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Parabolic Conjugation and Commuting
Varieties

Magdalena Boos 1 and Michael Bulois 2

Abstract

We consider the conjugation-action of an arbitrary upper-block parabolic sub-
group of the general linear group on the variety of nilpotent matrices in its Lie
algebra. Lie-theoretically, it is natural to wonder about the number of orbits of
this action. We translate the setup to a representation-theoretic one and obtain a
finiteness criterion which classifies all actions with only a finite number of orbits
over an arbitrary infinite field. These results are applied to commuting varieties
and nested punctual Hilbert schemes.
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1 Introduction
The Lie-theoretical question whether an action of an algebraic group on an affine vari-
ety admits only finitely many orbits, is a very natural and basic one. For instance, the
conjugation-action of the general linear group GLn on all square-sized nilpotent matri-
ces is finite in this way and representatives of the orbits are given by so-called Jordan
normal forms [18].

Many further actions have been examined in detail, some involving a parabolic
subgroup P of GLn. For example, the action of P on the nilradical np of its Lie algebra
p [16]; or on varieties of nilpotent matrices of a certain nilpotency degree (and, in
particular, on the nilpotent cone N of GLn) [4].

Let us assume first that K is an arbitrary infinite field. In this work, we fix an upper-
block parabolic subgroup P of GLn(K) of block sizes bP := (b1, . . . , bp) which acts on
its Lie algebra p and on the irreducible affine variety Np := p ∩ N .

The main aim of this article is to prove Theorem 5.1 and Proposition 4.3 which
classifies all parabolic subgroups P which act with only a finite number of orbits inNp.
This gives

Main Theorem. The parabolic subgroup P acts finitely on Np if and only if its block
size vector appears (up to symmetry) in the diagram B.2. The complementary cases to
diagram B.2 are displayed in diagram B.1.

In particular, P acts infinitely if P has at least 6 blocks, if P has at least 3 blocks of
size at least 2 or if P has at least 2 blocks of size at least 6.

We also consider the same questions for the actions of a Levi subalgebra LP of P
on the nilpotent cone Np or on the nilradical np. Answers are given in Section 3.3.

For simplicity, most of the intermediate results of the paper are only stated with the
additional assumption that K is algebraically closed. Unless otherwise specified, we
will assume that this is always the case.
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The first step in order to prove our main theorem is to translate the Lie-theoretic
setup to a setup in the representation theory of finite-dimensional algebras in Section 3.
Thus, we define a quiver with relations and a certain subcategory of its representations
such that the isomorphism classes in this category correspond bijectively to P-orbits in
Np. One difficulty of this correspondence is that we have to look for the number of
isomorphism classes for each dimension vector.

The proof of the main theorem is approached from two directions, then. On the one
hand, we use covering techniques [3, 11] in Section 4. This leads us to the study of a
subcategory of representations of an acyclic quiver. Several ad-hoc infinite families of
representations of this covering quiver are pointed out which allow us to find the infinite
cases of our original problem in Proposition 4.3. We advance the theory of representa-
tions of our covering quiver, especially via the notion of ∆-filtered representations [9].
This yields the partial results of Proposition 4.2 and 4.11.

On the other hand, we show that every remaining case is finite in Section 5. The
main idea is to reduce the problem to only four cases by reduction techniques (Section
3.2). These four cases are proved by base-change-methods which make use of the
representation-theoretic context and can be visualized nicely by combinatorial data.

Our results have quite interesting implications on commuting varieties and nested
punctual Hilbert schemes which we discuss in Section 6. For instance, we explain
how finiteness of the action of P on Np is related to the dimension of the nilpotent
commuting variety of p. We also give an example of a maximal parabolic having a
reducible commuting variety.

Acknowledgments: The authors would like to thank K. Bongartz for his valuable
ideas for approaching and visualizing the proof of the finite case. M. Reineke is being
thanked for helpful discussions concerning the methods of this work. We thank J.
Külshammer and U. Thiel for debating the possible use of bocs calculation with us.

2 Theoretical background
We include some facts about the representation theory of finite-dimensional algebras
[2]. . In all the definition below, K can be assumed to be an arbitrary field. However,
some of the results and techniques mentioned might require that K = K.

Let Q be a finite quiver, that is, a directed graph Q = (Q0,Q1, s, t) of finitely many
vertices i ∈ Q0 and finitely many arrows (α : s(α) → t(α)) ∈ Q1 with source map
s : Q1 → Q0 and target map t : Q1 → Q0. A path in Q is defined to be a sequence of
arrows ω = αl . . . α1, such that t(αk) = s(αk+1) for all k ∈ {1, . . . , l − 1}; formally we
include a path εi of length zero for each i ∈ Q0 starting and ending in i. We define the
path algebra KQ of Q to be the K-vector space with a basis given by the set of all paths
in Q. The multiplication of two paths ω = αl...α1 and ω′ = βq...β1 is defined by

ω · ω′ =

{
ωω′ if t(βq) = s(α1),
0 otherwise,

where ωω′ is the concatenation of paths.
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Let rad(KQ) be the path ideal of KQ which is the (two-sided) ideal generated by all
paths of positive length. An ideal I ⊆ KQ is called admissible if there exists an integer
s with rad(KQ)s ⊂ I ⊂ rad(KQ)2.

Let us denote by rep(Q) the abelian K-linear category of finite-dimensional K-
representations of Q, that is, tuples

((Mi)i∈Q0 , (Mα : Mi → M j)(α : i→ j)∈Q1 ),

of K-vector spaces Mi and K-linear maps Mα. A morphism of representations M =

((Mi)i∈Q0 , (Mα)α∈Q1 ) and M′ = ((M′i )i∈Q0 , (M′α)α∈Q1 ) consists of tuples of K-linear maps
( fi : Mi → M′i )i∈Q0 , such that f jMα = M′α fi for every arrow α : i→ j in Q1.

For a representation M and a path ω in Q as above, we denote Mω = Mαs · . . . ·Mα1 .
A representation M is called bound by I if

∑
ω λωMω = 0 whenever

∑
ω λωω ∈ I. We

denote by rep(Q, I) the category of representations ofQ bound by I, which is equivalent
to the category of finite-dimensional KQ/I-representations.

