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Abstract 

Riemannian geometry is the geometry of bent manifolds. However, as this paper shows, it is 

also the geometry of deformed spaces. Applying Riemannian geometry to deformed zones of a 

3D space enables us to understand General Relativity (GR) almost intuitively, and inspires our 

imagination. 

Space in GR is considered a continuous manifold, bent (curved) by energy/momentum. Both 

Einstein (1933) and Feynman (1963), considered the option of space being a deformed 

continuum rather than a bent (curved) continuous manifold. We, however, consider space to be 

a 3D deformed lattice rather than a bent continuous manifold. The geometry presented in this 

paper is the geometry of this kind of space. 
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1. Introduction 

We relate to space not as a passive static arena for fields and particles but as an active elastic 

entity. The gravitational waves that General Relativity (GR) predicts, and have been observed 

recently, support our understanding. The mathematical objects of GR are n-dimensional 

manifolds in hyper-spaces with more dimensions than n. These are not necessarily the physical 

objects that GR accounts for. Einstein was led to GR by arguments that were un-related to a 

possible elastic 3D space. However, in n-dimensional elastic deformed spaces, Euclidian 

geometry is not valid and we are compelled to use Riemannian geometry. Hence, GR is also 

the theory of our elastic 3D space, as Einstein [1] and Feynman [2] considered, and we are 

convinced [3]. Steane in his recent book “Relativity Made Relatively Easy” [4] elaborates and 

clarifies these points. Rindler [5] uses elastic spaces to enable visualization of bent manifolds, 

whereas Callahan [6] declares: “…in physics we associate curvature with stretching rather 

than bending.”   

We define space density ρ, for an elastic space lattice, as the number of space cells per unit 

volume. The density of an un-deformed, uniform, space is denoted ρ0 . If space is uniform, all 

of its elementary cells are of the same size, and Euclidian geometry is valid.  When the density 

is not uniform, i.e., cells are of different sizes, an internal observer discovers that Euclidian 

geometry is not valid. When this internal observer measures circles, they find an Excess Radius 

δr that differs from zero. This happens since the observer and their yardstick are both deformed 

exactly as the background.  

We show that, at large, the geometry of bent manifolds and deformed spaces is similar. 

However, in certain cases they differ, and these un-noticed differences are sometimes the cause 

of perplexing situations in physics. 
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Note that the term Curvature and Radius of Curvature are used both for manifolds and spaces. 

The following derived equation, (21) in Section 15, is the Gaussian Curvature K at a point P in 

a deformed space. ρ is the space density at the point and   is its gradient:  
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Sections 2 and 3 are introductory sections for those who are not familiar with differential 

geometry. 

2. Intrinsic Curvature at a Point P on a 2D Manifold 

On a manifold a yardstick retains its length, but is bent like the manifold. 

 2D Curved Surfaces in a 3D Euclidian Space 

To obtain the curvature of a two-dimensional surface (manifold) at a point, P, that is intrinsic 

to the surface, consider the length C of a closed path that is the locus of all points that are at the 

same geodesic distance, r from the point.  

For a sphere of radius r0, the above circumference C for small r/r0  , as Fig. (1) shows, is: 
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Here  
2
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1
K =  is a natural definition for the curvature of a sphere of radius r0 . 

By extracting K from (1), we obtain the curvature K and re-define it for a more general case: 
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This K depends only on the intrinsic properties of the metric of the two-dimensional surface 

with no reference to the embedding space. The sign of the curvature is positive if C < 2r, 
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negative if C > 2r, and zero if C = 2. 

 

  

 

 

 

Fig. (1) Curvature of a Sphere 

Note that for a two-dimensional surface (manifold) Gaussian curvature can be defined as: 

( ) ( )
2010 rr

1
K =              (3) 

where (r0)1 and (r0)2 are the radii of the largest and smallest osculating circles of sections formed 

by the corresponding planes perpendicular to a third plane, tangential to the surface at P. If the 

two osculating circles are on the same side of this third plane, we define the curvature as 

positive, and if on opposite sides - as negative. This definition ensures compatibility with the 

definition expressed by equation (2). 

For a saddle surface, see Fig. (3), the two osculating circles at point P in the middle of the saddle 

are on opposite sides of the third tangential plane to the surface at P, and thus the saddle at P 

has a negative curvature. 

 The Excess Radius δr of Curved Manifolds  

The Excess Radius δr of curved manifolds [4], around a point P, see Fig. (2). is:  

 δr ≡ rmeasured – cmeasured /2π .            (4) 
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Fig. (2) Excess Radius 

Measuring distances with an intrinsic local yardstick gives the radius, r(measured) from point P 

to point P’, and the circumference, c(measured), of a circle centered at P passing through P.  

