) n (qh/tc; q) n (αq n ) n (3.8)

× 4 φ 3
q -n , αq n , t, st/h st, q/c, αct/h ; q, q . Now, replace h by q -m , for a positive integer m, then let m → ∞ and apply Tannery's theorem. The result is (3.5).

When st = q/a, the 3 φ 2 at the left-hand side of (3.5) reduces to a 2 φ 1 , which can be summed by (7.1) and we get the following summation formula, ∞ n=0

(1 -αq 2n )(αabc/q 2 ) n (α, q/a, q/b, q/c; q) n (q, αa, αb, αc; q) n 3 φ 2 q -n , αq n , t q/a, q/c ; q, q (3.9) = (α, αab/q, αbc/q, αact/q; q) ∞ (αa, αb, αc, αabct/q 2 ; q) ∞ .

Applying the transformation (7.6) to the above 3 φ 2 we obtain another result of Ismail-Rahman-Suslov [10, Theortem 5.1].

Corollary 3.4 (Ismail-Rahman-Suslov). We have ∞ n=0

(1 -αq 2n )(αabc/q 2 ) n (α, q/a, q/b, q/c; q) n (q, αa, αb, αc; q) n 3 φ 2 q -n , αq n , t q/a, q/c ; q, q (3.10) = (α, αab/q, αbc/q, αact/q; q) ∞ (αa, αb, αc, αabct/q 2 ; q) ∞ .

Ismail-Rahman-Suslov derived the above two results from their main theorem [10, Theortem 1.1], which exresses a double sum as a linear combination of two 5 φ 4 sums. We notice that if we make the sustitution (a, b, c, d, e, f ) → (α, q/b, q/c, q/d, q, α) in their Theorem 1.1, then qa/ef = 1, which annihilates the factor in front of the first 5 φ 4 and reduces the second 5 φ 4 to 1 in [10, (1.4)], and we obtain immediately the following remarquable extension of (3.10).

Theorem 3.5.

∞ n=0

(1 -αq 2n )(αbcd/q 2 ) n (α, q/b, q/c, q/d; q) n (q, αb, αc, αd; q) n 4 φ 3 q -n , αq n , g, h q/b, q/c, αbcgh/q ; q, q (3.11) = (α, αbd/q, αcd/q, αbcg/q, αbch/q, αbcdgh/q 2 ; q) ∞ (αb, αc, αd, αbcgh/q, αbcdg/q 2 , αbcdh/q 2 ; q) ∞ .

It seems that (3.11) was first published by Liu [16, Theorem 3].

4. Proof of Theorem 2.7 and its applications 4.1. Proof of Theorem 2.7. Choosing p = 3, u = 1, δ = αa 1 a 2 /q, a 1 = (q/t 1 )e iθ , a 2 = (q/t 1 )e -iθ , e = αqgh/cd in Theorem 2.5, we can sum the p-1 φ p-2 by the q-Gauss sum (7.1) and rewrite (2.8) as (αq, αq/t 2 1 ; q) ∞ h(cos θ; αq/t 1 ) 4 φ 3 t 1 e iθ , t 1 e -iθ , g, h c, d, αqgh/dc ; q, αq/t 2 1 (4.1)

= ∞ n=0
(1 -αq 2n )(-1) n q ( n 2 ) (αq/t 2 1 ) n (α, t 1 e iθ , t 1 e -iθ ; q) n (1 -α)(q, αqe iθ /t 1 , αqe -iθ /t 1 ; q) n 4 φ 3 q -n , αq n , g, h c, d, αqgh/dc ; q, q .

It is clear that the series at the left-hand side is convergent if |αq/t 2 1 | < 1. The convergence of the right-hand side can be justified as follows: if |h| < |g|, then one can show (see [14, (1.11)]) that the terminate 4 φ 3 series has the asymptotic formula 4 φ 3 q -n , aq n , g, h c, d, aqgh/dc ; q, q ∼ (h, d/g, c/g, qah/dc; q) ∞ g n (c, d, h/g, aqgh/dc; q) ∞ , n → ∞, (4.2) N.B. This formula is also given in [10, (1.5)] witout the factor (h/g; q) ∞ in the denominator. Hence, in view of the factor q ( n 2 ) , the series on the right-hand side of (4.1) converges if |g| = |h|. Hence a sufficient condition of convergence of the infinite series on the two sides of (4.1) is

|g| = |h|, |αq/t 2 1 | < 1. (4.3)
Since αq/t 1 = t 1 t 2 t 3 t 4 t 5 , we have h(cos θ; t 1 t 2 t 3 t 4 t 5 ) = (αqe iθ /t 1 , αqe -iθ /t 1 ; q) ∞ and h(cos θ; t 1 t 2 t 3 t 4 t 5 )(t 1 e iθ , t 1 e -iθ ; q) n h(cos θ; t 1 )(αqe iθ /t 1 , αqe -iθ /t 1 ; q) n = h(cos θ; t 1 t 2 t 3 t 4 t 5 q n ) h(cos θ; t 1 q n ) .

