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Abstract 

Riemannian geometry is the geometry of bent manifolds. However, as this paper shows in a 

tangible rather than formal way, it is also the geometry of deformed zones of space. Applying 

Riemannian geometry to zones of space enables us to understand General Relativity (GR) 

almost intuitively, and inspires our imagination. 

Space in GR is considered a continuous manifold, curved by energy/momentum. Both 

Einstein (1933) [1] and Feynman (1963) [2], however, considered the option of space being a 

deformed continuum rather than a bent continuous manifold. In the GDM (2017) [3], though, 

space is a 3D deformed lattice rather than a bent continuous manifold.  
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1. Introduction 

We relate to space not as a passive static arena for fields and particles but as an active elastic 

entity. The gravitational waves that General Relativity (GR) predicts, and have been observed 

recently, support our understanding. The mathematical objects of GR are n-dimensional 

manifolds in hyper-spaces with more dimensions than n. These are not necessarily the 

physical objects that GR accounts for. Einstein was led to GR by arguments that were un-

related to a possible elastic 3D space. However, in n-dimensional elastic deformed spaces, 

Euclidian geometry is not valid and we are compelled to use Riemannian geometry. Hence, 

GR is also the theory of our elastic 3D space. Steane in his recent book “Relativity Made 

Relatively Easy” [4] elaborates and clarifies these points. Rindler [5] uses elastic spaces to 

enable visualization of bent manifolds, whereas Callahan [6] declares: “…in physics we 

associate curvature with stretching rather than bending.”   

We define space density ρ, for an elastic space lattice, as the number of space cells per unit 

volume. The density of an un-deformed, uniform, space is denoted ρ0 . If space is uniform, all 

of its elementary cells are of the same size, and Euclidian geometry is valid.  When the 

density is not uniform, i.e., cells are of different sizes, an internal observer discovers that 

Euclidian geometry is not valid. When this internal observer measures circles, he will find an 

Excess Radius δr that differs from zero. This happens since he and his yardstick are both 

deformed exactly as the background.  

2. Intrinsic Curvature at a Point P on a 2D Manifold 

 2D Curved Surfaces in a 3D Euclidian Space 2.1

To obtain the curvature of a two-dimensional surface (manifold) at a point, P, that is intrinsic 

to the surface, consider the length C of a closed path that is the locus of all points that are at 

the same geodesic distance, r from the point.  
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For a sphere of radius r0, the above circumference C for small r/r0  , as Fig. (1) shows, is: 
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Here  
2
0r

1
K   is a natural definition for the curvature of a sphere of radius r0. 

By extracting K from (1), we obtain the curvature K and re-define it for a more general case: 
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This K depends only on the intrinsic properties of the metric of the two-dimensional surface 

with no reference to the embedding space. The sign of the curvature is positive if C < 2r, 

negative if C > 2r, and zero if C = 2r.  

Fig. (1)  

Curvature of a Sphere 

 

Note that for any two-dimensional surface (manifold) Gaussian curvature can also be 

defined as: 

   
2010 rr

1
K               (3) 

where (r0)1 and (r0)2 are the radii of the largest and smallest osculating circles of sections 

formed by the corresponding planes perpendicular to a third plane, tangential to the surface at 
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P. If the two osculating circles are on the same side of this third plane, we define the curvature 

as positive, and if on opposite sides - as negative. This definition ensures compatibility with 

the definition expressed by equation (2). 

For a saddle surface, see Fig. (5), the two osculating circles at point P in the middle of the 

saddle are on opposite sides of the third tangential plane to the surface at P, and thus the 

saddle at P has a negative curvature. 

 The Excess Radius δr of Curved Manifolds  2.2

The Excess Radius δr of curved manifolds [4], around a point P is:  

 δr ≡ rmeasured – cmeasured /2π .            (4) 

See Fig. (2).  