Given a representation M of Q, its dimension vector dimM ∈ NQ0 is defined by
(dimM)i = dimK Mi for i ∈ Q0. For a fixed dimension vector d ∈ NQ0, we denote by
rep(Q, I)(d) the full subcategory of rep(Q, I) of representations of dimension vector d.

For certain classes of finite-dimensional algebras, a convenient tool for the classi-
fication of the indecomposable representations is the Auslander-Reiten quiver Γ(Q, I)
of rep(Q, I). Its vertices [M] are given by the isomorphism classes of indecomposable
representations of rep(Q, I); the arrows between two such vertices [M] and [M′] are
parametrized by a basis of the space of irreducible maps f : M → M′. One standard
technique to calculate the Auslander-Reiten quiver for certain algebras is the knitting
process (see, for example, [2, IV.4]). In some cases, large classes of representations
or even the whole Auslander-Reiten quiver Γ(Q, I) can be calculated by using covering
techniques: results about the connection between representations of the universal cov-
ering quiver (with relations) of KQ/I and the representations of KQ/I are available by
P. Gabriel [11] and others.

A finite-dimensional K-algebraA := KQ/I is called of finite representation type, if
the number of isomorphism classes of indecomposable representations is finite; other-
wise it is of infinite representation type. The minimal quiver algebras of infinite repre-
sentation type have been discussed by K. Bongartz; and by D. Happel and D. Vossieck,
which lead to the famous Bongartz-Happel-Vossieck list (abbreviated by BHV-list), see
for example [15]. If a quiver with relations contains one of the listed quivers as a sub-
quiver, then the corresponding algebra is of infinite representation type; and the given
so-called nullroots determine concrete one-parameter families of these dimension vec-
tors.

For a fixed dimension vector d ∈ NQ0, we define the affine space

Rd(Q) :=
⊕
α : i→ j

HomK(Kdi ,Kd j ).

Its points m naturally correspond to representations M ∈ rep(Q)(d) with Mi = Kdi for
i ∈ Q0. Via this correspondence, the set of representations bound by I corresponds to
a closed subvariety Rd(Q, I) ⊂ Rd(Q). The group GLd =

∏
i∈Q0

GLdi acts on Rd(Q)
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and on Rd(Q, I) via base change, furthermore the GLd-orbits OM of this action are in
bijection with the isomorphism classes of representations M in rep(Q, I)(d).

The following fact on associated fibre bundles sometimes makes it possible to trans-
late an algebraic group action into another algebraic group action that is easier to un-
derstand (see, amongst others, [25]).

Theorem 2.1. Let G be a linear algebraic group, let X and Y be G−varieties, and
let π : X → Y be a G-equivariant morphism. Assume that Y is a single G-orbit, Y =

G.y0. Let H be the stabilizer of y0 and set F B π−1(y0). Then X is isomorphic to the
associated fibre bundle G ×H F, and the embedding φ : F ↪→ X induces a bijection Φ

between the H-orbits in F and the G-orbits in X preserving orbit closures and types of
singularities.

Given a G-variety X, we say that G acts infinitely on X, if the number of orbits
of the action is infinite; and finitely, otherwise. We also speak about infinite or finite
actions.

3 Actions in the quiver context
We denote by GLn B GLn(K) the general linear group for a fixed integer n ∈ N
regarded as an affine variety and by gln its Lie algebra.

Fix an upper-block parabolic subgroup P of GLn of block sizes bP := (b1, . . . , bp).
We denote by LP the Levi subgroup of P and by p := Lie(P) its Lie algebra. Given
x ≤ n, we define N (x)

p as the variety of x-nilpotent matrices in p. As a special case, we
obtain Np for x = n, which is the irreducible variety of nilpotent matrices in p. Define
np to be the nilradical of p. The groups LP and P act onN (x)

p and on np via conjugation.
Our main aim is to answer the following question:

“For which P is the number of P-orbits in Np finite? ”

It is natural to look at a broader context and we will also consider the Levi subgroup LP

as the acting group; and the nilradical np as the variety on which our groups act. Every
such action is translated to a representation-theoretic setup by defining a suitable finite-
dimensional algebra in 3.1. We prove certain reduction methods in 3.2 and proceed in
3.3 by classifying all Levi-actions which admit only a finite number of orbits.

3.1 Translations to a quiver settings
The P-action on Np

Consider the quiver

Qp : • • • · · · • • •
1 2 3 p − 2 p − 1 p

α1 α2 α3 αp−3 αp−2 αp−1

β1 β2 β3 βp−2 βp−1 βp

5



together with the admissible ideal

Ix B (βx
j , 1 ≤ j ≤ p; βi+1αi − αiβi, 1 ≤ i ≤ p − 1),

that is, the ideal generated by all commutativity relations and a nilpotency condition
at each loop. The corresponding path algebra A(p, x) B KQp/Ix with relations is
finite-dimensional. Let us fix the dimension vector

dP B (d1, . . . , dp) B (b1, b1 + b2, . . . , b1 + ... + bp)

and formally set b0 = 0. As explained in Section 2, the algebraic group GLdP
acts on

RdP
(Qp, Ix); the orbits of this action are in bijection with the isomorphism classes of

representations in rep(Qp, Ix)(dP).
Let us define repinj(Qp, Ix)(dP) to be the full subcategory of rep(Qp, Ix)(dP) con-

sisting of representations ((Mi)1≤i≤p, (Mρ)ρ∈Q1 ), such that Mαi is injective for every i ∈
{1, . . . , p− 1}. Corresponding to this subcategory, there is an open subset Rinj

dP
(Qp, Ix) ⊂

RdP
(Qp, Ix), which is stable under the GLdP

-action.

Lemma 3.1. There is an isomorphism Rinj
dP

(Qp, Ix) � GLdP
×PN

(x)
p . Thus, there exists a

bijection Φ between the set of P-orbits inN (x)
p and the set of GLdP

-orbits in Rinj
dP

(Qp, Ix),

which sends an orbit P.N ⊆ N (x)
p to the isomorphism class of the representation

Kd1 Kd2 Kd3 · · · Kdp−2 Kdp−1 Kn
ε1 ε2 εp−2 εp−1

N1 N2 N3 Np−2 Np−1

N,

where Ni is the di × di-submatrix of N of the first di rows and columns and εi : Kdi ↪→
Kdi+1 are the natural embeddings. This bijection preserves orbit closure relations, di-
mensions of stabilizers (of single points) and codimensions.