Multiplying both sides of (4. (1 -αq 2n )(-1) n q ( n 2 ) (αq/t 2 1 ) n (α; q) n (1 -α)(q; q) n 4 φ 3 q -n , αq n , g, h c, d, αqgh/dc ; q, q .

× π 0 h(cos 2θ; 1)h(cos θ; t 1 t 2 t 3 t 4 t 5 q n ) h(cos θ; t 1 q n , t 2 , t 3 , t 4 , t 5 ) dθ.

The last integral can be evaluated by rescaling t 1 → t 1 q n in (1.7), π 0 h(cos 2θ; 1)h(cos θ; t 1 t 2 t 3 t 4 t 5 q n ) h(cos θ; t 1 q n , t 

; q) ∞ (q; q) ∞ 1≤r<s≤5 (t r t s ; q) ∞ × (t 1 t 2 , t 1 t 3 , t 1 t 4 , t 1 t 5 ; q) n (t 1 t 2 t 3 t 4 , t 1 t 2 t 3 t 5 , t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5 ; q) n .
Substituting this in (4.4), we obtain (2.10). 

; q) ∞ 1≤r<s≤5 (t r t s ; q) ∞ (q, t 2 1 t 2 t 3 t 4 t 5 ; q) ∞ × ∞ n=0 (1 -αq 2n ) (1 -α) (α, t 1 t 2 , t 1 t 3 , t 1 t 4 , t 1 t 5 ; q) n (q, t 1 t 2 t 3 t 4 , t 1 t 2 t 3 t 5 , t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5 ; q) n × (-1) n q ( n 2 ) (t 2 t 3 t 4 t 5 ) n 2 φ 1 q -n , αq n d ; q, d/α .
Now, the above two 2 φ 1 series can be summed by q-Gauss summation (7.1) and q-Chu-Vandermonde sum (7.3), respectively,

2 φ 1 t 1 e iθ , t 1 e -iθ d ; q, d/t 2 1 = (d/t 1 e iθ , d/t 1 e -iθ ; q) ∞ (d, d/t 2 1 ; q) ∞ , 2 φ 1 q -n , αq n d ; q, d/α = (αq/d; q) n (d; q) n (-d/αq) n q -( n 2 ) .
Plugging these into (4.5), and then taking d → t 6 t 1 , we get the Nassrallah-Rahman integral (1.6).

In the following, we record some other well-known special cases of Theorem 2.7.

• Askey-Wilson integral When t 5 = 0, Theorem 2.7 immediately reduces to the Askey-Wilson integral (1.5). • Rahman Integral (1.7) When c = g and h = d in (2.10), in the left hand, the 4 φ 3 series reduces to a 2 φ 1 series which can be summed by using q-Gauss summation (7.1),

2 φ 1 t 1 e iθ , t 1 e -iθ αq ; q, t 2 t 3 t 4 t 5 = (t 1 t 2 t 3 t 4 t 5 e iθ , t 1 t 2 t 3 t 4 t 5 e -iθ ; q) ∞ (αq, t 2 t 3 t 4 t 5 ; q) ∞ .

On the other hand, using q-Chu-Vandermonde sums (7.2), we have

2 φ 1 q -n , αq n αq ; q, q = (q 1-n ; q) n (αq; q) n (αq n ) n ,
which is zero for n ≥ 1. After some simplification, this integral reduces to (1.7). 

; q) n (t 1 t 2 t 3 t 4 ; q) ∞ (q; q) ∞ 1≤r<s≤4 (t r t s ; q) ∞ × 4 φ 3 q -n , t 1 t 4 , t 2 t 4 , t 3 t 4 αt 4 , t 1 t 2 t 3 t 4 , q 1-n t 4 /α ; q, q . (4.6) When h = c, g → ∞, d = t
a = t 1 t 2 t 3 t 6 /q, b = t 2 t 3 , c = t 1 t 3 , d = t 1 t 2 , e = t 6 /t 4 , f = t 6 /t 5 ), the 8 W 7 series of (4.8) is equal to (t 1 t 2 t 3 t 6 , t 1 t 2 t 3 t 4 t 5 /t 6 , t 4 t 6 , t 5 t 6 ; q) ∞ (t 1 t 2 t 3 t 4 , t 1 t 2 t 3 t 5 , t 2 6 , t 4 t 5 ; q) ∞ (4.9) 
× 8 W 7 t 2 6 /q, t 6 /t 1 , t 6 /t 2 , t 6 /t 3 , t 6 /t 4 , t 6 /t 5 ; q, t 1 t 2 t 3 t 4 t 5 /t 6 .