The calculated radius is: 

 rcalculated = cmeasured /2π.            (5) 

 The Gaussian Curvature 

Here rmeasured is notated as simply r. According to [4] equation (10.7), for a 2D bent surface (2D 

manifold) the Gaussian curvature is: 

K= lim
r→0

6δr

r3
               (6) 

See the relation of equation (6) to equation (2):        

Rc is the radius of curvature at the point P on the surface, and:  

K = 1/Rc
2                          (7) 

According to [4], for the case of spherical symmetry, (6) for small r is:  

K ≈ 6δr/r3                         (8) 

For no radial symmetry, K is taken as the geometric mean (average) of the largest and smallest 

curvatures, k1, k2, one for each of the osculating circles; as if we have two separated surfaces.  
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 Gaussian Curvature and the Schwarzschild Metric 

Note [7] that, Rc , the radius of curvature of space in the Schwarzschild solution depends on the 

coordinate distance r from the center of the mass M, and is: 

Rc = rs
-1/2 r3/2             (9) 

where rs = 2GM/c2 is the Schwarzschild radius. 

From (9) we get: 

K = rs/r
3            (10) 

From (8) and (10) we get: 

δr ~ 1/6 rs            (11) 

More on the subject appears in [8]. 

3. Intrinsic Negative Curvature at a Point P on a 2D Manifold - A Saddle  

 

Fig. (3) Saddle-like 2-D Manifold in 3-D Space  

An osculating circle, of radius r, on the saddle around the point P has a longer circumference 

than that of a circle on a flat surface, since the radius wiggles up and down [5]. Therefore, 

according to (4) the Excess Radius δr of our curved manifold is negative. Gaussian curvature 

is: 

K= lim
r→0

6δr

r3
               (6)  

P 
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and hence the saddle is curved negatively K< 0. 

Let us draw a plane tangential to the saddle at P. Perpendicular to this plane; we draw two more 

planes with osculating circles through P from the two sides of the plane tangential to the saddle 

at P. Let rc1 be the radius of an up circle with the smallest radius, and rc2 be the radius of a down 

circle with, also, the smallest radius. In this case [like (3) but with a minus sign]: 

K = −1/(rc1 rc2)              (8) 

If the radii are equal and denoted rc then:  

K = −1/rc
2                          (9) 

4. Intrinsic Positive Curvature in a 2D Deformed Space 

In a deformed space a yardstick does not retain its length, but is contracted or dilated 

(stretched) like its local space. 

 Positive Symmetric Curvature at a Point P 

Consider Fig. (4), in which the circles represent space cells, or that a circle’s diameter represents 

the length of a yardstick. Here, the yardstick at position P is the smallest and from P the 

yardstick increases in size symmetrically. This situation is analogous to a metallic plate, where 

the temperature increases from the center of the surface outwards, and thus the density 

decreases, i.e., the cell size increases. The 2D, inside observer, in Fig. (4), finds that the ratio 

of the circumference C of the circle to the radius r, as measured by the intrinsic yardstick, is:  

C/r < 2π.  

The Excess Radius δr, in this case, is the same as for a curved manifold around a point P:  

 δr ≡ rmeasured – cmeasured /2π .            (4) 

For a positive curved 2D space, as Fig. (3) shows, δr = rmeas - rcal > 0  . 
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rmeasured=8  

cmeasured=36  

c/r = 36/8 = 4.5<2π 

rmeasured > rcalculated  

The Excess Radius 

δr = rmeas - rcal > 0   

 

 

Fig. (4) Positive Curvature    

The 2D observer, therefore, concludes that there are two possibilities, that they live in a two-

dimensional space with a variable density, or on a curved two-dimensional surface “manifold” 

bent in a three-dimensional hyper space. 

The 2D observer cannot imagine a three-dimensional space, but may be able to accept the 

necessary abstraction. In any case, they are not able to decide between the two possibilities just 

by examining their locality.  

 The Gaussian Curvature 

We define the Gaussian curvature in the same way as in Section 2.3: 

K= lim
r→0

6δr

r3
               (6)  

K = 1/Rc
2                          (7) 

Rc is defined as the “radius of curvature” at the point P. Note, however, that the term “radius”, 

in here, does not stand for the radius as measured by an internal or external observer. 

According to [4], for the case of symmetry, (6) for small r gives:  

K ≈ 6δr/r3                         (8) 

P 
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 Asymmetric Positive Curvature at a Point P 

For no radial symmetry, K is taken as the geometric mean (average) of the largest and smallest 

curvatures, k1, k2; as if we have two surfaces with their corresponding excess radii  

δr1 and δr2. A more accurate K should be taken based on the space density around P. 

