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EXPANSIONS IN ASKEY-WILSON POLYNOMIALS VIA BAILEY

TRANSFORM

ZEYA JIA AND JIANG ZENG

Abstract. We prove a general expansion formula in Askey-Wilson polynomials using Bailey

transform and Bressoud inversion. As applications, we give new proofs and generalizations of

some recent results of Ismail-Stanton and Liu. Moreover, we prove a new q-beta integral formula

involving Askey-Wilson polynomials, which includes the Nassrallah-Rahman integral as a special

case. We also give a bootstrapping proof of Ismail-Stanton’s recent generating function of Askey-

Wilson polynomials.

1. Introduction

Andrews [2] demonstrates that q-orthogonal polynomials can play an important role in the

theory of mock theta functions by applying the following expansion of a terminating, balanced

5φ4 in a series of Askey-Wilson polynomials, [2, (1.3)],

5φ4

[

q−N , ρ1, ρ2, b, c

ρ1ρ2q
−N/a, e, f, g

; q, q

]

=
(aq/ρ1, aq/ρ2; q)N
(aq, aq/ρ1ρ2; q)N

(1.1)

×

∞
∑

n=0

(q−N , ρ1, ρ2, a; q)n(1− aq2n)

(q, aq/ρ1, aq/ρ2, aqN+1; q)n(1− a)

(

aqN+1

ρ1ρ2

)n

4φ3

[

q−n, aqn, b, c

e, f, g
; q, q

]

,

where N is a non-negative integer, and qabc = efg.

As a follow-up to [2], Ismail and Stanton [12] show that Andrews’ formula (1.1) is one of

many similar expansion formulae in the Askey-Wilson polynomials. In particular, they prove the

transformation formula:

(1.2) p+1φp

[

a1, . . . , ap−1, t4/z, t4z

t1t4, t2t4, t3t4, b1, . . . , bp−3
; q, δ

]

=

∞
∑

k=0

Pk(x; t|q)
(a1, . . . , ap−1; q)k

(t1t4, t2t4, t3t4, b1, . . . , bp−3; q)k

×
(−t4δ)

kq(
k

2
)

(q, t1t2t3t4qk−1; q)k
p−1φp−2

[

a1q
k, . . . , ap−1q

k

b1q
k, . . . , bp−3q

k, t1t2t3t4q
2k

; q, δ

]

,
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where x = cos θ and z = eiθ, the Askey-Wilson polynomials are defined by

Pn(x; t|q) = t−n
1 (t1t2, t1t3, t1t4; q)n4φ3

[

q−n, t1t2t3t4q
n−1, t1e

iθ, t1e
−iθ

t1t2, t1t3, t1t4
; q, q

]

.(1.3)

Note that taking p = 4, a1 = q−N , a2 = ρ1, a3 = ρ2, b1 = ρ1ρ2q
−N/a, u = 1 and δ = z in

(1.2) the p−1φp−2, namely 3φ2, series at the right-hand side of the transformation can be summed

by q-Pfaff-Saalschütz sum (7.4), we obtain the following result of Liu [17, Theorem 10.1], for any

non-negative N and |z| < 1,

5φ4

[

q−N , ρ1, ρ2, b, c

ρ1ρ2q
−N/a, e, f, g

; q, z

]

=
(aq/ρ1, aq/ρ2; q)N
(aq, aq/ρ1ρ2; q)N

(1.4)

×

N
∑

n=0

(q−N , ρ1, ρ2, a; q)n(1− aq2n)

(q, aq/ρ1, aq/ρ2, aqN+1; q)n(1− a)

(

aqN+1

ρ1ρ2

)n

4φ3

[

q−n, aqn, b, c

e, f, g
; q, z

]

.

The above formula is an extension of Watson’s transformation (7.9). Moreover, the z = q case

corresponds to Andrews’s result (1.1) if aqbc = efg.

This paper arose from the desire to understand the Ismail-Stanton formula (1.2) through Bai-

ley’s machinery. Actually, Ismail-Stanton derived (1.2) from an expansion formula due to Ismail-

Rahman [9], see also [11], which was proved using the orthogonality relation of Askey-Wilson

polynomials, while Andrews’ original proof of (1.1) used Bailey’s transform with a special Bailey

pair, which is equivalent to an inversion relation [3, (12.2.8)]. Looking at Ismail-Stanton’s for-

mula through Bailey’s glance and using an inversion formula due to Bressoud [5], we are able to

generalize formula (1.2) in several ways, see Proposition 2.3, Proposition 2.5 and Theorem 2.6.

A fundamental result about Askey-Wilson polynomials is the Askey-Wilson q-beta integral,
∫ π

0

h(cos 2θ; 1)

h(cos θ; t1, t2, t3, t4)
dθ =

2π(t1t2t3t4; q)∞
(q; q)∞

∏

1≤r<s≤4(trts; q)∞
,(1.5)

where max{|t1|, |t2|, |t3|, |t4|} < 1 and

h(cos θ; t1, . . . , tr) =

r
∏

j=1

(tje
iθ, tje

−iθ; q)∞.

Nassrallah-Rahman [18] obtained the following important generalization of (1.5)
∫ π

0

h(cos 2θ; 1)h(cos θ; t6)

h(cos θ; t1, t2, t3, t4, t5)
dθ =

2π(t6/t1, t6t1, t1t3t4t5, t1t2t3t5, t1t2t3t4, t1t2t4t5; q)∞
∏

1≤r<s≤5(trts; q)∞(q, t21t2t3t4t5; q)∞
(1.6)

×8W7

(

t21t2t3t4t5/q, t1t5, t1t2, t1t3, t1t4, t1t2t3t4t5/t6 ; q, t6/t1

)

,

where max{|t1|, |t2|, |t3|, |t4|, |t5|, |t6|} < 1.

When t6 = t1t2t3t4t5, the above 8W7 reduces to 1 and (1.6) becomes the following appealing

formula [3, 19]:
∫ π

0

h(cos 2θ; 1)h(cos θ; t1t2t3t4t5)

h(cos θ; t1, t2, t3, t4, t5)
dθ =

2π(t1t2t3t4, t1t2t3t5, t1t2t4t5, t1t3t4t5, t2t3t4t5; q)∞
(q; q)∞

∏

1≤r<s≤5(trts; q)∞
.(1.7)
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By combining Theorem 2.6 and (1.7) we will generalize the Nassrallah-Rahman integral (1.6) in

Theorem 2.7, which includes also two integrals of Liu [17, Theorem 1.6] and Zhang-Wang [21,

Theorem 4.3].

This paper is organized as follows. In Section 2, we first state and prove a general transfor-

mation, Proposition 2.3, and then derive two interesting expansions in Theorems 2.5 and 2.6.

Moreover, we give a generalization of Nassrallah-Rahman integral (1.6) in Theorem 2.7. In Sec-

tion 3, we derive some recent known results in [9, 10, 12] from our main results. In Section 4,

we show how to derive some important known q-integrals from (2.10). In Section 5, we give a

“bootstrapping proof” of Ismail-Stanton’s generating function for Askey-Wilson polynomials. In

Section 6, we give two general transformations and show how to recover two transformations of

Ismail-Stanton and Verma [12,20].

Throughout this paper, we assume that q is a complexe number such that 0 < |q| < 1 and

use standard q-notations in [7,8]. Moreover, in Section 7, for the reader’s convenience, we list all

summation and transformation formulae used in our proofs.