Proof. Consider the subquiver Q̃p of Qp with (Q̃p)0 = (Qp)0 and (Q̃p)1 = {α1, ..., αp−1}.
We have a natural GLdP

-equivariant projection π : Rinj
dP

(Qp, I) → Rinj
dP

(Q̃p). The variety

Rinj
dP

(Q̃p) consists of tuples of injective maps, thus, the action of GLdP
on Rinj

dP
(Q̃p) is

easily seen to be transitive. Namely, Rinj
dP

(Q̃p) is the orbit of the representation

y0 B Kd1
ε1
−→ Kd2

ε2
−→ · · ·

εp−2
−−−→ Kdp−1

εp−1
−−−→ Kn,

with ε j being the canonical embedding of Kd j into Kd j+1 .

The stabilizer H of y0 is isomorphic to P and the fibre of π over y0 is isomorphic to
N

(x)
p . Thus, Rinj

dP
(Qp, Ix) is isomorphic to the associated fibre bundle GLdP

×PN
(x)
p by

Theorem 2.1, yielding the claimed bijection Φ. �

Remark 3.2. The conjugation-action of P on its nilradical has been classified by L.
Hille and G. Röhrle [16]. In particular the number of P-orbits on np is shown to be
finite if and only if p ≤ 5.

The result is proved by translating the setup to a quiver-theoretic one, as well. The
authors consider the quiver
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Q′p : • • • · · · • • •

α1 α2 αp−2 αp−1

β1 β2 βp−2 βp−1

together with the relations β1α1 = 0 and βiαi = αi−1βi−1 for i ∈ {2, . . . , p − 1} which
generate an ideal I′p. They prove that the orbits of the action are in bijection with
certain isomorphism classes of KQ′p/I

′
p-representations and classify the latter.

The Levi-action on the nilradical

Consider the quiver Q′L,p of p vertices, such that there is an arrow i → j, whenever
i < j. For example, Q′L,5 is given by

Q′L,5 : • • • • •

1 2 3 4 5

We defineA′L,p B KQ′L,p to be the corresponding finite-dimensional algebra.
As explained in Section 2, the algebraic group LP � GLbP

acts on RbP
(Q′L,p); the

orbits of this action are in bijection with the isomorphism classes of representations in
rep(Q′L,p)(bP). These are in bijection with the LP-orbits in np.

The Levi-action on Np

Consider the quiver Q′L,p defined above and add a loop βi at each vertex 1 ≤ i ≤ p; we
denote the resulting quiver by QL,p. Define the ideal I to be generated by the relations
βn

i for all i. Then the algebraAL,p := KQL,p/I is finite-dimensional.
As explained in Section 2 and similarly to the previous case, the algebraic group

LP � GLbP
acts on RbP

(QL,p, I) and the orbits of this action are in bijection with the
isomorphism classes of representations in rep(QL,p, I)(bP). These are in bijection with
the LP-orbits in Np.

Note that these last constructions are easily generalized to x-nilpotent matrices.

3.2 Reductions
Here, we prove three lemmas in order to compare actions of different parabolics or
Levis. That is, we show three kinds of reductions which are classical from a Lie-
theoretical point of view. Analogues of these statements are available for the P-action
on np in [24].

Given two tuples (b1, ..., bp) and (b′1, ..., b
′
q), we define (b1, ..., bp) ≤c (b′1, ..., b

′
q) if

and only if there is an increasing sequence i1 < ... < ip, such that b j ≤ b′i j
for all j.

Lemma 3.3. Let P and P′ be respective parabolic subgroups of GLn and GLn′ with
respective block sizes bP and bP′ such that bP ≤c bP′ .
Assume that P acts infinitely on Np (or LP acts infinitely on Np or np, respectively).
Then P′ acts infinitely on Np′ (or LP′ acts infinitely on Np′ or np′ , respectively).
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Proof. Denote bP by (b1, ..., bp) and bP′ by (b′1, ..., b
′
q). As seen before, the orbits of

each action translate to certain isomorphism classes of representations. Let (Mt)t∈I be
an infinite family of non-isomorphic such representations.

Assume first that the acting group is LP. Let M′t be the corresponding QL,q- (or
Q′L,q-) representation with dimension vector c ∈ Nq, where ci j = b j and ck = 0, other-
wise. Denote by S i the simple module supported at the vertex i. Then the family (Nt)t∈I ,
where Nt = Mt ⊕

⊕p
i=1 S b′i−ci

i contains pairwise non-isomorphic representations.
Consider now the action of P on Np. Formally set ip+1 := q + 1. Let (M′t )t∈I be the

naturally induced family of pairwise non-isomorphic representations in repinj(Qq, In)
defined by

(M′t )i :=
{

(Mt) j if i j 6 i < i j+1
0 if i < i1,

together with the induced maps β′i,t := β j,t (i j 6 i < i j+1) and α′i j+1−1,t := α j,t, further
α′i,t := 0 if i < i1 and α′i,t the obvious isomorphism, otherwise.

For 1 6 i 6 q, define a representation Ui in repinj(Qq, In) via (Ui)k = Kδk>i with

injective α and zero β. Then the representations Nt := M′t ⊕
⊕

i,i j
Ub′i

i ⊕
⊕

j U
b′i j
−b j

i j
(t ∈

I) form an infinite family of non-isomorphic representations. Hence P′ acts infinitely
on Np′ . �

We define the transposition t(·) to be the anti-involution of the Lie algebra gln which
is induced by the permutation (1, n)(2, n − 2)... . It sends the parabolic subgroup P
(resp. subalgebra p) to a parabolic subgroup tP (resp. subalgebra tp), such that d(tP) =

(n − dp−1, . . . , n − d1, n), and b(tP) = (bp, . . . , b1). Hence we have

Lemma 3.4. Let P and P′ be parabolics of respective block sizes bP = (b1, . . . , bp)
and bP′ = (bp, . . . , b1). Then P acts infinitely on Np (or LP acts infinitely on Np or np,
respectively) if and only if P′ acts infinitely on Np′ (or LP′ acts infinitely on Np′ or np′ ,
respectively).