5. Intrinsic Negative Curvature in a 2D Deformed Space 

 Symmetric Curvature at a Point P 

rmeas = 8 

Cmeas = 64  

= 22.10
r

C
 

rmeas < rcal  

The Excess Radius 

r = rmeas - rcal < 0 

 

Fig. (5) Negative Curvature 

Fig. (5) shows a cell at point P, which is the largest, and from P outwards the cells decrease in 

size. In this case,  2
r

C
 and δr = rmeas - rcal < 0. In this case, according to (6):  

The curvature is negative K < 0. Fig. (4) is analogous to a metal plate, where the temperature 

decreases from the point P outwards, as if the point P is heated with a blow-torch.  

 Asymmetric Curvature at a Point P 

For no radial symmetry, K is taken, with a minus sign, as the geometric mean (average) of the    

excess radii δr1 and δr2. An accurate K should be taken based on the space density around

6. Combined Curvature and its Geometric Mean Radius  

A point P is located in a zone of space, with an approximately symmetric radius of curvature 

RL at P. By the introduction of a mass M at P, space is curved an additional curvature due to 

P 
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the presence of M. Let this symmetric curvature have a radius RS. We can take the overall 

combined curvature at P as: 

K = 1/(RL RS)                                 (12) 

The Geometric Mean Radius of the Combined Curvature is thus: 

Rc = √(RL RS)           (13) 

This understanding is related to the long-standing issue of Dark Matter. In GR central 

acceleration is related to the curvature of space [9]. A star at point P curves space locally around 

it symmetrically. If the star is located at the skirt of a galaxy it is also exposed to the curvature 

of space around the galaxy, due to the non- homogeneous expansion of space around it [10]. 

This exposure contributes an additional general central acceleration, wrongly interpreted as due 

to the presence of additional mater – Dark Mater. The geometric mean of the compound local 

and general accelerations, which is the Milgrom phenomenological equation [10], is related to 

the Geometric Mean Radius of the Compound Curvature.  

7. Examples of Curvature in a 2D Deformed Space 

 Positive Curvature  

To measure circles around a point P, Fig. (3), we take the normalized density at P as ρ(0) =1. 

Assuming radial symmetry, the density for external observers is ρ(r). Let dr’ be the yardstick’s 

length for an internal observer and dr for the external observer. These dr’ and dr are related by:  

dr’= dr/ρ(r).  

At P these yardsticks are equal since we have chosen ρ(0) =1.  

If, at a distance R from P the density is ρ(R) =1/2, then:  

dr’= dr/ρ(R) = 2dr  
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For external observers the circumference of a circle with radius R is c =2πR, whereas for the 

internal observers it is: 

c’= 2πR(dr/dr’)atR = 2πR ρ(R) = πR.  

The radius of this circle, as measured by internal observers, is:    

R’=∫ dr′
𝑅

0
 = ∫ 1/ρ(r) ∙ dr

𝑅

0
   

and it should be larger than R. If, for example:  

ρ(r) = 1/(1+ r/r0 ) = 1/(1+ r/18)   

then indeed ρ(0) = 1 and, for R= r = 9,   ρ(R) =1/2. The radius R’ is then:   

R’= ∫ (1 + r/18) ∙ dr
R

0
 =|(r +  r2/36| 0

R = 11.25  

Thus the Excess Radius is:  

δR’ = R’− c’/2π = R’−1/2R ~ 11− 4.5 ~ 6.5.  

This criterion, δR’ > 0, for positive curvature, expresses the fact that space around P is 

contracted. 

 Negative Curvature  

If, at a distance R from the origin P, see Fig. (4), the density is ρ(R) =2, then:  

dr’= dr/ρ(R) = ½ dr  

For external observers the circumference of a circle with radius R is c = 2πR, whereas for the 

internal observers it is:  

c’= 2πR(dr/dr’)atR = 2πR ρ(R) = 4πR  

The radius of this circle, as measured by the internal observer, is:  

R’= ∫ dr′
𝑅

0
 = ∫ 1/ρ(r) ∙ dr

𝑅

0
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and it should be smaller than R. If, for example: 

ρ(r) = (1+ r/r0 ) = (1+ r/9)   

then indeed ρ(0) = 1, and for R = r = 9 we get    ρ(R) =2.  The radius R’ is then:  

R’= ∫ 1/(1 + r/9) ∙ dr
R

0
 =|9 ln(1 + r/9)|0

R= 6.24 

Thus the Excess Radius, in this case, is:   

δR’ = R’− c’/2π = R−2R = 6.24−9 ~ − 2.8.  