2. Main results

Our starting point is the Bailey transform, see [3, Chap. 12] for a gentle introduction.

Lemma 2.1 (Bailey transform). Subject to conditions on the four sequences αn, βn, γn and δn

which make all the infinite series absolutely convergent, if

βn =

n
∑

r=0

αrυn−rνn+r,(2.1)

and

γn =

∞
∑

r=n

δrυr−nνr+n,(2.2)

then

∞
∑

n=0

αnγn =

∞
∑

n=0

βnδn.(2.3)

For our purpose we need to choose suitable sequences (vn, νn) so that (2.1) can be inverted.

First, we recall the following matrix inversion due to Bressoud [5].

Lemma 2.2 (Bressoud’s inversion). For n, k ≥ 0 let

Cn,k(a, b) =
(1− aq2k)(b; q)n+k(b/a; q)n−k(b/a)

k

(1− a)(aq; q)n+k(q; q)n−k
.(2.4)

The following inversion formula holds true

β′
n =

n
∑

k=0

Cn,k(a, b)α
′
k ⇐⇒ α′

n =

n
∑

k=0

Cn,k(b, a)β
′
k .(2.5)
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Proposition 2.3. We have

(2.6)

∞
∑

n=0

βnδn =

∞
∑

n=0

(1− aq2n)(a; q)n(a/b; q)n(b/a)
n

(1− a)(bq; q)n(q; q)n

×

n
∑

k=0

(1− bq2k)(aqn; q)k(q
−n; q)k

(1− b)(bqn+1; q)k(bq1−n/a; q)k
qkβk ·

∞
∑

r=0

(b/a; q)r(b; q)r+2n

(q; q)r(aq; q)r+2n
δr+n,

subject to conditions on the two sequences βn, δn which make all the infinite series absolutely

convergent.

Proof. Substituting α′
k by (1−a)(a/b)k

(1−aq2k)
αk and β′

n by βn in (2.5) we obtain

βn =
n
∑

k=0

(b/a; q)n−k(b; q)n+k

(q; q)n−k(aq; q)n+k
αk.(2.7)

Inverting (2.7) using (2.5) we obtain

αn =
(1− aq2n)(b/a)n

(1− a)

n
∑

k=0

(1− bq2k)(a; q)n+k(a/b; q)n−k(a/b)
k

(1− b)(bq; q)n+k(q; q)n−k
βk

=
(1− aq2n)(a; q)n(a/b; q)n(b/a)

n

(1− a)(bq; q)n(q; q)n

n
∑

k=0

(1− bq2k)(aqn; q)k(q
−n; q)k

(1− b)(bqn+1; q)k(bq1−n/a; q)k
qkβk.

In view of (2.7) and (2.1), we choose two sequences (vn, νn) as

υn =
(b/a; q)n
(q; q)n

and νn =
(b; q)n
(aq; q)n

.

Then, we can compute γn by (2.2)

γn =
∞
∑

r=n

δrνr−nvr+n

=

∞
∑

r=0

δr+n
(b/a; q)r(b; q)r+2n

(q; q)r(aq; q)r+2n
.

Plugging the four sequences αn, βn, γn and δn into the Bailey transform (2.3) yields (2.6).

Remark 2.4. The pair (αn, βn) satisfying (2.7) is called a WP-Bailey pair, see [1]. When b = 0

a WP-Bailey pair is called a Bailey pair.

Setting δn =
(a1,...,ap−1;q)n
(b1,...,bp−1;q)n

δn in Proposition 2.3, we obtain the following general transformation.
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Theorem 2.5. Let δ, ai, bi be any complex numbers such that |ai| < 1, |bi| < 1 (1 ≤ i ≤ p− 1)

and |δ| < 1. Under suitable convergence conditions, for any complex sequence {βn}, we have

∞
∑

n=0

(a1, . . . , ap−1; q)n
(b1, . . . , bp−1; q)n

δnβn =

∞
∑

n=0

(a, a/b; q)n(1− aq2n)(b; q)2n
(q, bq; q)n(1− a)(aq; q)2n

×
(a1, . . . , ap−1; q)n
(b1, . . . , bp−1; q)n

(bδ/a)n
n
∑

k=0

(1− bq2k)(aqn; q)k(q
−n; q)k

(1− b)(bqn+1; q)k(bq1−n/a; q)k
qkβk

× p+1φp

[

a1q
n, . . . , ap−1q

n, b/a, bq2n

b1q
n, . . . , bp−1q

n, aq2n+1
; q, δ

]

.

If we choose

b = 0, βn =
(g, h; q)n

(q, c, d, e; q)n
un, bp−1 = bp−2 = 0,

in Theorem 2.5, then we obtain the following generalisation of (1.2), which is our first main result.

Theorem 2.6. Let δ, u, c, d, e, g, h, bi, ai (i ∈ N) be any complex numbers such that |δ| < 1,

|u| < 1 |ai| < 1, |bi| < 1 (1 ≤ i ≤ p− 1). Then the following identity holds

(2.8) p+1φp

[

a1, . . . , ap−1, g, h

c, d, e, b1, . . . , bp−3
; q, δu

]

=

∞
∑

n=0

(−1)nq(
n

2
)(a1, . . . , ap−1; q)n

(q, aqn, b1, . . . , bp−3; q)n
δn

× 4φ3

[

q−n, aqn, g, h

c, d, e
; q, qu

]

p−1φp−2

[

a1q
n, . . . , ap−1q

n

b1q
n, . . . , bp−3q

n, aq2n+1
; q, δ

]

.

We recover Ismail-Stanton’s result (1.2) by choosing, in the above transformation,

u = 1, a = t1t2t3t4/q, g = t4/z, h = t4z, c = t1t4, d = t2t4, e = t3t4

(thus aqgh = cde) and then applying Sears’ transformation (7.5).

By using the expansion formula (2.8) and integral formula (1.7) we can derive a generaliza-

tion of Nassrallah-Rahman integral (1.6) in Theorem 2.7, which is our second main result. For

convenience we shall use the following compact notation

A(t) :=
2π(t1t2t3t4, t1t2t3t5, t1t2t4t5, t1t3t4t5; q)∞

(q, αq; q)∞
∏

1≤r<s≤5(trts; q)∞
.(2.9)

Theorem 2.7. Let αq = t21t2t3t4t5. If |g| 6= |h| and max{|ti|} < 1 (1 ≤ i ≤ 5), then

∫ π

0

h(cos 2θ; 1)

h(cos θ; t1, t2, t3, t4, t5)
4φ3

[

g, h, t1e
iθ, t1e

−iθ

c, d, αqgh/cd
; q, t2t3t4t5

]

dθ(2.10)

= A(t)

∞
∑

n=0

(1− αq2n)

(1− α)

(α, t1t2, t1t3, t1t4, t1t5; q)n(−1)nq(
n

2
)(t2t3t4t5)

n

(q, t1t2t3t4, t1t2t3t5, t1t2t4t5, t1t3t4t5; q)n

×4φ3

[

q−n, αqn, g, h

c, d, αqgh/cd
; q, q

]

.