 

P’                                 C 

P 

R   m e a s u r e d 

R   c a l c u l a t e d 

 

Fig. (2) Excess Radius 

Measuring distances with an intrinsic local yardstick gives the radius, rmeasured from point P to 

point P’, and the circumference, cmeasured, of a circle centered at P   passing through P’.  The 

calculated radius is: 

 rcalculated = cmeasured /2π.            (5) 

Here rmeasured is notated as simply r. According to [4] equation (10.7), for a 2D bent surface 

(2D manifold) the Gaussian curvature is: 

K= limr→0
6δr

r3
                 (6)  
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Rc is the radius of curvature at the point P on the surface, and:  

K = 1/Rc
2                          (7) 

According to [4], for the case of spherical symmetry, (6) for small r is:  

K ≈ 6δr/r
3 

                        (8) 

For no radial symmetry, K is taken as the average of the largest and smallest curvatures, k1, 

k2, of two circles.  

Note [7] that, Rc , the radius of curvature of space in the Schwarzschild solution depends on 

the coordinate distance r from the center of the mass M, and is: 

Rc = rs
-1/2 

r
3/2

              (9) 

where rs = 2GM/c
2 

is the Schwarzschild radius. 

From (9) we get: 

K = rs/r
3 

           (10) 

From (8) and (10) we get: 

δr ~ 1/6 rs            (11) 

More on the subject appears in [8]. 

3. Intrinsic Positive Curvature in a 2D Deformed Space 

Consider Fig. (3), in which the circles represent space cells, or that the circles’ diameters 

represent the lengths of yardsticks. Here, the yardstick at position P is the smallest and from P 

the yardstick increases in size symmetrically. This situation is analogous to a metallic plate, 

where the temperature increases from the center of the surface outwards, and thus the density 

decreases, i.e., the cell size increases. The 2D inside observer in Fig. (3), finds that the ratio of 

the circumference C of the circle to the radius r, as measured by the intrinsic yardstick, is:  
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C/r < 2π. They therefore conclude that there are two possibilities, that they live in a two-

dimensional space with variable density, or that they live on a curved two-dimensional 

surface “manifold” in a three-dimensional hyper space. 

rmeasured=8  

cmeasured=36  

c/r = 36/8 = 4.5<2π 

rmeasured > rcalculated  

The Excess Radius 

δr = rmeas - rcal > 0   

 

 

Fig. (3) Positive Curvature    

2D observers cannot imagine a three-dimensional space, but may be able to accept the 

necessary abstraction. In any case, they are not able to decide between the two possibilities.  

4. Intrinsic Negative Curvature in a 2D Deformed Space 

rmeas = 8 

Cmeas = 64  

 22.10
r

C
 

rmeas < rcal  

The Excess Radius 

r = rmeas - rcal < 0 

 

Fig. (4) Negative Curvature 

Fig. (4) shows a cell at point P, which is the largest, and from P outwards the cells decrease in 

size. In this case,  2
r

C
 and: 

P 
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 δr = rmeas - rcal < 0.  

Fig. (4) is analogous to a metal plate, where the temperature decreases from the point P 

outwards, as if the point P is heated with a blow-torch.  

5. Examples of Curvature in a 2D Deformed Space 

 Positive Curvature  5.1

To measure circles around a point P, Fig. (3), we take the normalized density at P as ρ(0) =1. 

Assuming radial symmetry, the density for external observers is ρ(r). Let dr’ be the 

yardstick’s length for an internal observer and dr for the external observer. These dr’ and dr 

are related by:  

dr’= dr/ρ(r).  

At P these yardsticks are equal since we have chosen ρ(0) =1.  

If, at a distance R from P the density is ρ(R) =1/2, then:  

dr’= dr/ρ(R) = 2dr  

For external observers the circumference of a circle with radius R is c =2πR, whereas for the 

internal observers it is: 

c’= 2πR(dr/dr’)atR = 2πR ρ(R) = πR.  

The radius of this circle, as measured by internal observers, is:    

R’=∫ dr′
𝑅

0
 = ∫ 1/ρ(r) ∙ dr

𝑅

0
   

and it should be larger than R. If, for example:  

ρ(r) = 1/(1+ r/r0 ) = 1/(1+ r/18)   

then indeed ρ(0) = 1 and, for R= r = 9,   ρ(R) =1/2. The radius R’ is then:   
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R’= ∫ (1 + r/18) ∙ dr
R

0
 =|(r +  r2/36| 0

R = 11.25  

Thus the Excess Radius is:  

δR’ = R’− c’/2π = R’−1/2R ~ 11− 4.5 ~ 6.5.  