Replacing (4.8) and (4.9) into (4.7), we have another form of Nassrallah-Rahman integral (1.6), π 0 h(cos 2θ; 1)h(cos θ; t 6 ) h(cos θ; t 1 , t 2 , t 3 , t 4 , t 5 ) dθ = 2π( 5 j=1 (t 6 t j ; q) ∞ (t 1 t 2 t 3 t 4 t 5 /t 6 ; q) ∞ (q, t 2 6 ; q) ∞ 1≤r<s≤5 (t r t s ; q) ∞ × 8 W 7 t 2 6 /q, t 6 /t 1 , t 6 /t 2 , t 6 /t 3 , t 6 /t 4 , t 6 /t 5 ; q, t 1 t 2 t 3 t 4 t 5 /t 6 , Taking t 1 = t 6 q n in the above result, we have (4.10) π 0 h(cos 2θ; 1)(t 6 e iθ , t 6 e -iθ ; q) n h(cos θ; t 2 , t 3 , t 4 , t 5 ) dθ = 2π(t 2 t 3 t 4 t 5 q n ; q) ∞ (t 2 6 q n ; q) ∞ 5 j=2 (t j t 6 ; q) ∞ (q, t 2 6 ; q) ∞ 5 j=2 (t j t 6 q n ; q) ∞ 2≤r<s≤5 (t r t s ; q) ∞ × 8 W 7 t 2 6 /q, q -n , t 6 /t 2 , t 6 /t 3 , t 6 /t 4 , t 6 /t 5 ; q, t 2 t 3 t 4 t 5 q n . By using Watson's transformation(a = t 2 6 /q, b = t 6 /t 2 , c = t 6 /t 3 , d = t 6 /t 4 and e = t 6 /t 5 in (7.9)), the 8 W 7 series can be reduced to 8 W 7 t 2 6 /q, q -n , t 6 /t 2 , t 6 /t 3 , t 6 /t 4 , t 6 /t 5 ; q, t 2 t 3 t 4 t 5 q n = (t 2 6 , t 4 t 5 ; q) n (t 4 t 6 , t 5 t 6 ; q) n 4 φ 3 q -n , t 6 /t 4 , t 6 /t 5 , t 2 t 3 t 2 t 6 , t 3 t 6 , q 1-n /t 4 t 5 ; q, q = (t 2 6 , t 4 t 5 , t 6 /t 2 , t 2 t 3 t 4 t 5 ; q) n (t 4 t 6 , t 5 t 6 , t 3 t 6 , t 4 t 5 ; q) n 4 φ 3 q -n , t 2 t 3 , t 2 t 4 , t 2 t 5 t 2 t 6 , t 2 t 3 t 4 t 5 , q 1-n t 2 /t 6

; q, q .

The second step is obtained by Sears' transformation (7.5 ; q) ∞ (q, αq; q) ∞ 1≤r<s≤5 (t r t s ; q) ∞ (4.12)

)( a = t 2 t 3 , b = t 6 /t 4 , c = t 6 /t 5 , d = t 2 t 6 , e = t 3 t 6 , f = q 1-n /
× ∞ n=0 (1 -αq 2n ) (1 -α) (α, t 1 t 2 , t 1 t 3 , t 1 t 4 , t 1 t 5 ; q) n (-1) n q ( n 2 
) (t 2 t 3 t 4 t 5 ) n (q, t 1 t 2 t 3 t 4 , t 1 t 2 t 3 t 5 , t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5 ; q) n .

In the right-hand side of (4.12), the summation becomes Remark 4.1. In the next section, we will give another proof of (4.11) as an application of (5.1). 4.3. Two integrals of Liu and Zhang-Wang. When h = d, c = αu and g = αuv/q, the 3 φ 2 series at the right-hand side of (2.10) can be summed by q-Pfaff-Saalschütz sum (7.4). Thus we recover Liu's result [17, 

∞ n=0 (α, α 1/2 , α -1/2 , t 1 t 2 , t 1 t 3 , t 1 t 4 , t 1 t 5 ; q) n (q, α 1/2 , α -1/2 ,
; q) ∞ (q, αq; q) ∞ 1≤r<s≤5 (t r t s ; q) ∞ × ∞ n=0 (1 -αq 2n ) (1 -α) (α, q/u, q/v, t 1 t 2 , t 1 t 3 , t 1 t 4 , t 1 t 5 ; q) n (-1) n q ( n 2 ) (α 2 uv/t 2 
; q) ∞ (q, αq; q) ∞ 1≤r<s≤5 (t r t s ; q) ∞ × ∞ n=0 (1 -αq 2n ) (1 -α)
(α, t 1 t 2 , t 1 t 3 , t 1 t 4 , αq/gt 1 ; q) n (q, gt 1 , t 1 t 2 t 3 t 5 , t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5 ; q) n (-1) n q ( n 2 ) (gt 5 ) n .