Taking g = s4/z, h = s4z, c = s1s4, d = s2s4 and αq = s1s2s3s4 in Theorem 2.7, we get the

following formula involving Askey-Wilson polynomials.
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Corollary 2.8. If max{|ti|, |sj |} < 1 (1 ≤ i ≤ 5, 1 ≤ j ≤ 4) and αq = t21t2t3t4t5, then

∫ π

0

h(cos 2θ; 1)

h(cos θ; t1, t2, t3, t4, t5)
4φ3

[

s4z, s4/z, t1e
iθ, t1e

−iθ

s1s4, s2s4, s3s4
; q, t2t3t4t5

]

dθ(2.11)

= A(t)

∞
∑

n=0

(1− αq2n)

(1− α)

(α, t1t2, t1t3, t1t4, t1t5; q)n(−1)nq(
n

2
)(t2t3t4t5s4)

nPn(y; s|q)

(q, t1t2t3t4, t1t2t3t5, t1t2t4t5, t1t3t4t5, s1s4, s2s4, s3s4; q)n
,

where z = eiϕ, y = cosϕ and Pn(y; s|q) are Askey-Wilson polynomials.

In Theorem 2.7 choosing g = s, h = adt/q, c = st and then letting d → ∞, we obtain

Theorem 2.9. If max{|ti|, |at
2
1t2t3t4t5/q|} < 1, (1 ≤ i ≤ 5) and αq = t21t2t3t4t5, then

∫ π

0

h(cos 2θ; 1)

h(cos θ; t1, t2, t3, t4, t5)
3φ2

[

s, t1e
iθ, t1e

−iθ

st, at21t2t3t4t5/q
; q, at2t3t4t5/q

]

dθ

= A(t)

∞
∑

n=0

(1− αq2n)

(1− α)

(α, t1t2, t1t3, t1t4, t1t5; q)n(−1)nq(
n

2
)(t2t3t4t5)

n

(q, t1t2t3t4, t1t2t3t5, t1t2t4t5, t1t3t4t5; q)n
(2.12)

×3φ2

[

q−n, αqn, s

st, αa
; q, at

]

= A(t)
∞
∑

n=0

(1− αq2n)

(1− α)

(α, q/a, t1t2, t1t3, t1t4, t1t5; q)n(αat2t3t4t5)
n

(q, αa, t1t2t3t4, t1t2t3t5, t1t2t4t5, t1t3t4t5; q)n
(2.13)

×3φ2

[

q−n, αqn, t

st, q/a
; q, q

]

.

Note that (2.13) follows from applying the transformation (7.6) to the last 3φ2 in (2.12) with

c = αqn, b = t, d = st, e = q/a. A proof and further applications of Theorem 2.7 will be given

in section 4.

3. Applications of Theorem 2.6

In this section, we show that Theorem 2.6 encompasses some results of Ismail-Rahman and

Ismail-Stanton in [9, 12].

Theorem 3.1. For any non-negative N , we have

(b1/b, b1/c; q)N
(b1/bc, b1; q)N

=

N
∑

n=0

(q−N , e, f, g; q)nq
n(−1)nq(

n

2
)

(q, aqn, b1, bcq1−N/b1; q)n
4φ3

[

q−n, aqn, b, c

e, f, g
; q, q

]

(3.1)

× 4φ3

[

q−N+n, eqn, fqn, gqn

b1q
n, bcq1−N+n/b1, aq

2n+1
; q, q

]

,
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and, for |b1/bc| < 1,

(b1/b, b1/c; q)∞
(b1/bc, b1; q)∞

=

∞
∑

n=0

(e, f, g; q)n(b1/bc)
n(−1)nq(

n

2
)

(q, aqn, b1; q)n
4φ3

[

q−n, aqn, b, c

e, f, g
; q, q

]

(3.2)

× 3φ2

[

eqn, fqn, gqn

b1q
n, aq2n+1

; q, b1/bc

]

.

Proof. Taking p = 5, a1 = q−N , a2 = e, a3 = f and a4 = g in Theorem 2.6, we have

3φ2

[

q−N , b, c

b1, b2
; q, δu

]

=

N
∑

n=0

(q−N , e, f, g; q)nδ
n(−1)nq(

n

2
)

(q, aqn, b1, b2; q)n
4φ3

[

q−n, aqn, b, c

e, f, g
; q, qu

]

× 4φ3

[

q−N+n, eqn, fqn, gqn

b1q
n, b2q

n, aq2n+1
; q, δ

]

.

When b2 = bcq1−N/b1, δ = q and u = 1, the above 3φ2 series can be summed by q-Pfaff-Saalschütz

sum (7.4) and we obtain (3.1). Letting N → ∞ in (3.1) yields (3.2), where taking the limit inside

the sum is justified by Tannery’s theorem, the discrete analogue of the Lebesgue dominated

convergence theorem. We omit the details.

The following connection formula (3.3) was first proved by Ismail-Rahman-Stanton [11] though

the limit case (3.4) appeared in a recent paper of Ismail and Stanton [12, Theorem 3.1].

Theorem 3.2 (Ismail-Rahman-Stanton). For any non-negative n, we have

(beiθ, be−iθ; q)n =
n
∑

k=0

fn,k(b, t)Pk(x, t|q)(3.3)

where

fn,k(b, t) =
(−b)kq(

k

2
)(q; q)n(b/t4, bt4q

k; q)n−k

(q, t1t2t3t4qk−1; q)k(q; q)n−k
4φ3

[

qk−n, t2t4q
k, t1t4q

k, t3t4q
k

bt4q
k, t4q

1−n+k/b, t1t2t3t4q
2k

; q, q

]

,

and

(beiθ, be−iθ; q)∞
(bt4, b/t4; q)∞

=

n
∑

k=0

Pk(x, t|q)
(−b)kq(

k

2
)

(q, bt4, t1t2t3t4qk−1; q)k
(3.4)

× 3φ2

[

t2t4q
k, t1t4q

k, t3t4q
k

bt4q
k, t1t2t3t4q

2k
; q,

b

t4

]

.

Proof. Let a = t1t2t3t4/q, b = t4z, c = t4/z, b1 = bt4, e = t2t4, f = t3t4 and g = t1t4 and z = eiθ

in (3.1). Then, Sears’ transformation (7.5) infers that

4φ3

[

q−n, aqn, b, c

e, f, g
; q, q

]

=
(t1t3, t1t2; q)nq

−(n
2
)

(t2t4, t3t4; q)n
4φ3

[

q−n, t1t2t3t4q
n−1, t1z, t1/z

t1t4, t1t3, t1t2
; q, q

]

.

Now, replacing n by k and N by n in (3.1) we get (3.3) after simplification. Clearly (3.4) is the

limit n → ∞ case of (3.3).
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We can also derive a transformation of Ismail-Rahman-Suslov [10, Theorem 5.3] from Theo-

rem 2.6.

Theorem 3.3 (Ismail-Rahman-Suslov). We have

(α,αab/q; q)∞
(αa, αb; q)∞

3φ2

[

q/a, q/b, s

st, αc
; q, αabct/q2

]

(3.5)

=

∞
∑

n=0

(1− αq2n)(αabc/q2)n(α, q/a, q/b, q/c; q)n
(q, αa, αb, αc; q)n

3φ2

[

q−n, αqn, t

st, q/c
; q, q

]

.

Proof. In (2.8), setting p = 3 and substituting a → α, a1 → q/a, a2 → q/b, e → αqgh/dc,

δ → αab/q and u = 1 we can sum the 2φ1 by the Gauss sum (7.1) and obtain

(α,αab/q; q)∞
(αa, αb; q)∞

4φ3

[

q/a, q/b, g, h

c, d, αqgh/dc
; q, αab/q

]

(3.6)

=
∞
∑

n=0

(1− αq2n)(−1)nq(
n

2
)(αab/q)n(α, q/a, q/b; q)n

(q, αa, αb; q)n
4φ3

[

q−n, αqn, g, h

d, c, αqgh/dc
; q, q

]

.