This criterion, δR’< 0, for negative curvature, expresses the fact that space around p is dilated.  

8. A Saddle  

 

Fig. (6) Saddle-like Elastic 2-D Space  

At point P in the center, see Fig. (6), in 1/4 π direction, the outward dilation of space means that 

the curvature is positive, with a radius of curvature R+. In the 3/4 π direction the outward 

contraction of space means that the curvature is negative, with a radius of curvature R-. 

Thus, we can define the overall curvature K as: 

K = 1/(R+ R-)                                 (14) 

If  R+ − R- > 0  then approximately  K > 0 , and if R+ − R- < 0  then K < 0. 

Note that an accurate definition is related to space density in the all area.  
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9. Intrinsic Curvature at a Point P in a 3D Deformed Space 

 

 

P 

 

Fig. (7) Three-dimensional Positive Curvature 

Fig. (7) shows a small cell located at point P, and cells of increasing size radiating from P with 

spherical symmetry. If we measure the circumference of a great circle whose center is P, in 

any direction, a measurement of the Excess Radius yields:  

r = rmeas - rcal > 0 

Measurements of circumferences and radii can be taken around any point inside the sphere. But 

for any point, except point P in Fig, (7), there is no symmetry. 

For a deformed 3D space with spherical symmetry around P the Gaussian curvature at P is also 

expressed by equation (2).  

For the case of no symmetry, we have to determine the degree of deformation of circles around 

point P, in three orthogonal planes through P. For each of the orthogonal planes we have to 

determine the largest and smallest curvatures, k1, k2, called the principle curvatures. Thus to 

specify a deformed three-dimensional space around a point P we need 3 x 2 numbers. The 

average of these six principle curvatures is the average Gaussian curvature of the deformed 

space at the locality of P. 

According to the above, a complete definition of curvature in close proximity to a point in three-

dimensional space requires six “curvature numbers”. These represent three pairs of curvature 
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numbers for each of the three intersecting planes perpendicular to each other. These curvature 

numbers are components of a symmetric tensor of 2nd rank called the contracted Riemannian 

tensor of curvature, or the Ricci tensor. 

 Geodesics 

Fig. (8) shows the shortest distance between two points, A and B, in a deformed two-

dimensional space. This figure shows that the shortest distance between points A and B for an 

internal observer, with their changing yardstick, is the solid line path that passes through the 

centers of seven cells, and not the “straight” dashed line through A and B, that passes through 

nine cells. 

                                                         

Fig. (8) Geodesics 

The shortest distance between points A and B, solid line, is the geodesic line. There is no 

difficulty in imagining this in three dimensions. 

10. Local versus Global Curvature and the Flat Universe    

If a measurement of the radius and circumference of a circle at any point, on a surface, produces 

the Excess Radius result δr = rmeas - rcal > 0,  the observers will conclude that they live on a finite 

two-dimensional closed surface in a three-dimensional space, and not in a deformed space. 

Thus we realize that curving and deforming are equivalent only locally. 

If space density of the universe is, by and large, uniform, and only changes locally around stars 

and galaxies, then on the scale of the universe, Euclidian geometry is valid. In this case, we can 

A

B
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say that we are living in a Flat Universe. In other words, our universe is curved only locally, 

but not globally. According to observations made by cosmologists our universe is flat. 

Cosmologists assume that the universe is a 3D manifold bent in a hyper-space with an extra 

dimension. Hence, they wonder why, from all possible values, the curvature of the universe 

happens to be zero. 

There is no need to wonder; if we consider ourselves 3D internal observers in a universe whose 

space is 3D and elastic, with local deformations only.  In our motion from place to place, both 

ourselves and our yardstick change. The only way for us to learn about our deformed space is 

thus to use Riemannian geometry. We are part of some cellular design and, in motion, it is the 

design and the energy that moves, not the cells. This is possible if elementary particles are 

not alien to space but simply wavepackets in motion. 

11. Infinite Closed Space 

 

Fig. (9) Infinite Closed Space 

At first sight, space that is both infinite and closed seems a contradiction, but this is not so.  Fig. 

(9) shows, for example, a closed two-dimensional space in a circle of radius R at whose center 

is a cell of finite size.  From this center outwards, the cell size decreases, tending towards zero 
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as they approach the circumference of the circle.  In this case, the number of cells can be infinite, 

while the area they occupy, the area of a circle of radius R, is finite. 

Obviously, this reasoning can also be applied to a three-dimensional sphere, and many other 

examples of an infinite closed space exist. 