Using the limit N → ∞ case of Watson's transformation (7.9) with a g/bcd, ge iθ , ge -iθ ag, f g ; q, abcdf g dθ = 2π(abcd, bcdf ; q) ∞ (q, ab, ac, ad, bc, bd, cd, bf, cf, df ; q) ∞ 3 φ 2 g/b, g/c, g/d af, f g, ; q, abcdf g , provided |abcdf /g| < 1. 

= α, b = t 1 t 2 , c = t 1 t 3 , d = t 1 t 4 , e = αq/
n=0 P n (x, t|q)c n (t, b) = 1 (be iθ , be -iθ ) ∞ , (5.1) where c n (t, b) = b n (t 2 t 3 t 4 bq n ; q) ∞ (q, t 1 t 2 t 3 t 4 q n-1 ; q) n Π 4 j=2 (t j b; q) ∞ 3 φ 2 t 2 t 3 q n , t 2 t 4 q n , t 3 t 4 q n t 1 t 2 t 3 t 4 q 2n , t 2 t 3 t 4 bq n ; q, t 1 b . (5.2)
Prior to Ismail-Stanton's work, Kim and Stanton [START_REF] Kim | Bootstrapping and Askey-Wilson polynomials[END_REF] proved the following special case of (5.1). Proposition 5.2 (Kim-Stanton). We have the following generating function of continuous dual q-Hahn polynomials P n (x; 0, t 2 , t 3 , t 4 |q),

(5.3) ∞ k=0 P k (x; 0, t 2 , t 3 , t 4 |q) (q, bt 2 t 3 t 4 ; q) k b k = (bt 2 , bt 3 , bt 4 ; q) ∞ (bt 2 t 3 t 4 , be iθ , be -iθ ; q) ∞ .

Theorem 6.2. Let δ, u, y, h, t, e, f , g, b i , a i (i ∈ N) be any complex numbers. Then the following formal power series in ζ and u holds p+1 φ p a 1 , . . . , a p-1 , y, h, g t, e, f, b 1 , . . . , b p-1 ; q, uδ = ∞ n=0

(1 -aq 2n )(a, a/b, a 1 , . . . , a p-1 ; q) n (bδa -1 ) n (b; q) 2n (1 -a)(bq, q, b 1 , . . . , b p-1 ; q) n (aq; q) 2n × 8 φ 7 b, b 1/2 q, -b 1/2 q, y, h, g, aq n , q -n b 1/2 , -b 1/2 , bq n+1 , bq 1-n /a, t, e, f ; q, qu p+1 φ p a 1 q n , . . . , a p-1 q n , b/a, bq 2n b 1 q n , . . . , b p-1 q n , aq 2n+1 ; q, δ .

Finally, we record two special cases of Theorem 6.2 when the above 8 φ 7 is summable in closed form.

• Taking u = 1, t = bq/y, e = bq/h, f = bq/g and b 2 q = ayhg in Theorem 6.2, the 8 φ 7 series can be summed by Jackson's summation (7.13) (6.5) p+1 φ p a 1 , . . . , a p-1 , y, h, g bq/y, bq/h, bq/g, b 1 , . . . , b p-1

; q, δ = ∞ n=0

(1 -aq 2n )(a, a/b; q) n (a 1 , . . . , a p-1 ; q) n (b; q) 2n (1 -a)(q; q) n (b 1 , . . . , b p-1 ) n (aq; q) 2n × (bq/gh, bq/yg, bq/gy; q) n (bq/y, bq/h, bq/g, by/ygh; q) n p+1 φ p a 1 q n , . . . , a p-1 q n , b/a, bq 2n b 1 q n , . . . , b p-1 q n , aq 2n+1 ; q, δ .

• Taking y = t, h = e, u = b/ag and f = bq/g in Theorem 6.2, the 6 φ 5 series can be summed by (7.12) (6.6) p+1 φ p a 1 , . . . , a p-1 , g bq/g, b 1 , . . . , b p-1

; q, bδ/ag

= ∞ n=0
(1 -aq 2n )(a, a 1 , . . . , a p-1 , ag/b; q) n (bgδ/a) n (b; q) 2n (1 -a)(q, b 1 , . . . , b p-1 , bq/g; q) n (aq; q) 2n × p+1 φ p a 1 q n , . . . , a p-1 q n , b/a, bq 2n b 1 q n , . . . , b p-1 q n , aq 2n+1 ; q, δ .