By Sears’ transformation (7.5)

4φ3

[

q−n, αqn, g, h

d, c, αqgh/dc
; q, q

]

=
(cq−n/α, q1−ngh/dc; q)n

(c, αqgh/dc; q)n
(αqn)n

×4φ3

[

q−n, αqn, d/g, d/h

d, αq/c, dc/gh
; q, q

]

.(3.7)

Now, plugging (3.7) into (3.6) and substituting g → s, d → st, c → αc we obtain

(α,αab/q; q)∞
(αa, αb; q)∞

4φ3

[

q/a, q/b, s, h

st, αc, qh/ct
; q, αab/q

]

=
∞
∑

n=0

(1− αq2n)(αabc/q2)n(α, q/a, q/b, q/c; q)n
(q, αa, αb, αc; q)n

(q1−nh/αtc; q)n
(qh/tc; q)n

(αqn)n(3.8)

× 4φ3

[

q−n, αqn, t, st/h

st, q/c, αct/h
; q, q

]

.

Now, replace h by q−m, for a positive integer m, then let m → ∞ and apply Tannery’s theorem.

The result is (3.5).

When st = q/a, the 3φ2 at the left-hand side of (3.5) reduces to a 2φ1, which can be summed

by (7.1) and we get the following summation formula,

∞
∑

n=0

(1− αq2n)(αabc/q2)n(α, q/a, q/b, q/c; q)n
(q, αa, αb, αc; q)n

3φ2

[

q−n, αqn, t

q/a, q/c
; q, q

]

(3.9)

=
(α,αab/q, αbc/q, αact/q; q)∞
(αa, αb, αc, αabct/q2 ; q)∞

.

Applying the transformation (7.6) to the above 3φ2 we obtain another result of Ismail-Rahman-

Suslov [10, Theortem 5.1].
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Corollary 3.4 (Ismail-Rahman-Suslov). We have

∞
∑

n=0

(1− αq2n)(αabc/q2)n(α, q/a, q/b, q/c; q)n
(q, αa, αb, αc; q)n

3φ2

[

q−n, αqn, t

q/a, q/c
; q, q

]

(3.10)

=
(α,αab/q, αbc/q, αact/q; q)∞
(αa, αb, αc, αabct/q2 ; q)∞

.

Ismail-Rahman-Suslov derived the above two results from their main theorem [10, Theortem 1.1],

which exresses a double sum as a linear combination of two 5φ4 sums. We notice that if we make

the sustitution (a, b, c, d, e, f) → (α, q/b, q/c, q/d, q, α) in their Theorem 1.1, then qa/ef = 1,

which annihilates the factor in front of the first 5φ4 and reduces the second 5φ4 to 1 in [10, (1.4)],

and we obtain immediately the following remarquable extension of (3.10).

Theorem 3.5.

∞
∑

n=0

(1− αq2n)(αbcd/q2)n(α, q/b, q/c, q/d; q)n
(q, αb, αc, αd; q)n

4φ3

[

q−n, αqn, g, h

q/b, q/c, αbcgh/q
; q, q

]

(3.11)

=
(α,αbd/q, αcd/q, αbcg/q, αbch/q, αbcdgh/q2 ; q)∞
(αb, αc, αd, αbcgh/q, αbcdg/q2 , αbcdh/q2; q)∞

.

It seems that (3.11) was first published by Liu [16, Theorem 3].

4. Proof of Theorem 2.7 and its applications

4.1. Proof of Theorem 2.7. Choosing p = 3, u = 1, δ = αa1a2/q,

a1 = (q/t1)e
iθ, a2 = (q/t1)e

−iθ, e = αqgh/cd

in Theorem 2.5, we can sum the p−1φp−2 by the q-Gauss sum (7.1) and rewrite (2.8) as

(αq, αq/t21; q)∞
h(cos θ;αq/t1)

4φ3

[

t1e
iθ, t1e

−iθ, g, h

c, d, αqgh/dc
; q, αq/t21

]

(4.1)

=

∞
∑

n=0

(1− αq2n)(−1)nq(
n

2
)(αq/t21)

n(α, t1e
iθ, t1e

−iθ; q)n
(1− α)(q, αqeiθ/t1, αqe−iθ/t1; q)n

4φ3

[

q−n, αqn, g, h

c, d, αqgh/dc
; q, q

]

.

It is clear that the series at the left-hand side is convergent if |αq/t21| < 1. The convergence of the

right-hand side can be justified as follows: if |h| < |g|, then one can show (see [14, (1.11)]) that

the terminate 4φ3 series has the asymptotic formula

4φ3

[

q−n, aqn, g, h

c, d, aqgh/dc
; q, q

]

∼
(h, d/g, c/g, qah/dc; q)∞gn

(c, d, h/g, aqgh/dc; q)∞
, n → ∞,(4.2)

N.B. This formula is also given in [10, (1.5)] witout the factor (h/g; q)∞ in the denominator.

Hence, in view of the factor q(
n

2
), the series on the right-hand side of (4.1) converges if |g| 6= |h|.

Hence a sufficient condition of convergence of the infinite series on the two sides of (4.1) is

|g| 6= |h|, |αq/t21| < 1.(4.3)
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Since αq/t1 = t1t2t3t4t5, we have h(cos θ; t1t2t3t4t5) = (αqeiθ/t1, αqe
−iθ/t1; q)∞ and

h(cos θ; t1t2t3t4t5)(t1e
iθ, t1e

−iθ; q)n
h(cos θ; t1)(αqeiθ/t1, αqe−iθ/t1; q)n

=
h(cos θ; t1t2t3t4t5q

n)

h(cos θ; t1qn)
.

Multiplying both sides of (4.1) by

h(cos 2θ; 1)h(cos θ; t1t2t3t4t5)

h(cos θ; t1, t2, t3, t4, t5)

and integrating over 0 ≤ θ ≤ π, we have
∫ π

0

h(cos 2θ; 1)

h(cos θ; t1, t2, t3, t4, t5)
4φ3

[

t1e
iθ, t1e

−iθ, g, h

c, d, αqgh/dc
; q, αq/t21

]

dθ(4.4)

=
1

(αq, αq/t21; q)∞

∞
∑

n=0

(1− αq2n)(−1)nq(
n

2
)(αq/t21)

n(α; q)n
(1− α)(q; q)n

4φ3

[

q−n, αqn, g, h

c, d, αqgh/dc
; q, q

]

.

×

∫ π

0

h(cos 2θ; 1)h(cos θ; t1t2t3t4t5q
n)

h(cos θ; t1qn, t2, t3, t4, t5)
dθ.

The last integral can be evaluated by rescaling t1 → t1q
n in (1.7),

∫ π

0

h(cos 2θ; 1)h(cos θ; t1t2t3t4t5q
n)

h(cos θ; t1qn, t2, t3, t4, t5)
dθ =

2π(t1t2t3t4, t1t2t3t5, t1t2t4t5, t1t3t4t5, t2t3t4t5; q)∞
(q; q)∞

∏

1≤r<s≤5(trts; q)∞

×
(t1t2, t1t3, t1t4, t1t5; q)n

(t1t2t3t4, t1t2t3t5, t1t2t4t5, t1t3t4t5; q)n
.

Substituting this in (4.4), we obtain (2.10).