Lemma 3.5. Let P and P′ be parabolic subgroups of GLn . Assume that P acts in-
finitely on Np and that P′ ⊂ P. Then P′ acts infinitely on Np′ , where p′ = Lie P′.

Proof. Given a P′-orbit P′.x in p′, we can associate a P-orbit in p via P′.x 7→ P.x. Since
any P-orbit meets the Borel subalgebra, this map is surjective. The result follows. �

3.3 Results for Levi-actions
With standard techniques from quiver-representation theory, we classify the cases in
which LP acts finitely on the nilpotent radical np and on the nilpotent cone Np.

Lemma 3.6. LP acts with finitely many orbits on np if and only if p ∈ {1, 2}, that is, if
P has at most two blocks.

Proof. For p = 1, we obtain the action of GLn on {0} which is clearly finite.
Let p = 2, then QL,2 = A2 and, thus, there are only finitely many isomorphism

classes of representations for each dimension vector by Gabriels Theorem [10].
Let p = 3, then

8



Mt : K K Kid

t · id

id

are pairwise non-isomorphic representations of dimension vector (1, 1, 1). Thus, an
infinite family of non-LP-conjugate matrices is given by 0 1 t

0 0 1
0 0 0


This induces an infinite family of non-conjugate representations for every remaining
case by Lemma 3.3. �

Lemma 3.7. LP acts with finitely many orbits on Np if and only if P = GLn or P is of
block sizes (1, n − 1) or (n − 1, 1).

Proof. Whenever p ≥ 3, infinitely many orbits are obtained from Lemma 3.6, since
np ⊆ Np.

Let p = 2, then an infinite family of pairwise non-isomorphic representations of
dimension vector (2, 2) is induced by

K K

K K

id

t

id id

and gives an infinite family of pairwise non-LP-conjugate matrices in Np right away.
Thus, an infinite family is induced whenever both blocks are at least of size 2 by Lemma
3.3.

Let P be of block sizes (1, n − 1). Then there are only finitely many LP-orbits in
Np: Every representation is of the form

M1

N1 · · · Nk−1 Nk Nk+1 · · · Nl

f

such that dimK M1 = 1. First case: f = 0, then the number of isomorphism classes
is finite, since it is reduced to an An-classification. Second case: f is injective, then
the classification can be deduced from the study of the enhanced nilpotent cone [1,
Lemma 2.4] and is, thus, finite. By Lemma 3.4, the case (n − 1, 1) follows.

If p = 1, then P = GLn and the finite set of nilpotent Jordan normal forms classifies
the orbits. �

Remark 3.8. Note that the results of this section still make sense over an abitrary
infinite field K. Indeed, since we are working with reductive groups, no issue happen
when translating to a quiver-representation context.
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In the finite cases, the arguments given in the proofs still hold: An is representation-
finite over any field and the techniques of [1, Lemma 2.4] do not depend on the base
field.

The infinite cases over K all give rise rise to an infinite family of non-conjugate
(over K) matrices (xt)t∈K , each with entries in {0, 1, t}, even after use of Lemma 3.3.
If two matrices are non-conjugate over K, then they are surely non-conjugate over K.
So, considering the family (xt)t∈K is enough to show that the considered case is already
infinite over K.

4 Covering techniques and ∆-filtered representations

From now on, we will restrict all considerations on the actions of P on N (x)
p and in

particular on Np. Let us call a parabolic subgroup P representation-finite, if its action
on Np admits only a finite number of orbits and representation-infinite, otherwise.

In this section, we define firstly a covering quiver Q̂p of Qp together with an ad-
missible ideal. The study of this quiver provides a finiteness criterion for the whole
category rep(Qp, Ix) in Proposition 4.2. The rest of the section is devoted to the study
of analogues of repinj(Qp, In) in the covering context. In subsection 4.2 this yields
several infinite families of non-isomorphic indecomposable representations. In subsec-
tions 4.3, 4.4 we make use of the theory of quasi-hereditary alegbras and ∆-filtered
modules. This allows to relate some of our subcategories of modules of the form repinj

to “whole” categories of representations of smaller quivers.

4.1 The covering
By techniques of Covering Theory [11, §3], it is useful to look at the covering algebra
first. We sketch this idea and discuss first results, now. Note that our quiver algebras
with relations should be thought as locally bounded K-categories in [11].

In order to apply results of Covering Theory, we consider the infinite universal
covering quiver ofA(p, x) (at the vertex p), which we call Q̂p:

...
...

...
...

...
...

...

• • • · · · • • •

Q̂p : • • • · · · • • •

• • • · · · • • •

...
...

...
...

...
...

...

β1 β2 β3 βp−2 βp−1 βp

β1 β2 β3 βp−2 βp−1 βp

α1 α2 α3 αp−3 αp−2 αp−1

α1 α2 α3 αp−3 αp−2 αp−1

α1 α2 α3 αp−3 αp−2 αp−1

10



Let Îx be the induced ideal, generated by all nilpotency relations (for the loops at the
vertices) and all commutativity relations; we see that the fundamental group is given
by Z which acts by vertical shifts. The universal covering algebra will be denoted
by Â(p, x) := KQ̂p/Îx. The special case where x = n is denoted by Â(p). In or-
der to classify the action of P on Np, it is useful to study the category repinj(Qp, In)
(Lemma 3.1). It’s pendant in the covering context is given by the representation cate-
gory of those Â(p)-representations of which all horizontal maps are injective, we call
it repinj(Q̂p, În).

The quiver Q̂p is locally bounded, so that many results of Covering Theory [11] can
be applied. The universal covering functor F : Â(p, x) → A(p, x) induces a “push-
down”-functor between the representation categories Fλ : rep(Q̂p, Îx)→ rep(Qp, Ix) [3,
§3.2] which has the following nice properties:

Proposition 4.1. 1. Fλ sends indecomposable non-isomorphic representations, which
are not Z-translates, to indecomposable non-isomorphic representations.

2. If M has dimension vector d = (di, j)i∈Z,1≤ j≤p, then Fλ(M) has dimension vector
d′ = (

∑
i∈Z di, j)1≤ j≤p.

3. Fλ

(
repinj(Q̂p, În)

)
⊆ repinj(Qp, In).