12. The Metric, Ricci tensor and General Relativity (GR) 

The metric tensor gij and Ricci tensor Rij appear in the left hand side of the Einstein equation of 

GR (Rindler 2004) [5]: 

Rij− 
1

2
Rgij = 8πG/c4 ∙ Tij            (15) 

A metric tensor represents local deformations, around a given point, of both a continuum and 

a lattice. For a lattice, this representation is legitimate only if the sizes of its cells are orders of 

magnitude smaller than the scale of the deformation in this locality since we are using 

continuous differential equations. An example of such a metric is the Schwarzschild metric [5]. 

A metric tensor can also represent a global deformation like the FRW metric [5].  

The Ricci curvature tensor is the corresponding matrix of traces of the Riemannian 

curvature tensor. An element Rij of the Ricci tensor is an average of sectional curvatures, 

around a given point, of the intersection line of a manifold with the xixj plane. The scalar 

curvature R is defined as the trace of the Ricci curvature. 

The reason why Einstein added the term − 
1

2
Rgij   to his equation is explained by Feynman [8] 

and Penrose [11] pages 461-2.  

13. 4D Deformed Spacetime and Riemannian geometry  

To an outside observer, the universe acts to all intents and purposes as an elastic body and the 

theory of elasticity is the tool with which to perform measurements and calculations.  For an 
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internal observer, in the universe, rulers, clocks and they themselves change according to the 

deformation (space density) at any particular point.  This is a change that the internal observer 

cannot detect directly.  The only way an internal observer can detect the distortion, i.e., the 

change in space density, is by measuring triangles and circles, for example, and detecting any 

deviation in the sum of the angles in a triangle that should be 180 in undistorted space, or from 

the ratio of the circumference of a circle to its radius that should be 2 in undistorted space.  

The internal observer interprets any deviation as invalidity of Euclidian geometry, whereas the 

external observer sees the deviation simply as an expression of a change in space density. 

Apparently, the only geometry that the internal observer can adopt in the above case where 

rulers and clocks change, but do not appear to change, is Riemannian geometry. 

Clearly, from the above, by adopting the point of view of the external observer it is possible to 

build a simple and tangible picture of the universe. 

This tangible picture relates only to distorted three-dimensional space, which is therefore seen 

as curved, but, because this distortion determines the speed of light, it anyway determines the 

rate of clocks at any particular point.  Thus, in finding a solution to any dynamic problem of 

the motion of a beam of light, or a particle, we must deal with an abstract mathematical space 

with four dimensions.  Here we can certainly dispense with the need for tangibility because this 

is not a real space, but a mathematical space that we build for the purpose of calculations. 

14. Curvature in Deformed Spaces is a Function of Space Density 

 F. Morgan: On Riemannian Geometry [12] 
“Remark.  An intrinsic definition of the scalar curvature R at a point p in an m-dimensional surface S 

could be based on the formula for the volume of a ball of intrinsic radius r about p: 

 
( )

,r
2m3

R
rvolume 2m

m

m

m
+

+
−= +

 (6.10) 
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where m is the volume of a unit ball in Rm.  When m = 2, this formula reduces to Equation (3.8).  The 

analogous formula for spheres played a role in R.  Schoen’s solution of the Yamabe problem of finding a 

conformal deformation of a given Riemannian metric to one of constant scalar curvature (see Schoen [Sch, 

Lemma 2])." 

From equation (6.10), for any dimension, we can obtain the approximated scalar curvature of 

two-dimensional space (16) and that of three-dimensional space (17): 

Note that we notate the scalar curvature R, at a point P in the quotation (6.10), by the letter K. 

Note also that the term, volume, in (6.10) relates to a n-dimensional volume. 
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  Space Density and the Volume Change 

The relative change in space density is: 



 

and the relative volume change is: 
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In the case of spherical symmetry: 
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15. The Scalar Curvature K and the Space Density ρ(r) 

The scalar Riemannian curvature in a three-dimensional space (17) is: 

( )
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For the spherical symmetric case: 

( )
35

33

r

u

5

4

r5

ur
3

4
r

3

4

K




−


−


=             and for the simple case u = cr: 

( )
2

2

5

32

5

333

r

c

5

4

r5

rc3
3

4

r5

rc1
3

4
r

3

4

K


=





−


−


=                   (19) 

On the other hand: 
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Comparing (19) to (20) gives for 3D: 

2

45

π4
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               (21) 

The scalar curvature, K, as a function of space density ρ(r), only. 
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16. Summary 

Tangibility inspires imagination.  

“Imagination is more important than knowledge” A Einstein. 
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