4.2. Nassrallah-Rahman integrals. We show how to get Nassrallah-Rahman integral (1.6)

from our Theorem 2.7 . Let h = c and g → ∞ in (2.10), we have

∫ π

0

h(cos 2θ; 1)

h(cos θ; t1, t2, t3, t4, t5)
2φ1

[

t1e
iθ, t1e

−iθ

d
; q, d/t21

]

dθ(4.5)

=
2π(t6/t1, t6t1, t1t3t4t5, t1t2t3t5, t1t2t3t4, t1t2t4t5; q)∞

∏

1≤r<s≤5(trts; q)∞(q, t21t2t3t4t5; q)∞

×

∞
∑

n=0

(1− αq2n)

(1− α)

(α, t1t2, t1t3, t1t4, t1t5; q)n
(q, t1t2t3t4, t1t2t3t5, t1t2t4t5, t1t3t4t5; q)n

× (−1)nq(
n

2
)(t2t3t4t5)

n
2φ1

[

q−n, αqn

d
; q, d/α

]

.

Now, the above two 2φ1 series can be summed by q-Gauss summation (7.1) and q-Chu-Vandermonde

sum (7.3), respectively,

2φ1

[

t1e
iθ, t1e

−iθ

d
; q, d/t21

]

=
(d/t1e

iθ, d/t1e
−iθ; q)∞

(d, d/t21; q)∞
,

2φ1

[

q−n, αqn

d
; q, d/α

]

=
(αq/d; q)n
(d; q)n

(−d/αq)nq−(
n

2
).

Plugging these into (4.5), and then taking d → t6t1, we get the Nassrallah-Rahman integral (1.6).
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In the following, we record some other well-known special cases of Theorem 2.7.

• Askey-Wilson integral When t5 = 0, Theorem 2.7 immediately reduces to the Askey-

Wilson integral (1.5).

• Rahman Integral (1.7) When c = g and h = d in (2.10), in the left hand, the 4φ3 series

reduces to a 2φ1 series which can be summed by using q-Gauss summation (7.1),

2φ1

[

t1e
iθ, t1e

−iθ

αq
; q, t2t3t4t5

]

=
(t1t2t3t4t5e

iθ, t1t2t3t4t5e
−iθ; q)∞

(αq, t2t3t4t5; q)∞
.

On the other hand, using q-Chu-Vandermonde sums (7.2), we have

2φ1

[

q−n, αqn

αq
; q, q

]

=
(q1−n; q)n
(αq; q)n

(αqn)n,

which is zero for n ≥ 1. After some simplification, this integral reduces to (1.7).

• Ismail integral Ismail [8, p. 442] uses the following integral to derive Nassrallah-Rahman

formula via analytic prolongation.
∫ π

0

h(cos 2θ; 1)(αeiθ , αe−iθ; q)n
h(cos θ; , t1, t2, t3, t4)

dθ =
2π(α/t4, αt4; q)n(t1t2t3t4; q)∞
(q; q)∞

∏

1≤r<s≤4(trts; q)∞

× 4φ3

[

q−n, t1t4, t2t4, t3t4

αt4, t1t2t3t4, q
1−nt4/α

; q, q

]

.(4.6)

When h = c, g → ∞, d = t6t1 and t1 ↔ t5 in (2.10), in the right hand side, the inner

summation can be written as

8W7

(

t25t1t2t3t4/q, t1t5, t2t5, t5t3, t5t4, t1t2t3t4t5/t6 ; q, t6/t5

)

.(4.7)

Replacing a = t25t1t2t3t4/q, b = t5t4, c = t1t5, d = t2t5, e = t5t3 and f = t1t2t3t4t5/t6 into

8W7 transformation (7.10), the above factor is equal to

(t25t1t2t3t4, t5t4, t1t6, t2t6, t3t6, t1t2t3t4; q)∞
(t2t3t4t5, t1t3t4t5, t1t2t4t5, t5t6, t1t2t3t6, t6/t5; q)∞

(4.8)

× 8W7

(

t1t2t3t6/q, t2t3, t1t3, t1t2, t6/t4, t6/t5 ; q, t4t5

)

.

Applying 8W7 transformation (7.11) once more (with a = t1t2t3t6/q, b = t2t3, c = t1t3,

d = t1t2, e = t6/t4, f = t6/t5), the 8W7 series of (4.8) is equal to

(t1t2t3t6, t1t2t3t4t5/t6, t4t6, t5t6; q)∞
(t1t2t3t4, t1t2t3t5, t26, t4t5; q)∞

(4.9)

× 8W7

(

t26/q, t6/t1, t6/t2, t6/t3, t6/t4, t6/t5; q, t1t2t3t4t5/t6
)

.

Replacing (4.8) and (4.9) into (4.7), we have another form of Nassrallah-Rahman integral

(1.6),

∫ π

0

h(cos 2θ; 1)h(cos θ; t6)

h(cos θ; t1, t2, t3, t4, t5)
dθ =

2π(
∏5

j=1(t6tj; q)∞(t1t2t3t4t5/t6; q)∞

(q, t26; q)∞
∏

1≤r<s≤5(trts; q)∞

× 8W7

(

t26/q, t6/t1, t6/t2, t6/t3, t6/t4, t6/t5 ; q, t1t2t3t4t5/t6

)

,
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Taking t1 = t6q
n in the above result, we have

(4.10)

∫ π

0

h(cos 2θ; 1)(t6e
iθ, t6e

−iθ; q)n
h(cos θ; t2, t3, t4, t5)

dθ

=
2π(t2t3t4t5q

n; q)∞(t26q
n; q)∞

∏5
j=2(tjt6; q)∞

(q, t26; q)∞
∏5

j=2(tjt6q
n; q)∞

∏

2≤r<s≤5(trts; q)∞

× 8W7

(

t26/q, q
−n, t6/t2, t6/t3, t6/t4, t6/t5 ; q, t2t3t4t5q

n
)

.

By using Watson’s transformation(a = t26/q, b = t6/t2, c = t6/t3, d = t6/t4 and e = t6/t5

in (7.9)), the 8W7 series can be reduced to

8W7

(

t26/q, q
−n, t6/t2, t6/t3, t6/t4, t6/t5 ; q, t2t3t4t5q

n
)

=
(t26, t4t5; q)n
(t4t6, t5t6; q)n

4φ3

[

q−n, t6/t4, t6/t5, t2t3

t2t6, t3t6, q
1−n/t4t5

; q, q

]

=
(t26, t4t5, t6/t2, t2t3t4t5; q)n
(t4t6, t5t6, t3t6, t4t5; q)n

4φ3

[

q−n, t2t3, t2t4, t2t5

t2t6, t2t3t4t5, q
1−nt2/t6

; q, q

]

.

The second step is obtained by Sears’ transformation (7.5)( a = t2t3, b = t6/t4, c = t6/t5,

d = t2t6, e = t3t6, f = q1−n/t4t5). Replacing the above formula into (4.10), we get (4.6)

after taking t2 ↔ t4, t1 ↔ t5 and t6 → α.

• Ismail-Stanton-Viennot integral It is proved in [13] that
∫ π

0

h(cos 2θ; 1)

h(cos θ; t1, t2, t3, t4, t5)
dθ =

2π(t1t2t3t4, t2t3t4t5, t1t5; q)∞
(q; q)∞

∏

1≤r<s≤5(trts; q)∞
(4.11)

× 3φ2

[

t2t3, t2t4, t3t4

t1t2t3t4, t2t3t4t5
; q, t1t5

]

,

where max{|t1|, |t2|, |t3|, |t4|, |t5||} < 1.