4. Let d and d′ be as in 2. Then Fλ induces an injective linear map Rd(Q̂p, În) →
Rd′ (Qp, In).

Proof. The first property follows from [11, Lemma 3.5]. The other three are clear from
the construction of Fλ in [3, §3.2]. �

By [11, Theorem 3.6], if the algebra Â(p, x) is locally representation-finite (that is,
for each vertex y, the number of Â(p, x)-representations M with My , {0} is finite),
then the algebraA(p, x) is representation-finite. For example, we can use the BHV-list
(see, for example, [15]) in order to find infinitely many non-isomorphic indecompos-
able Â(p, x)-representations and know that these yield infinitely many non-isomorphic
indecomposableA(p, x)-representations via the functor Fλ.

It is also usefull to define a trucated version of Q̂p.

• • • · · · • • •

...
...

...
...

...
...

...

Q̂p,n : • • • · · · • • •

• • • · · · • • •

...
...

...
...

...
...

...

• • • · · · • • •

11



of n rows and p columns. Define Îp,n(x) to be the ideal generated by all commu-
tativity relations and by the relation that the composition of x vertical maps equals
zero. Further, define Â(p, x)n := KQ̂p,n/Îp,n(x). Representations are given as tuples
(Mk,l)1≤k≤n,1≤l≤p together with maps αk,l : Mk,l → Mk,l+1 and βk,l : Mk,l → Mk+1,l fulfill-
ing βk,l+1 ◦αk,l = αk+1,l ◦βk,l. If x = n, then define Â(p)n := Â(p, x)n and Îp,n := Îp,n(x).

We decide representation-finiteness concretely for A(p, x) below. In case the uni-
versal covering algebra is locally representation-finite, the algebraA(p, x) is representation-
finite, as well [11]. If the covering algebra is representation-infinite, thenA(p, x) is as
well representation-finite via the functor Fλ. Note that the following result has been
stated in [12], we include it for completeness in all detail.

Proposition 4.2. The algebra A(p, x) is representation-finite if and only if p = 1 or
x = 1 or (p, x) ∈ {(2, 2), (2, 3), (3, 2)}.

Proof. Let p = 1 and x be arbitrary. In this case, the indecomposable representations
are (up to isomorphism) induced by the Jordan normal forms of x-nilpotent matrices.
Therefore, there are only finitely many isomorphism classes, corresponding to single
Jordan blocks.

Let x = 1 and p ≥ 2. In this case, the classification translates to an Ap-classification
case. Thus, there are only finitely many isomorphism classes of indecomposables.

Let p = 2 and x = 2. We show that the algebra Â(2, 2) is locally representation-
finite and this implies thatA(2, 2) is representation-finite. Let M be an indecomposable
finitely-generated Â(2, 2)-representation. Then M can be seen as a representation of
Q̂p,n for some sufficiently large n.

By knitting, we can compute the Auslander-Reiten quiver of Â(2, 2)n. It turns
out that it has a middle part which is repeted in a cyclic way up to a shift by the Z-
action. Its inital, middle and terminal part are depicted in Appendix A.1. There, we
denote by M(i) the Â(2, 2)n-representation obtained by i-times shifting the Â(2, 2)h-
representation (h ∈ {1, 2, 3}) M from bottom to top. We see that, up to Z-action, each
of the isomorphism classes of indecomposables of Â(2, 2)n have a representant in the
middle part of the Auslander Reiten quiver. As a consequence, the same holds for the
representations of Â(2, 2) so the algebra is locally representation finite.

Let p = 3 and x = 2. In the same manner as in the case p = 2, x = 2, one shows that
Â(3, 2) is locally representation-finite. The middle part of the Auslander-Reiten-quiver
of Â(3, 2)n is depicted in the Appendix A.2.

Let p = 2 and x = 3. Again as in the two previous cases, one shows that Â(2, 3)
is locally representation-finite. The middle part of the Auslander-Reiten-quiver of
Â(2, 3)n is depicted in the Appendix A.3.

For each remaining case, we find a full subquiver of the quiver Q̂p,n in the BHV-list
(see below for the concrete quivers), which fulfills the relations induced by Îp,n(x). Via
the functor Fλ, we obtain infinite families of non-isomorphic representations for each
such algebraA(p, x).

12



•1

•2 •3 •2

•2 •3 •2

•1

•1

•1 •2

•2 •2

•2 •1

•1

•1 •1

•1 •2 •1

•1 •1

p ≥ 4 and x ≥ 2 p ≥ 2 and x ≥ 4 p ≥ 3 and x ≥ 3

�

Note that this is a very general representation-theoretic approach to understand the
algebra A(p, x) better. In order to solve our classification problem, it does not suffice,
since the found representations do not necessarily come up in the classification: they
might not have injective maps corresponding to all arrows α1, ..., αp.

From now on, we focus on the case x = n.

4.2 Infinite actions via covering

Via the covering functor, every representation in repinj(Q̂p,n, Îp,n) induces a representa-
tion in repinj(Qp, In)(dP). In order to examine the number of isomorphism classes in
repinj(Qp, In)(dP), we can begin by considering isomorphism classes in repinj(Q̂p,n, Îp,n)
of “expanded” dimension vectors, which sum up to dP, thus.

Proposition 4.3. Assume that K is an arbitrary infinite field. The number of P-orbits
in Np is infinite if bP = (b1, . . . , bp) or b(tP) = (bp, . . . , b1) appears in Figure B.1.

Proof. First, let us assume that K is algebraically closed. We begin by proving in-
finiteness for the minimal cases (painted in blue in the diagram in B.1). This is done
by pointing out some infinite families in repinj(Q̂p,n, Îp,n). This provides some infinite
families in repinj(Qp, Ip) thanks to Proposition 4.1 and the result follows in these cases
by Lemma 3.1.

Then the use of Lemmas 3.5, 3.3 is depicted in the diagram in B.1 to produce
further infinite cases. The corresponding symmetric cases are infinite by Lemma 3.4.
Induced by the quiver D̃4, we find an infinite family for block sizes (2, 2, 2), see Figure
1. The remaining cases can be deduced from the tame quiver Ẽ6 and are depicted in
Figure 2. For these to be admissible, one has to show the following claim:

Claim 4.4. Whenever a, b, c or e are oriented from a smaller space to a bigger one in
the D̃4- or Ẽ6-representations of Figures 1 and 2, then these maps are injective maps.
In particular, all the corresponding families belong to repinj(Q̂p,n, Îp,n).