Transformations of very-well-poised 8 φ 7 series, 8 φ 7 a, a 1/2 q, -a 1/2 q, b, c, d, e, f a 1/2 , -a 1/2 , aq/b, aq/c, aq/d, aq/e, aq/f ; q, a 2 q 2 bcdef (7.10) = (aq, b, bcµ/a, bdµ/a, beµ/a, bf µ/a; q) ∞ (aq/c, aq/d, aq/e, aq/f, µq, bµ/a; q) ∞ × 8 φ 7 µ, µ 1/2 q, -µ 1/2 q, aq/bc, aq/bd, aq/be, aq/bf, bµ/a µ 1/2 , -µ 1/2 , bcµ/a, bdµ/a, beµ/a, bf µ/a, aq/b ; q, b (7.11)

=

(aq, aq/ef, λq/e, λq/f ; q) ∞ (aq/e, aq/f, λq, λq/ef ; q) ∞ × 8 φ 7 λ, λ 1/2 q, -λ 1/2 q, λb/a, λc/a, λd/a, e, f λ 1/2 , -λ 1/2 , aq/b, aq/c, aq/d, λq/e, λq/f ; q, aq ef , where λ = a 2 q/bcd, µ = a 3 q 3 /b 2 cdef and max{|a 2 q 2 /bcdef |, |aq/ef |, |b|} < 1. Rogers' 6 φ 5 summation,

6 φ 5
a, a 1/2 q, -a 1/2 q, b, c, q -n a 1/2 , -a 1/2 , aq/b, aq/c, aq n+1 ; q, aq n+1 bc = (aq, aq/bc; q) n (aq/b, aq/c; q) n . (7.12) Jackson's 8 φ 7 summation, 8 φ 7 a, a 1/2 q, -a 1/2 q, b, c, d, e, q -n a 1/2 , -a 1/2 , aq/b, aq/c, aq/d, aq/e, aq n+1 ; q, q = (aq, aq/bc, aq/bd, aq/cd; q) n (aq/b, aq/c, aq/d, aq/bcd; q) n , (7.13) where a 2 q = bcdeq -n .

  3) was first proved by Ismail-Rahman-Stanton [11] though the limit case (3.4) appeared in a recent paper of Ismail and Stanton [12, Theorem 3.1]. Theorem 3.2 (Ismail-Rahman-Stanton). For any non-negative n, we have

  2θ; 1) h(cos θ; a, b, c, d, f ) 3 φ 2

5 .

 5 Ismail-Stanton's generating function of Askey-Wilson polynomials Ismail and Stanton [12] use the orthogonality relation of Askey-Wilson polynomials and (4.11) to prove the following generating function of Askey-Wilson polynomials. Theorem 5.1 (Ismail-Stanton). The Askey-Wilson polynomials have the generating function

∞

  

  2 1 t 2 t 3 t 4 t 5 /q, t 1 t 5 , t 1 t 2 , t 1 t 3 , t 1 t 4 , t 1 t 2 t 3 t 4 t 5 /t 6 ; q, t 6 /t 1 , where max{|t 1 |, |t 2 |, |t 3 |, |t 4 |, |t 5 |, |t 6 |} < 1. When t 6 = t 1 t 2 t 3 t 4 t 5 , the above 8 W 7 reduces to 1 and (1.6) becomes the following appealing formula [3, 19]:

π 0 h(cos 2θ; 1)h(cos θ; t 1 t 2 t 3 t 4 t 5 ) h(cos θ; t 1 , t 2 , t 3 , t 4 , t 5 ) dθ = 2π(t 1 t 2 t 3 t 4 , t 1 t 2 t 3 t 5 , t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5 , t 2 t 3 t 4 t 5

  Corollary 2.8. If max{|t i |, |s j |} < 1 (1 ≤ i ≤ 5, 1 ≤ j ≤ 4) and αq = t 2 1 t 2 t 3 t 4 t 5 , then , t 2 , t 3 , t 4 , t 5 ) 4 φ 3 s 4 z, s 4 /z, t 1 e iθ , t 1 e -iθ s 1 s 4 , s 2 s 4 , s 3 s 4 ; q, t 2 t 3 t 4 t 5 dθ (2.11)

	π	h(cos 2θ; 1)
	0	h(cos θ; t 1

s 2 s 4 and αq = s 1 s 2 s 3 s 4 in Theorem 2.7, we get the following formula involving Askey-Wilson polynomials.

  2 , t 3 , t 4 , t 5 ) dθ = 2π(t 1 t 2 t 3 t 4 , t 1 t 2 t 3 t 5 , t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5 , t 2 t 3 t 4 t 5

  /t 1 , t 6 t 1 , t 1 t 3 t 4 t 5 , t 1 t 2 t 3 t 5 , t 1 t 2 t 3 t 4 , t 1 t 2 t 4 t 5

	(4.5)	0	π	h(cos 2θ; 1) h(cos θ; t 1 , t 2 , t 3 , t 4 , t 5 )	2 φ 1	t 1 e iθ , t 1 e -iθ d	; q, d/t 2 1 dθ
				=	2π(t 6		

4.2. Nassrallah-Rahman integrals. We show how to get Nassrallah-Rahman integral (1.6) from our Theorem 2.7 . Let h = c and g → ∞ in (2.10), we have

•

  Ismail integral Ismail [8, p. 442] uses the following integral to derive Nassrallah-Rahman formula via analytic prolongation.