When g = 1, the integral in (2.10) becomes
∫ π

0

h(cos 2θ; 1)

h(cos θ; t1, t2, t3, t4, t5)
dθ =

2π(t1t2t3t4, t1t2t3t5, t1t2t4t5, t1t3t4t5; q)∞
(q, αq; q)∞

∏

1≤r<s≤5(trts; q)∞
(4.12)

×

∞
∑

n=0

(1− αq2n)

(1− α)

(α, t1t2, t1t3, t1t4, t1t5; q)n(−1)nq(
n

2
)(t2t3t4t5)

n

(q, t1t2t3t4, t1t2t3t5, t1t2t4t5, t1t3t4t5; q)n
.

In the right-hand side of (4.12), the summation becomes

∞
∑

n=0

(α,α1/2, α−1/2, t1t2, t1t3, t1t4, t1t5; q)n
(q, α1/2, α−1/2, t1t2t3t4, t1t2t3t5, t1t2t4t5, t1t3t4t5; q)n

(−1)nq(
n

2
)(t2t3t4t5)

n.

Setting a = α, b = t1t2, c = t1t3, d = t1t4, e = t1t5 and N → 0 in Watson’s transformation

(7.9), the above factor is equal to

(αq, t2t3; q)∞
(t1t2t3t5, t1t2t3t4; q)∞

3φ2

[

t1t4, t1t5, t4t5

t1t3t4t5, t1t2t4t5
; q, t2t3

]

.(4.13)
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Using 3φ2 transformation (7.8)(a = t1t4, b = t1t5, c = t4t5, d = t1t3t4t5, e = t1t2t4t5), the

above 3φ2 series is equal to

(t1t5, t2t3t4t5, t1t2t3t4; q)∞
(t1t3t4t5, t1t2t4t5, t2t3; q)∞

3φ2

[

t2t4, t3t4, t2t3

t2t3t4t5, t1t2t3t4
; q, t1t5

]

.(4.14)

Substituting (4.13) and (4.14) into the integral (4.12), we get (4.11).

Remark 4.1. In the next section, we will give another proof of (4.11) as an application of (5.1).

4.3. Two integrals of Liu and Zhang-Wang. When h = d, c = αu and g = αuv/q, the 3φ2

series at the right-hand side of (2.10) can be summed by q-Pfaff-Saalschütz sum (7.4). Thus we

recover Liu’s result [17, Theorem 1.6].

Theorem 4.2 (Liu).

∫ π

0

h(cos 2θ; 1)

h(cos θ; t1, t2, t3, t4, t5)
3φ2

[

αuv/q, t1e
iθ, t1e

−iθ

αu, αv,
; q; t2t3t4t5

]

dθ(4.15)

=
2π(t1t2t3t4, t1t2t3t5, t1t2t4t5, t1t3t4t5; q)∞

(q, αq; q)∞
∏

1≤r<s≤5(trts; q)∞

×
∞
∑

n=0

(1− αq2n)

(1− α)

(α, q/u, q/v, t1t2, t1t3, t1t4, t1t5; q)n(−1)nq(
n

2
)(α2uv/t21)

n

(q, t1t2t3t4, αu, αv, t1t2t3t5, t1t2t4t5, t1t3t4t5; q)n
,

where αq = t21t2t3t4t5 and max{|t1|, |t2|, |t3|, |t4|, |t5|} < 1.

Taking u = t1g/α and v = t1t5/α, then (4.15) reduces to

∫ π

0

h(cos 2θ; 1)

h(cos θ; t1, t2, t3, t4, t5)
3φ2

[

g/t2t3t4, t1e
iθ, t1e

−iθ

gt1, t1t5
; q, t2t3t4t5

]

dθ(4.16)

=
2π(t1t2t3t4, t1t2t3t5, t1t2t4t5, t1t3t4t5; q)∞

(q, αq; q)∞
∏

1≤r<s≤5(trts; q)∞

×
∞
∑

n=0

(1− αq2n)

(1− α)

(α, t1t2, t1t3, t1t4, αq/gt1; q)n
(q, gt1, t1t2t3t5, t1t2t4t5, t1t3t4t5; q)n

(−1)nq(
n

2
)(gt5)

n.

Using the limit N → ∞ case of Watson’s transformation (7.9) with a = α, b = t1t2, c = t1t3,

d = t1t4, e = αq/gt1, the summation at the right-hand side of (4.16) is transformed to

(t21t2t3t4t5, g/t4; q)∞
(t1t2t3t5, gt1; q)∞

3φ2

[

t4t5, t1t4, αq/gt1

t1t2t4t5, t1t3t4t5
; q, g/t4

]

.

Hence (4.16) is equivalent to

∫ π

0

h(cos 2θ; 1)

h(cos θ; t1, t2, t3, t4, t5)
3φ2

[

g/t2t3t4, t1e
iθ, t1e

−iθ

gt1, t1t5
; q, t2t3t4t5

]

dθ(4.17)

=
2π(t1t2t3t4, t1t2t4t5, t1t3t4t5, g/t4; q)∞

(q, gt1; q)∞
∏

1≤r<s≤5(trts; q)∞
3φ2

[

t4t5, t1t4, αq/gt1

t1t2t4t5, t1t3t4t5
; q, g/t4

]

.
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Applying the 3φ2 transformations (7.7) and (7.8) to the above two 3φ2 in (4.17), repectively, we

obtain

3φ2

[

g/t2t3t4, t1e
iθ, t1e

−iθ

gt1, t1t5
; q, t2t3t4t5

]

=
(t1t2t3t4t5/g, gt5; q)∞
(t1t5, t2t3t4t5; q)∞

3φ2

[

g/t2t3t4, ge
iθ , ge−iθ

gt1, gt5
; q, t1t2t3t4t5/g

]

,

and

3φ2

[

t4t5, t1t4, αq/gt1

t1t3t4t5, t1t2t4t5
; q, g/t4

]

=
(αq/gt1, gt1, gt5; q)∞

(t1t3t4t5, t1t2t4t5, g/t4; q)∞
3φ2

[

g/t2, g/t3, g/t4

gt1, gt5
; q, αq/gt1

]

.

Plugging these into (4.17) and taking t1 = a, t2 = b, t3 = c, t4 = d, t5 = f , we get the following

integral formula of Zhang and Wang [21, Theorem 4.3].

Theorem 4.3 (Zhang and Wang).

(4.18)

∫ π

0

h(cos 2θ; 1)

h(cos θ; a, b, c, d, f)
3φ2

[

g/bcd, geiθ , ge−iθ

ag, fg
; q,

abcdf

g

]

dθ

=
2π(abcd, bcdf ; q)∞

(q, ab, ac, ad, bc, bd, cd, bf, cf, df ; q)∞
3φ2

[

g/b, g/c, g/d

af, fg,
; q,

abcdf

g

]

,

provided |abcdf/g| < 1.

5. Ismail-Stanton’s generating function of Askey-Wilson polynomials

Ismail and Stanton [12] use the orthogonality relation of Askey-Wilson polynomials and (4.11)

to prove the following generating function of Askey-Wilson polynomials.