This criterion, δR’ > 0, for positive curvature, expresses the fact that space around P is 

contracted. 

 Negative Curvature  5.2

If, at a distance R from the origin P, see Fig. (4), the density is ρ(R) =2, then:  

dr’= dr/ρ(R) = ½ dr  

For external observers the circumference of a circle with radius R is c = 2πR, whereas for the 

internal observers it is:  

c’= 2πR(dr/dr’)atR = 2πR ρ(R) = 4πR  

The radius of this circle, as measured by the internal observer, is:  

R’= ∫ dr′
𝑅

0
 = ∫ 1/ρ(r) ∙ dr

𝑅

0
    

and it should be smaller than R. If, for example: 

ρ(r) = (1+ r/r0 ) = (1+ r/9)   

then indeed ρ(0) = 1, and for R = r = 9 we get    ρ(R) =2.  The radius R’ is then:  

R’= ∫ 1/(1 + r/9) ∙ dr
R

0
 =|9 ln(1 + r/9)|0

R= 6.24 

Thus the Excess Radius, in this case, is:   

δR’ = R’− c’/2π = R−2R = 6.24−9 ~ − 2.8.  

This criterion, δR’< 0, for negative curvature, expresses the fact that space around p is dilated.  
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6. A Saddle  

  

Fig. (5) Saddle-like 2-D Surface in 3-D Space versus  

an Elastic 2-D Surface in 2-D Space  

7. Intrinsic Curvature at a Point P in a 3D Deformed Space 

 

P 

 

Fig. (6) Three-dimensional Positive Curvature 

Fig. (6) shows a small cell located at point P, and cells of increasing size radiating from P 

with spherical symmetry. It is similar to the 2D space, shown in Fig. (3). If we measure the 

circumference of a great circle whose center is P, in any direction, a measurement of the 

Excess Radius yields:  

r = rmeas - rcal > 0 

Measurements of circumferences and radii can be taken around any point inside the sphere. 

But for any point, except point P in Fig, (6), there is no symmetry. 

For a deformed 3D space with spherical symmetry around P the Gaussian curvature at P is 

also expressed by equation (2).  

P 
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For the case of no symmetry, we have to determine the degree of deformation of circles 

around point P, in three orthogonal planes through P. For each of the orthogonal planes we 

have to determine the largest and smallest curvatures, k1, k2, called the principle curvatures. 

Thus to specify a deformed three-dimensional space around a point P we need 3 x 2 numbers. 

The average of these six principle curvatures is the average Gaussian curvature of the 

deformed space at the locality of P. 

According to the above, a complete definition of curvature in close proximity to a point in 

three-dimensional space requires six “curvature numbers”. These represent three pairs of 

curvature numbers for each of the three intersecting planes perpendicular to each other. These 

curvature numbers are components of a symmetric tensor of 2
nd

 rank called the contracted 

Riemannian tensor of curvature, or the Ricci tensor, see Appendix A and B. 

 Geodesics 7.1

Fig. (7) shows the shortest distance between two points, A and B, in a deformed two-

dimensional space. This figure shows that the shortest distance between points A and B for an 

internal observer, with their changing yardstick, is the solid line path that passes through the 

centers of seven cells, and not the “straight” dashed line through A and B, that passes through 

nine cells. 

                                                         

Fig. (7) Geodesics 

The shortest distance between points A and B, solid line, is the geodesic line. There is no 

difficulty in imagining this in three dimensions. 

A

B
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8. Local versus Global Curvature and the Flat Universe 

If a measurement of the radius and circumference of a circle at any point, on a surface, 

produces the Excess Radius result δr = rmeas - rcal > 0,  the observers will conclude that they 

live on a finite two-dimensional closed surface in a three-dimensional space, and not in a 

deformed space. Thus we realize that curving and deforming are equivalent only locally. 

If space density of the universe is, by and large, uniform, and only changes locally around 

stars and galaxies, then on the scale of the universe, Euclidian geometry is valid. In this case, 

we can say that we are living in a Flat Universe. In other words, our universe is curved only 

locally, but not globally. According to observations made by cosmologists our universe is flat. 

These cosmologists assume that the universe is a 3D manifold bent in a hyper-space with an 

extra dimension. Hence they wonder why, from all possible values, the curvature of the 

universe happens to be zero. 