π 0 h(cos 2θ; 1)(αe iθ , αe -iθ ; q) n h(cos θ; , t 1 , t 2 , t 3 , t 4 ) dθ = 2π(α/t 4 , αt 4

  6 t 1 and t 1 ↔ t 5 in (2.10), in the right hand side, the inner summation can be written as 8 W 7 t 2 5 t 1 t 2 t 3 t 4 /q, t 1 t 5 , t 2 t 5 , t 5 t 3 , t 5 t 4 , t 1 t 2 t 3 t 4 t 5 /t 6 ; q, t 6 /t 5 . (4.7) Replacing a = t 2 5 t 1 t 2 t 3 t 4 /q, b = t 5 t 4 , c = t 1 t 5 , d = t 2 t 5 , e = t 5 t 3 and f = t 1 t 2 t 3 t 4 t 5 /t 6 into 8 W 7 transformation (7.10), the above factor is equal to (t 2 5 t 1 t 2 t 3 t 4 , t 5 t 4 , t 1 t 6 , t 2 t 6 , t 3 t 6 , t 1 t 2 t 3 t 4 ; q) ∞ (t 2 t 3 t 4 t 5 , t 1 t 3 t 4 t 5 , t 1 t 2 t 4 t 5 , t 5 t 6 , t 1 t 2 t 3 t 6 , t 6 /t 5 ; q) ∞ (4.8) × 8 W 7 t 1 t 2 t 3 t 6 /q, t 2 t 3 , t 1 t 3 , t 1 t 2 , t 6 /t 4 , t 6 /t 5 ; q, t 4 t 5 . Applying 8 W 7 transformation (7.11) once more (with

  t 4 t 5 ). Replacing the above formula into (4.10), we get (4.6) after taking t 2 ↔ t 4 , t 1 ↔ t 5 and t 6 → α. • Ismail-Stanton-Viennot integral It is proved in [13] that , t 2 , t 3 , t 4 , t 5 ) dθ = 2π(t 1 t 2 t 3 t 4 , t 2 t 3 t 4 t 5 , t 1 t 5 ; q) ∞ (q; q) ∞ 1≤r<s≤5 (t r t s ; q) ∞ (4.11) × 3 φ 2 t 2 t 3 , t 2 t 4 , t 3 t 4 t 1 t 2 t 3 t 4 , t 2 t 3 t 4 t 5 ; q, t 1 t 5 , where max{|t 1 |, |t 2 |, |t 3 |, |t 4 |, |t 5 ||} < 1. , t 2 , t 3 , t 4 , t 5 ) dθ = 2π(t 1 t 2 t 3 t 4 , t 1 t 2 t 3 t 5 , t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5

		π	h(cos 2θ; 1)
	0 h(cos θ; t 1 When g = 1, the integral in (2.10) becomes
	π		h(cos 2θ; 1)
	0	h(cos θ; t 1

  t 1 t 2 t 3 t 4 , t 1 t 2 t 3 t 5 , t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5 ; q) n (-1) n q ( n 2 ) (t 2 t 3 t 4 t 5 ) n . Setting a = α, b = t 1 t 2 , c = t 1 t 3 , d = t 1 t 4 , e = t 1 t 5 and N → 0 in Watson's transformation (7.9), the above factor is equal to (αq, t 2 t 3 ; q) ∞ (t 1 t 2 t 3 t 5 , t 1 t 2 t 3 t 4 ; q) ∞ 3 φ 2 t 1 t 4 , t 1 t 5 , t 4 t 5 t 1 t 3 t 4 t 5 , t 1 t 2 t 4 t 5 ; q, t 2 t 3 . (4.13) Using 3 φ 2 transformation (7.8)(a = t 1 t 4 , b = t 1 t 5 , c = t 4 t 5 , d = t 1 t 3 t 4 t 5 , e = t 1 t 2 t 4 t 5 ), the above 3 φ 2 series is equal to (t 1 t 5 , t 2 t 3 t 4 t 5 , t 1 t 2 t 3 t 4 ; q) ∞ (t 1 t 3 t 4 t 5 , t 1 t 2 t 4 t 5 , t 2 t 3 ; q) ∞ 3 φ 2 t 2 t 4 , t 3 t 4 , t 2 t 3 t 2 t 3 t 4 t 5 , t 1 t 2 t 3 t 4; q, t 1 t 5 .

	(4.14)
	Substituting (4.13) and (4.14) into the integral (4.12), we get (4.11).