Theorem 5.1 (Ismail-Stanton). The Askey-Wilson polynomials have the generating function

∞
∑

n=0

Pn(x, t|q)cn(t, b) =
1

(beiθ, be−iθ)∞
,(5.1)

where

cn(t, b) =
bn(t2t3t4bq

n; q)∞
(q, t1t2t3t4qn−1; q)nΠ4

j=2(tjb; q)∞
3φ2

[

t2t3q
n, t2t4q

n, t3t4q
n

t1t2t3t4q
2n, t2t3t4bq

n
; q, t1b

]

.(5.2)

Prior to Ismail-Stanton’s work, Kim and Stanton [15] proved the following special case of (5.1).

Proposition 5.2 (Kim-Stanton). We have the following generating function of continuous dual

q-Hahn polynomials Pn(x; 0, t2, t3, t4|q),

(5.3)

∞
∑

k=0

Pk(x; 0, t2, t3, t4|q)

(q, bt2t3t4; q)k
bk =

(bt2, bt3, bt4; q)∞
(bt2t3t4, beiθ, be−iθ; q)∞

.
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Kim and Stanton’s idea is to use the ”bootstrapping method”: they derive (5.3) from the

generating function of Al-Salam-Chihara polynomials Pn(x; 0, 0, t3, t4|q) by using the connection

formula, [4, 8],

Pn(x;A, t2, t3, t4|q)

(q, t2t3, t2t4, t3t4; q)n
=

n
∑

k=0

Pk(x, t|q)(At2t3t4q
n−1; q)k

(q, t2t3, t2t4, t3t4, t1t2t3t4qk−1; q)k
×

tn−k
1 (A/t1; q)n−k

(q, t1t2t3t4q2k; q)n−k
.(5.4)

We show that the same idea works for Ismail-Stanton’s formula (5.1), that is, one can derive (5.1)

from (5.3) by using (5.4).

Proof of Theorem 5.1 Letting A = 0 and summing the two sides of (5.4), multiplied with
(t2t3,t2t4,t3t4;q)nbn

(bt2t3t4;q)n
, over n ≥ 0, we obtain

∞
∑

n=0

Pn(x; 0, t2, t3, t4|q)

(q, bt2t3t4; q)n
bn =

∞
∑

n=0

bn

(q, bt2t3t4; q)n

n
∑

k=0

Pk(x, t|q)
(q, t2t3, t2t4, t3t4; q)n
(q, t2t3, t2t4, t3t4; q)k

×
tn−k
1

(t1t2t3t4qk−1; q)k(q, t1t2t3t4q2k; q)n−k

=
∞
∑

k=0

∞
∑

n=0

bn+kPk(x, t|q)

(bt2t3t4; q)n+k

(t2t3, t2t4, t3t4; q)n+k

(q, t2t3, t2t4, t3t4; q)k

×
tn1

(t1t2t3t4qk−1; q)k(q, t1t2t3t4q2k; q)n

=
∞
∑

k=0

bkPk(x, t|q)

(q, bt2t3t4, t1t2t3t4qk−1; q)k

∞
∑

n=0

(t2t3q
k, t2t4q

k, t3t4q
k; q)n(bt1)

n

(q, t1t2t3t4q2k, bt2t3t4qk; q)n
.

In view of (5.3), we can rewrite the above equation as:

(bt2, bt3, bt4; q)∞
(bt2t3t4, beiθ, be−iθ; q)∞

=

∞
∑

k=0

bkPk(x, t|q)

(q, bt2t3t4, t1t2t3t4qk−1; q)k
× 3φ2

[

t2t3q
k, t2t4q

n, t3t4q
k

t1t2t3t4q
2k, bt2t3t4q

k
; q, bt1

]

.

The result follows then after some simplification.

As an application of (5.1), we give another proof of Ismail-Stanton-Viennot integral (4.11).

Another Proof of (4.11) In view of (5.1) with b → t5 the left-hand side of (4.11) is

∞
∑

n=0

cn(t, t5)
(t1t4, t1t3, t1t4; q)n

tn1

n
∑

k=0

(q−n, t1t2t3t4q
n−1; q)k

(q, t1t2, t1t3, t1t4; q)k
qk

∫ π

0

h(cos 2θ; 1)(t1e
iθ, t1e

−iθ; q)k
h(cos θ; t1, t2, t3, t4)

dθ.

The inner integral can be evaluated by replacing t1 → t1q
k in the Askey-Wilson integral (1.5),

2π(t1t2t3t4; q)∞
(q; q)∞

∏

1≤r<s≤4(trts; q)∞

∞
∑

n=0

cn(t, t5)
(t1t4, t1t3, t1t4; q)n

tn1
2φ1

[

q−n, t1t2t3t4q
n−1

t1t2t3t4
; q, q

]

.(5.5)

The inner 2φ1 series can be summed by q-Chu-Vandemonde (7.2)

2φ1

[

q−n, t1t2t3t4q
n−1

t1t2t3t4
; q, q

]

=
(q1−n; q)n(t1t2t3t4q

n−1)n

(t1t2t3t4; q)n
.
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Since (q1−n; q)n = 0 for n ≥ 1, (5.5) reduces to

2π(t1t2t3t4; q)∞
(q; q)∞

∏

1≤r<s≤4(trts; q)∞
c0(t, t5),

which is clearly equal to the right-hand side of (4.11) in view of (5.2).

6. More transformation formulae

Ismail-Stanton [12, §5-6] proved the following expansion formula:

(6.1)

∞
∑

n=0

(az, a/z; q)n
(q; q)n

AnBnδ
n =

∞
∑

n=0

(−δ)nq(
n

2
)

(q, Cqk−1; q)k

×

n
∑

k=0

(q−n, Cqn−1, az, a/z; q)kq
kAk

(q; q)k

∞
∑

r=0

δrBr+n

(q, Cq2n; q)r
.

They also derive several interesting results from the above identity. We note that (6.1) follows

from Proposition 2.3. Indeed, substituting βn → Anun

(q,α,β;q)n
, δn → (α, β; q)nBnδ

n and b → γ in

(2.6) yields the following result.

Theorem 6.1.

(6.2)

∞
∑

n=0

AnBn
(δu)n

(q; q)n
=

∞
∑

n=0

(1− aq2n)(a; q)n(a/γ; q)n(γ/a)
n

(1− a)(γq; q)n(q; q)n

×
n
∑

k=0

(1− γq2k)(aqn; q)k(q
−n; q)k

(1− γ)(γqn+1; q)k(γq1−n/a; q)k

(uq)kAk

(q, α, β; q)k

×

∞
∑

r=0

(γ/a; q)r(γ; q)r+2n(α, β; q)r+nδ
r+nBr+n

(q; q)r(aq; q)r+2n
.

Letting γ = 0 and An → An(b, c; q)n, the above formula reduces to

(6.3)
∞
∑

n=0

(b, c; q)n
(q; q)n

AnBn(δu)
n =

∞
∑

n=0

(a; q)n(1− aq2n)(−1)nq(
n

2
)

(q; q)n(1− a)(aq; q)2n

×
n
∑

k=0

(q−n, aqn, b, c; q)k
(q, α, β; q)k

(uq)kAk

∞
∑

r=0

δr+nBr+n(α, β; q)n+r

(q, aq2n+1; q)r
.

Obviously (6.3) reduces to (6.1) when α = β = 0, b → az, c → a/z, u → 1 and a → C/q.

Verma [20] (see also [7, p. 84]) proved the following important expansion formula

∞
∑

n=0

AnBn
(xw)n

(q; q)n
(6.4)

=
∞
∑

n=0

(−x)n

(q, γqn; q)n
q(

n

2
)

n
∑

j=0

(q−n, γqn; q)j
(q, α, β; q)j

(wq)rAj

∞
∑

k=0

(α, β; q)n+k

(q, γq2n+1; q)k
xkBk+n.