Proof. The case 1
α
→ 2, such that no arrow ends in 1. In this case, the kernel of α is a

subrepresentation and any complement is a submodule. The result then follows since
our one-parameter family is made of indecomposables.

The second case is 2
b
→ 3 in the Ẽ6-case. The orientation is given by 1

a
→ 2

b
→ 3

(note that our claim also holds true in general). By our previous considerations, a is
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Figure 1: Infinite family induced by D̃4
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221

1
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ba
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b = (6, 6) b = (4, 1, 4) b = (1, 4, 6)

1 2

3 31

3 32

22 21

a

b

ddc
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e

f f

ba

f b

1

2

321

2221

a b
d

c
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ff ba f b

1 2

321

2221 2

3
a b

ddc

c

e

f ff ba f b

b = (1, 4, 4, 1) b = (1, 2, 1, 4) b = (1, 2, 1, 2, 1)

Figure 2: Infinite families induced by Ẽ6

injective. Then ker(b ◦ a)
a
→ ker(b) is a subrepresentation which has complements

being a submodule. Once again, the indecomposability allows us to conclude. �

Let us assume next that K is only an infinite field. The infinite families (Mt)t∈K over
K yielded by Figures 1 and 2 can all be expressed in Rinj(Q̂p, În) with entries in {0, 1, t}.
Then they give rise to families of nilpotent matrices (xt)t∈K with the same properties
and the last arguments of Remark 3.8 apply. �

Remark 4.5. It is worth noting that our infinite families arising in Tables 1 and 2 all
correspond to simpler families in rep(Q̂p,n−1, Îp,n−1) through Theorem 4.8 and Proposi-
tion 4.10. Up to symmetry and bending of some arrows, they all are of the form
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•1 •1

•1 •2 •1

•1 •1

•1

•1 •2

•2 •2

•2 •1

•1

•1

•1 •2 •2

•2 •2 •1

•1 •1

4.3 ∆-filtrations
We now investigate in more details repinj(Q̂p,n, Îp,n).This category turns out to be a cer-
tain category of ∆-filtered modules. We describe this now, following the constructions
in [9] and [6].

We define V := {1, ..., n}×{1, ..., p}, which equals the set of vertices of Q̂p,n; the first
entry increases from top to bottom and the second entry increases from left to right. A
total ordering on V is given by

(i, j) ≤ (k, l)⇔ i < k or (i = k and j ≥ l).

For (i, j) ∈ V , let S (i, j) be the standard simple representation at the vertex (i, j).
The projective indecomposables Pi, j of Â(p)n are parametrized by V and are given

by

P(i, j)k,l =

{
K if k ≥ i and l ≥ j,
0 otherwise.

together with identity and zero maps, accordingly. Given a simple representation
S (i, j), the epimorphism f : P(i, j) → S (i, j) is a projective cover of S (i, j) by [2,
III.2.4].

Let D(i, j) be the maximal quotient of P(i, j) which admits a filtration of simple
representations S (k, l), such that (k, l) ≤ (i, j). Then

D(i, j)k,l =

{
K if i = k and l ≥ j,
0 otherwise,

and the sequence is 0 ⊆ D(i, p) ⊆ · · · ⊆ D(i, j + 1) ⊆ D(i, j) with quotients S (i, x), j ≤
x ≤ p. The module D(i, j) is thus a maximal factor module of P(i, j) with composition
factors of the form S (k, l) with (k, l) ≤ (i, j).

The representations ∆ := {D(i, j) | (i, j) ∈ V} are called standard representations.
We define F (∆) to be the category of all ∆-filtered modules, that is, modules M which
admit a filtration {0} = Mk ⊆ Mk−1 ⊆ · · · ⊆ M1 ⊆ M0 = M for some k and such that for
every i, there is a module D ∈ ∆, such that Mi/Mi−1 � D.

The costandard representations ∇ := {∇(i, j) | i, j} and the category F (∇) are
defined dually and are given by

∇(i, j)k,l =

{
K if k ≤ i and l = j,
0 otherwise,

together with the obvious maps.
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Proposition 4.6.

F (∆) = {M ∈ rep(Q̂p,n, Îp,n) | Hom(S (i, j),M) = 0 for (i, j) ∈ V, j < p}
= repinj(Q̂p,n, Îp,n)

F (∇) = {M ∈ rep(Q̂p,n, Îp,n) | Mβk,l is surjective for all k, l}

Proof. We show that repinj(Q̂p,n, Îp,n) ⊂ F (∆) ⊂ {M | Hom(S (i, j),M) = 0 for j < p} ⊂
repinj(Q̂p,n, Îp,n); the proof for F (∇) is dual.

The first inclusion can be shown as follows: Let M ∈ repinj(Q̂p,n, Îp,n). We show
that M has a ∆-filtration inductively:

Define M0 = M. If Mi has been defined, then without loss of generality, we assume
that (Mi)k,l = Kak,l for all k, l. Define x to be the minimal integer, such that (Mi)x,n ,
0 (then (Mi)x−1,n = 0) and y to be the minimal integer, such that (Mi)x,y , 0 (then
(Mi)x,y−1 = 0 or y = 1). Then define Mi+1 to be the module

(Mi+1)k,l =


Kak,l−1 if k = x and l = y,
αk,l−1 ◦ · · · ◦ αk,y(Kax,y−1) if k = x and l > y,
Kak,l otherwise,

together with the induced natural maps. Then Mi/Mi+1 � D(x, y) and by induction M
is ∆-filtered.

The second inclusion is a consequence of the fact that soc D(i, j) = D(i, j)i,p.
Let M be a module, such that one horizontal map is not injective, say αi, j with

i maximal. Since αi+1, j is injective, it follows from the commutativity relation that
ker(αi, j) ⊂ ker(βi, j). So ker(αi, j) is a submodule of M isomorphic to a sum of copies of
S (i, j). Hence, the last inclusion follows. �

The algebra F (∆) is strongly quasi-hereditary [23], since EndK(D(i, j)) � K for all
(i, j) ∈ V and since the projective dimension of D(i, j) ∈ ∆ is at most 1: If i = n, then
D(i, j) is projective. Otherwise, a projective resolution is given by

0→ P(i + 1, j)→ P(i, j)→ D(i, j)→ 0.