  Theorem 1.6]. , t 2 , t 3 , t 4 , t 5 ) 3 φ 2 αuv/q, t 1 e iθ , t 1 e -iθ αu, αv, ; q; t 2 t 3 t 4 t 5 dθ (4.15) = 2π(t 1 t 2 t 3 t 4 , t 1 t 2 t 3 t 5 , t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5

	Theorem 4.2 (Liu).
	π	h(cos 2θ; 1)
	0	h(cos θ; t 1

  1 ) n (q, t 1 t 2 t 3 t 4 , αu, αv, t 1 t 2 t 3 t 5 , t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5 ; q) n , where αq = t 2 1 t 2 t 3 t 4 t 5 and max{|t 1 |, |t 2 |, |t 3 |, |t 4 |, |t 5 |} < 1. Taking u = t 1 g/α and v = t 1 t 5 /α, then (4.15) reduces to , t 2 , t 3 , t 4 , t 5 ) 3 φ 2 g/t 2 t 3 t 4 , t 1 e iθ , t 1 e -iθ gt 1 , t 1 t 5 ; q, t 2 t 3 t 4 t 5 dθ (4.16) = 2π(t 1 t 2 t 3 t 4 , t 1 t 2 t 3 t 5 , t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5

	π	h(cos 2θ; 1)
	0	h(cos θ; t 1

  gt 1 , the summation at the right-hand side of (4.[START_REF] Liu | An extension of the non-terminating 6φ5 summation and the Askey-Wilson polynomials[END_REF]) is transformed to(t 2 1 t 2 t 3 t 4 t 5 , g/t 4 ; q) ∞ (t 1 t 2 t 3 t 5 , gt 1 ; q) ∞ 3 φ 2 t 4 t 5 ,t 1 t 4 , αq/gt 1 t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5 ; q, g/t 4 . , t 2 , t 3 , t 4 , t 5 ) 3 φ 2 g/t 2 t 3 t 4 , t 1 e iθ , t 1 e -iθ gt 1 , t 1 t 5 ; q, t 2 t 3 t 4 t 5 dθ Applying the 3 φ 2 transformations (7.7) and (7.8) to the above two 3 φ 2 in (4.17), repectively, we obtain 3 φ 2 g/t 2 t 3 t 4 , t 1 e iθ , t 1 e -iθ gt 1 , t 1 t 5 ; q, t 2 t 3 t 4 t 5 = (t 1 t 2 t 3 t 4 t 5 /g, gt 5 ; q) ∞ (t 1 t 5 , t 2 t 3 t 4 t 5 ; q) ∞ 3 φ 2 g/t 2 t 3 t 4 , ge iθ , ge -iθ gt 1 , gt 5 ; q, t 1 t 2 t 3 t 4 t 5 /g , and 3 φ 2 t 4 t 5 , t 1 t 4 , αq/gt 1 t 1 t 3 t 4 t 5 , t 1 t 2 t 4 t 5 ; q, g/t 4 = (αq/gt 1 , gt 1 , gt 5 ; q) ∞ (t 1 t 3 t 4 t 5 , t 1 t 2 t 4 t 5 , g/t 4 ; q) ∞ 3 φ 2 g/t 2 , g/t 3 , g/t 4 gt 1 , gt 5 ; q, αq/gt 1 . Plugging these into (4.17) and taking t 1 = a, t 2 = b, t 3 = c, t 4 = d, t 5 = f , we get the following integral formula of Zhang and Wang [21, Theorem 4.3].

	Hence (4.16) is equivalent to π 0 h(cos 2θ; 1) h(cos θ; t 1 (4.17) = 2π(t Theorem 4.3 (Zhang and Wang).

1 t 2 t 3 t 4 , t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5 , g/t 4 ; q) ∞ (q, gt 1 ; q) ∞ 1≤r<s≤5 (t r t s ; q) ∞ 3 φ 2 t 4 t 5 , t 1 t 4 , αq/gt 1 t 1 t 2 t 4 t 5 , t 1 t 3 t 4 t 5 ; q, g/t 4 .
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Kim and Stanton's idea is to use the "bootstrapping method": they derive (5.3) from the generating function of Al-Salam-Chihara polynomials P n (x; 0, 0, t 3 , t 4 |q) by using the connection formula, [START_REF] Askey | Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials[END_REF][START_REF] Ismail | Classical and Quantum Orthogonal Polynomials in One Variable[END_REF], P n (x; A, t 2 , t 3 , t 4 |q) (q, t 2 t 3 , t 2 t 4 , t 3 t 4 ; q) n = n k=0 P k (x, t|q)(At 2 t 3 t 4 q n-1 ; q) k (q, t 2 t 3 , t 2 t 4 , t 3 t 4 , t 1 t 2 t 3 t 4 q k-1 ; q) k × t n-k 1 (A/t 1 ; q) n-k (q, t 1 t 2 t 3 t 4 q 2k ; q) n-k . (5.4) We show that the same idea works for Ismail-Stanton's formula (5.1), that is, one can derive (5.1) from (5.3) by using (5.4). Proof of Theorem 5.1 Letting A = 0 and summing the two sides of (5.4), multiplied with

, over n ≥ 0, we obtain

(t 2 t 3 q k , t 2 t 4 q k , t 3 t 4 q k ; q) n (bt 1 ) n (q, t 1 t 2 t 3 t 4 q 2k , bt 2 t 3 t 4 q k ; q) n .