We note that the above formula corresponds to (6.3) with b = c = 0, a = γ, u = w and δ = x.

Besides, the special βn = (g,h,y;q)n
(q,e,f,t;q)n

un case of Proposition 2.5 gives the following result.
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Theorem 6.2. Let δ, u, y, h, t, e, f , g, bi, ai (i ∈ N) be any complex numbers. Then the

following formal power series in ζ and u holds

p+1φp

[

a1, . . . , ap−1, y, h, g

t, e, f, b1, . . . , bp−1
; q, uδ

]

=
∞
∑

n=0

(1− aq2n)(a, a/b, a1, . . . , ap−1; q)n(bδa
−1)n(b; q)2n

(1− a)(bq, q, b1, . . . , bp−1; q)n(aq; q)2n

×8φ7

[

b, b1/2q,−b1/2q, y, h, g, aqn, q−n

b1/2,−b1/2, bqn+1, bq1−n/a, t, e, f
; q, qu

]

p+1φp

[

a1q
n, . . . , ap−1q

n, b/a, bq2n

b1q
n, . . . , bp−1q

n, aq2n+1
; q, δ

]

.

Finally, we record two special cases of Theorem 6.2 when the above 8φ7 is summable in closed

form.

• Taking u = 1, t = bq/y, e = bq/h, f = bq/g and b2q = ayhg in Theorem 6.2, the 8φ7 series

can be summed by Jackson’s summation (7.13)

(6.5) p+1φp

[

a1, . . . , ap−1, y, h, g

bq/y, bq/h, bq/g, b1, . . . , bp−1
; q, δ

]

=

∞
∑

n=0

(1− aq2n)(a, a/b; q)n(a1, . . . , ap−1; q)n(b; q)2n
(1− a)(q; q)n(b1, . . . , bp−1)n(aq; q)2n

×
(bq/gh, bq/yg, bq/gy; q)n

(bq/y, bq/h, bq/g, by/ygh; q)n
p+1φp

[

a1q
n, . . . , ap−1q

n, b/a, bq2n

b1q
n, . . . , bp−1q

n, aq2n+1
; q, δ

]

.

• Taking y = t, h = e, u = b/ag and f = bq/g in Theorem 6.2, the 6φ5 series can be summed

by (7.12)

(6.6) p+1φp

[

a1, . . . , ap−1, g

bq/g, b1, . . . , bp−1
; q, bδ/ag

]

=
∞
∑

n=0

(1− aq2n)(a, a1, . . . , ap−1, ag/b; q)n(bgδ/a)
n(b; q)2n

(1− a)(q, b1, . . . , bp−1, bq/g; q)n(aq; q)2n

× p+1φp

[

a1q
n, . . . , ap−1q

n, b/a, bq2n

b1q
n, . . . , bp−1q

n, aq2n+1
; q, δ

]

.
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7. Appendix

The following formulae are taken from [7, Appendices II and III].

The q-Gauss sum,

2φ1

[

a, b

c
; q, c/ab

]

=
(c/a, c/b; q)∞
(c, c/ab; q)∞

, (|c/ab| < 1).(7.1)

The q-Chu-Vandermonde sums,

2φ1

[

a, q−n

c
; q, q

]

=
(c/a; q)na

n

(c; q)n
,(7.2)

and, reversing the order of summation,

2φ1

[

a, q−n

c
; q, cqn/a

]

=
(c/a; q)n
(c; q)n

.(7.3)

The q-Pfaff-Saalschütz sum,

3φ2

[

a, b, q−n

c, abq1−n/c
; q, q

]

=
(c/a, c/b; q)n
(c, c/ab; q)n

.(7.4)

Sears’ transformation,

4φ3

[

a, b, c, q−n

d, e, f
; q, q

]

=
(e/a, f/a; q)na

n

(e, f ; q)n
4φ3

[

a, d/b, d/c, q−n

d, aq1−n/e, aq1−n/f
; q, q

]

,(7.5)

where def = abcq1−n.

Transformations of finite 3φ2 series (by sending c, f → 0 in (7.5)),

3φ2

[

q−n, a, b

d, e
; q, q

]

=
(e/a; q)n
(e; q)n

an 3φ2

[

q−n, a, d/b

d, aq1−n/e
; q, bq/e

]

.(7.6)

Transformations of 3φ2 series,

3φ2

[

a, b, c

d, e
; q, de/abc

]

=
(e/a, de/bc; q)∞
(e, de/abc; q)∞

3φ2

[

a, d/b, d/c

d, de/bc
; q, e/a

]

(7.7)

=
(b, de/ab, de/bc; q)∞
(d, e, de/abc; q)∞

3φ2

[

e/b, d/b, de/abc

de/ab, de/bc
; q, b

]

,(7.8)

where max{|de/abc|, |e/a|, |b|} < 1.

Watson’s transformation,

8φ7

[

a, a1/2q,−a1/2q, b, c, d, e, q−n

a1/2,−a1/2, aq/b, aq/c, aq/d, aq/e, aqn+1
; q,

a2qn+2

bcde

]

(7.9)

=
(aq, aq/de; q)n
(aq/d, aq/e; q)n

4φ3

[

aq/bc, d, e, q−n

aq/b, aq/c, deq−n/a
; q, q

]

.



19

Transformations of very-well-poised 8φ7 series,

8φ7

[

a, a1/2q,−a1/2q, b, c, d, e, f

a1/2,−a1/2, aq/b, aq/c, aq/d, aq/e, aq/f
; q,

a2q2

bcdef

]

(7.10)

=
(aq, b, bcµ/a, bdµ/a, beµ/a, bfµ/a; q)∞
(aq/c, aq/d, aq/e, aq/f, µq, bµ/a; q)∞

× 8φ7

[

µ, µ1/2q,−µ1/2q, aq/bc, aq/bd, aq/be, aq/bf, bµ/a

µ1/2,−µ1/2, bcµ/a, bdµ/a, beµ/a, bfµ/a, aq/b
; q, b

]

(7.11)

=
(aq, aq/ef, λq/e, λq/f ; q)∞
(aq/e, aq/f, λq, λq/ef ; q)∞

× 8φ7

[

λ, λ1/2q,−λ1/2q, λb/a, λc/a, λd/a, e, f

λ1/2,−λ1/2, aq/b, aq/c, aq/d, λq/e, λq/f
; q,

aq

ef

]

,

where λ = a2q/bcd, µ = a3q3/b2cdef and max{|a2q2/bcdef |, |aq/ef |, |b|} < 1.

Rogers’ 6φ5 summation,

6φ5

[

a, a1/2q,−a1/2q, b, c, q−n

a1/2,−a1/2, aq/b, aq/c, aqn+1
; q,

aqn+1

bc

]

=
(aq, aq/bc; q)n
(aq/b, aq/c; q)n

.(7.12)

Jackson’s 8φ7 summation,

8φ7

[

a, a1/2q,−a1/2q, b, c, d, e, q−n

a1/2,−a1/2, aq/b, aq/c, aq/d, aq/e, aqn+1
; q, q

]

=
(aq, aq/bc, aq/bd, aq/cd; q)n
(aq/b, aq/c, aq/d, aq/bcd; q)n

,(7.13)

where a2q = bcdeq−n.
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