In a similar way, the costandard modules have injective dimension at most 1.

4.4 F (∆) via a torsion pair
In the following, we translate the category F (∆) to the torsionless part of a certain
torsion pair in a similar manner as in V. Dlab’s and C. M. Ringel’s work [9]. We refer
to [2, Chapter VI] for basic definitions of Tilting Theory.

Define for each (i, j) ∈ V a module

T (i, j)k,l =

{
K if k ≤ i and l ≥ j,
0 otherwise.

Define T :=
⊕

i, j T (i, j).

Lemma 4.7. 1. F (∆) ∩ F (∇) = addT equals the set of all Ext-injective modules.
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2. The module T =
⊕

(i, j)∈V T (i, j) is a tilting module.

3. The pair (F (∇),H(T )), where

H(T ) := {Y ∈ rep(Q̂p,n, Îp,n) | Hom(T,Y) = 0},

is a torsion pair.

Proof. We know T (i, j) ∈ F (∆) ∩ F (∇) by Proposition 4.6. By [9], this is Ext-
injective, while there are exactly p · n indecomposable Ext-injective representations.
Thus, add T = F (∆) ∩ F (∇). Since the projective dimension of every standard repre-
sentation is at most 1, the module T is a tilting module by [9, Lemma 4.1 ff] and the
pair (F (∇),H(T )) is a torsion pair by [9, Lemma 4.2]. �

Let ϕ be the endofunctor of rep(Q̂p,n, Îp,n) defined by ϕ(M) = M/ηT (M), where
ηT (M) is the trace of M along T , that is, the largest submodule of M which lies in
add T . Let F (∆)/〈T 〉 be the category with the same objects as F (∆), and morphisms
given by residue classes of maps in F (∆): two maps f , g : X → Y are contained in the
same residue class if and only if f − g factors through a direct sum of copies of T .

Theorem 4.8. [9, Theorem 3] The functor ϕ induces an equivalence betweenF (∆)/〈T 〉
andH(T ).

Since the indecomposable representations inF (∆)/〈T 〉 are exactly the indecompos-
able representations in F (∆) except for the indecomposable representations contained
in add T [9], we obtain the following corollary.

Corollary 4.9. The categoriesH(T ) and F (∆) have the same representation type.

Thus, the knowledge of the category H(T ) gives further insights into F (∆). We
discuss the detailed structure of the former now.

Proposition 4.10. H(T ) � rep(Q̂p,n−1, Îp,n−1)

Proof. We show that the representations in H(T ) are exactly those representations
M ∈ F (∆), such that M1, j = 0 for all j.

Let M ∈ H(T ). Then M = ϕ(N) for some N ∈ F (∆), since ϕ is surjective.
Let d := d1, j be the left-most non-zero entry of dim N in the first row. Let v be a
non-zero element of M1, j. It generates a submodule T (tv, j) for some 1 ≤ tv ≤ n.
By taking the quotients by T (tv, j), one obtains a representation N′F (∆), such that
dimK N′1, j < dimK N1, j. Inductively, we see that the functor ϕ deletes all vector spaces
in the first row of M. Thus, M1, j = 0 for all j ∈ {1, ..., p}.

Let M be a representation of rep(Q̂p,n, Îp,n), such that M1, j = 0. Since Top(T(i, j)) =

S(1, j) for all i, we then have Hom(T,M) = 0, . �

Proposition 4.11. There are only finitely many isomorphism classes of indecompos-
able representations in F (∆) = repinj(Q̂p,n, Îp,n) if and only if p = 1 or n ≤ 2 or
(p, n) ∈ {(2, 3), (3, 3), (4, 3), (2, 4), (2, 5)}.
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Proof. Since the representation type of F (∆) = repinj(Q̂p,n, Îp,n) is the same as the
one of H(T ), the proof follows from [5], where the representation type of Â(p)n is
discussed. This last result is also easily recovered by arguments similar to the proof of
Lemma 4.2. �

We end the examination ofH(T ) by considering a particular example for which we
discussH(T ) by means of the Auslander-Reiten quiver of Â(p)n.

Example 4.12. Let p = 2 and n = 3. The Auslander-Reiten quiver of Â(2)3 is given
by

00
00
01
↘

↗

00
00
11
↘

00
01
01

↗

↘

00
01
11
↘

↗

→

01
01
01

↗

00
01
00
↘

00
11
11
→

01
01
11

↗

↘

01
12
11

↗

↘

→

00
00
10

↗

01
11
11

↗

↘
01
01
00
→

00
11
10

↗

↘

11
11
11
↘

→
01
11
10

↗

↘

00
11
00

↗

11
11
10
↘

00
10
10
→

01
11
00

↗

↘

11
21
10

↗

↘

→

01
00
00

↗

00
10
00
↘

11
11
00
→

11
10
10

↗

↘

11
10
00

↗

↘

10
10
10

↗

11
00
00
↘

10
10
00

↗

10
00
00

The modules T (i, j) are marked by bold dimension vectors; and the modules which
belong to the categoryH(T ) are marked by boxes.

5 Finite cases
In this section, we prove finiteness of all remaining cases which do not appear in (and
are not symmetric to one case of) diagram B.1, cf. Proposition 4.3.

Theorem 5.1. The parabolic P acts finitely on Np if bP = (b1, . . . , bp) or b(tP) =

(bp, . . . , b1) appears in diagram B.2.

Via reductions of Section 3.2, as visualized in diagram B.2, the following lemma
directly proves Theorem 5.1.

Lemma 5.2. Let bP ∈ {(5, k, 1), (1, 3, k, 1), (3, 1, k, 1), (1, 1, 1, k, 1)}. Then the number
of isomorphism classes in repinj(Qp, In)(dP) is finite.

The remainder of the section is dedicated to proving Lemma 5.2. Note that some
of the remaining cases are known to be finite. Namely, the case bP = (1, 1, 1, 1, 1) is
proved to be finite by L. Hille and G. Röhrle in [16]. Also, the case bP = (5, k) has been
shown to be finite by S. Murray [20]. Independently, the cases bP ∈ {(1, n−1), (2, n−2)}
have been proved to be finite by the second author and L. Evain in [7].