In view of (5.3), we can rewrite the above equation as:

(bt 2 , bt 3 , bt 4 ; q) ∞ (bt 2 t 3 t 4 , be iθ , be

The result follows then after some simplification.

As an application of (5.1), we give another proof of Ismail-Stanton-Viennot integral (4.11). Another Proof of (4.11) In view of (5.1) with b → t 5 the left-hand side of (4.11) is

The inner integral can be evaluated by replacing

The inner 2 φ 1 series can be summed by q-Chu-Vandemonde (7.2) 2 φ 1 q -n , t 1 t 2 t 3 t 4 q n-1 t 1 t 2 t 3 t 4 ; q, q = (q 1-n ; q) n (t 1 t 2 t 3 t 4 q n-1 ) n (t 1 t 2 t 3 t 4 ; q) n .

Since (q 1-n ; q) n = 0 for n ≥ 1, (5.5) reduces to 2π(t 1 t 2 t 3 t 4 ; q) ∞ (q; q) ∞ 1≤r<s≤4 (t r t s ; q) ∞ c 0 (t, t 5 ), which is clearly equal to the right-hand side of (4.11) in view of (5.2).

More transformation formulae

Ismail-Stanton [12, §5-6] proved the following expansion formula:

δ r B r+n (q, Cq 2n ; q) r .

They also derive several interesting results from the above identity. We note that (6.1) follows from Proposition 2.3. Indeed, substituting β n → Anu n (q,α,β;q)n , δ n → (α, β; q) n B n δ n and b → γ in (2.6) yields the following result. Theorem 6.1.

(γ/a; q) r (γ; q) r+2n (α, β; q) r+n δ r+n B r+n (q; q) r (aq; q) r+2n .

Letting γ = 0 and A n → A n (b, c; q) n , the above formula reduces to

δ r+n B r+n (α, β; q) n+r (q, aq 2n+1 ; q) r .

Obviously (6.3) reduces to (6.1) when α = β = 0, b → az, c → a/z, u → 1 and a → C/q. Verma [START_REF] Verma | Some transformations of series with arbitrary terms[END_REF] (see also [7, p. 84]) proved the following important expansion formula

(q -n , γq n ; q) j (q, α, β; q) j (wq) r A j ∞ k=0 (α, β; q) n+k (q, γq 2n+1 ; q) k x k B k+n .

We note that the above formula corresponds to (6.3) with b = c = 0, a = γ, u = w and δ = x. Besides, the special β n = (g,h,y;q)n (q,e,f,t;q)n u n case of Proposition 2.5 gives the following result.

Appendix

The following formulae are taken from [7, Appendices II and III]. The q-Gauss sum, 2 φ 1 a, b c ; q, c/ab = (c/a, c/b; q) ∞ (c, c/ab; q) ∞ , (|c/ab| < 1). (7.1)

The q-Chu-Vandermonde sums, 2 φ 1 a, q -n c ; q, q = (c/a; q) n a n (c; q) n , (7.2) and, reversing the order of summation, 2 φ 1 a, q -n c ; q, cq n /a = (c/a; q) n (c; q) n . (7.3)

The q-Pfaff-Saalschütz sum, 3 φ 2 a, b, q -n c, abq 1-n /c

; q, q = (c/a, c/b; q) n (c, c/ab; q) n . (7.4) Sears' transformation,

d, e, f ; q, q = (e/a, f /a; q) n a n (e, f ; q) n 4 φ 3 a, d/b, d/c, q -n d, aq 1-n /e, aq 1-n /f ; q, q , (7.5) where def = abcq 1-n .

Transformations of finite 3 φ 2 series (by sending c, f → 0 in (7.5)),

d, e ; q, q = (e/a; q) n (e; q) n a n 3 φ 2 q -n , a, d/b d, aq 1-n /e ; q, bq/e . (7.6) Transformations of 3 φ 2 series, 3 φ 2 a, b, c d, e ; q, de/abc = (e/a, de/bc; q) ∞ (e, de/abc; q) ∞ 3 φ 2 a, d/b, d/c d, de/bc ; q, e/a (7.7) = (b, de/ab, de/bc; q) ∞ (d, e, de/abc; q) ∞ 3 φ 2 e/b, d/b, de/abc de/ab, de/bc ; q, b , (7.8) where max{|de/abc|, |e/a|, |b|} < 1. Watson's transformation, 8 φ 7 a, a 1/2 q, -a 1/2 q, b, c, d, e, q -n a 1/2 , -a 1/2 , aq/b, aq/c, aq/d, aq/e, aq n+1 ; q, a 2 q n+2 bcde (7.9) = (aq, aq/de; q) n (aq/d, aq/e; q) n 4 φ 3 aq/bc, d, e, q -n aq/b, aq/c, deq -n /a ; q, q .