There is no need to wonder; if we consider ourselves 3D internal observers in a universe 

whose space is 3D and elastic, with local deformations.  In our motion from place to place, 

both ourselves and our yardstick change. The only way for us to learn about our deformed 

space is thus to use Riemannian geometry. We are part of some cellular design and, in motion, 

it is the design and the energy that moves, not the cells. This is possible if elementary 

particles are not alien to space but simply wavepackets in motion. 

9. The Metric, Ricci tensor and General Relativity (GR) 

The metric tensor gij and Ricci tensor Rij appear in the left hand side of the Einstein equation 

of GR (Rindler 2004) [5]: 

Rij− 
1

2
Rgij = 8πG/c

4
 ∙ Tij    

A metric tensor represents local deformations, around a given point, of both a continuum and 

a lattice. For a lattice, this representation is legitimate only if the sizes of its cells are orders of 
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magnitude smaller than the scale of the deformation in this locality since we are using 

continuous differential equations. An example of such a metric is the Schwarzschild metric 

[5]. A metric tensor can also represent a global deformation like the FRW metric [5].  

The Ricci curvature tensor (Appendix B) is the corresponding matrix of traces of the 

Riemannian curvature tensor (Appendix A). An element Rij of the Ricci tensor is an 

average of sectional curvatures, around a given point, of the intersection line of a manifold 

with the xixj plane. The scalar curvature R is defined as the trace of the Ricci curvature. 

The reason why Einstein added the term − 
1

2
Rgij   to his equation is explained by Feynman [8] 

and Penrose [9] pages 461-2.  

10. Summary 

Tangibility inspires imagination. “Imagination is more important than knowledge” A Einstein. 
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Appendix A    Sectional and Riemannian Curvature 

This section, based on F. Morgan (1998) [10] Chapter 5, discusses the Riemannian and Ricci 

tensors. We leave it to textbooks in differential geometry to show that these tensors are 

actually intrinsic.  

The sectional curvature, kij, of a surface sliced by the xi, xj plane at a point P is: 

kij(P) = aiiajj - aijaij                             (A1) 

where:     

 
ji

ji

2

ij
xx

x,xf
a




                        (A2) 

f(xi,xj) is the line of intersection of the surface with the plane. 

If we choose coordinates that diagonalize the form (A1) we get: 

kij(P) = kikj                        (A3) 

which is the Gauss curvature. The scalar sectional curvature at P is then the weighted 

average of the sectional curvatures kikj: 

ji

2

ij
mji1

kkPk(p)

                     (A4) 

The Riemannian tensor is: 

Rijkl = aikajl - ajkail                        (A5) 
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Thus the Riemannian curvature tensor elements are just the 2 x 2 minors of the symmetrical 

second fundamental tensor: 



















mmm1

2221

1m1211

a...a

.....

...aa

a..aa

                                    (A6) 

Immediately: 

Rjikl = - Rijkl   and  Rijlk = -Rijkl                      (A7) 

Rklij = Rijkl                       (A8) 

Rijkl  + Riklj + Riljk = 0                      (A9) 

which is Bianchi’s first identity on permutation of the last three indices. Rijkl can be looked 

upon as a matrix of matrices: 

     
   

     

















imkmimk2imk1

i2k2i2k1

i1kmi1k2i1k1

R..RR

.....

...RR

R..RR

                (A10) 

ijil
i

jl RR                      (A11) 

Appendix B     Ricci curvature 

The Ricci curvature tensor is the corresponding matrix of traces of the Riemannian 

curvature tensor. The Ricci curvature is thus an average of sectional curvatures. The scalar 

curvature R (The contracted Ricci tensor), is defined as the trace of the Ricci curvature: 

ii
i
RR                       (B1) 
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which is proportional to the average of all sectional curvatures at a point. For a three-

dimensional space m = 3.   j, l will have the values 1, 2, 3 and  i, k the values 1, 2. The matrix, 

R, is thus: 

















i3k3i3k2i3k1

i2k3i2k2i2k1

i1k3i1k2i1k1

RRR

RRR

RRR

                    (B2) 
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11211111

i1k1
RR

RR
R                    (B3) 

If we diagonalize, we get six curvature numbers:    
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