The proof of Lemma 5.2 is structured as follows: We begin by re-proving Murray’s
case bP = (5, k) in Subsection 5.3 and make use of certain techniques which will be
introduced in Subsections 5.1 and 5.2. Afterwards, we generalize these results to the
four cases of Lemma 5.2 in Subsection 5.4. Only elementary techniques of linear
algebra are used so that everything holds over an arbitrary field K.
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5.1 Notation
We introduce first the combinatorial data which is the central object of study in the
remaining of this section. We associate to any partition λ := (λ1 > · · · > λg) of n the
corresponding left-justified Young diagram with λi boxes in the i-th row. The box in
the i-th row and the j-th column is called box (i, j).

Definition 5.3. Given h ∈ N∗, a labeled Young diagram of h-tuples is a Young dia-
gram together with an h- tuple (γ1

i, j, . . . , γ
h
i, j) associated to each box (i, j) in the Young

diagram.

Given an element of repinj(Q2, In) of dimension (l, k)

U Vf|U f
(1)

we find a corresponding labeled Young diagram as follows.
We choose a basis of V (resp. U) such that f (resp. f|U) is in Jordan normal form

with partition λ = (λ1 > · · · > λg) (resp. µ = (µ1 > · · · > µh)) of k (resp. l) in a basis of
V (resp. U) the form (vi, j)i6g

j6λi

(resp. (um,t)m6h
t6µm

). That is,

f (vi, j) =

{
vi, j−1 if j > 2
0 else , f (um,t) =

{
um,t−1 if t > 2
0 else .

For each i, we set vi := vi,λi (resp. um := um,µm ). We consider the decomposition
um =

∑
i, j γ

m
i, jvi, j. Then the corresponding labeled Young diagram is the Young diagram

associated to λ together with an h-tuple γi, j := (γ1
i, j, . . . , γ

h
i, j) ∈ W := Kh associated to

each box (i, j).

Example 5.4. Let λ := (4, 2, 1) and µ = (2, 1). Assume that u1 = 2v1,2 − 3v1,1 − 4v2,2 +

5v2,1 + v3,1, u2 = 6v1,1 − 7v2,1 + v3,1, then we obtain the labeled Young diagram

f
←

(−3, 6) (2, 0) (0, 0) (0, 0)

(5,−7) (−4, 0)

(1, 1)

The γm
i, j are not unique in general. However, since U = 〈 f t(um)〉t,m, they are enough

to recover the isomorphism class of the original representation. We will prove that, up
to GL(U) × GL(V)-conjugacy, the γm

i, j can all be taken in {0, 1} whenever l 6 5. This
implies that there are finitely many non-isomorphic representations in this case.

5.2 Base changes
The aim of this subsection is to introduce some combinatorial elementary moves on
labeled Young diagrams which will be used in 5.6 and 5.7. The procedure will be to
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reduce the labeled Young diagram, that is, we will use some non-zero entries γm
i, j as

pivots in order to kill (that is, to bring to 0 by a base change) some other entries. The
following proposition is well known [17].

Proposition 5.5. Performing a base change of the formvi, j ←
∑
i′, j′

ω
i′, j′

i, j vi′, j′


i, j

∀i, j, i′, j′ : ωi′, j′

i, j ∈ K (2)

keeps f in Jordan normal form if and only if

ω
i′, j′

i, j =

{
0 if j′ > j or λi − j > λi′ − j′

ω
i′, j′−1
i, j−1 if 2 6 j′ 6 j and λi − j 6 λi′ − j′ (3)

Note that the (ωi′, j′

i,λi
)i,i′, j′ are enough to determine all the (ωi′, j′

i, j )i, j,i′, j′ thanks to the

condition (3). In particular we can afford setting ωi′, j′

i := ω
i′, j′

i,λi
and writing the base

change (2) via
(
vi ←

∑
i′, j′ ω

i′, j′

i vi′, j′
)

i
. A bit more generally, given indices ji for each i,

we define a base change of the form (2) by the formulavi, ji ←
∑
i′, j′

ω
i′, j′

i vi′, j′


i

, setting ωi′, j′

i, j :=
{
ω

i′, j′+ ji− j
i if 1 6 j′ + ji − j 6 λi′

0 else.

Upon above notation and for any fixed i, j, the base changes of the following forms
always satisfy the condition (3)

Mi : vi ← ωvi, with ω ∈ K∗

Ci, j : vi, j ← vi, j +
∑
i′6i
j′6 j

(i′, j′),(i, j)

ωi′, j′vi′, j′ , ∀i′, j′ : ωi′, j′ ∈ K (4)

and other vi′ (i′ , i) unchanged. The same holds for the following base change for any
(i0, j0), (i1, j1) such that i0 < i1 and j0 > j1.

B(i0, j0),(i1, j1) :
(

vi0, j0 ← vi0, j0 + ωvi0, j1
vi1, j1 ← vi1, j1 − ωvi0, j1

)
, ω ∈ K

Tools 5.6. These base changes have interesting effects in our situation. We explain
some of them on the coefficients γm

i, j and pictorially on diagrams drawn as in 5.4.

M Mi allows to multiply (γm
i, j)m, j by 1

ω
. Pictorially, this means that we can multiply

row i on a diagram by any non-zero scalar.

C Assume that γm
i, j = 1 for some m, i, j and γi, j′′ = 0 for any j′′ > j. A base change

of the form Ci, j allows to set γm
i′, j′ to 0 for any (i′, j′) , (i, j) such that i′ 6 i,

j′ 6 j without modifying γi′, j′ for any other couple (i′, j′) (take ωi′, j′ := γm
i′, j′ in
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(4)). Moreover, if γm′
i, j′ = 0 for any j′, m′ , m, then the γm′

i′, j′ are not modified
for any i′, j′ and m′ , m. Pictorially, this means the following. Assume that
the rightmost non-zero tuple in row i appears in column j and is of the form
(∗, ∗, . . . , 1, ∗, . . . , ∗), then the m-th entry of any box in the quadrant northwest to
(i, j) can be killed while the tuples outside this quadrant are unchanged. More-
over, if all the m′-entries (for some m′ , m) are zero in row i, then no m′-th entry
is modified in the labeled Young diagram.

B Assume that (i0, j0), (i1, j1) are such that i0 < i1, j0 > j1, γi, j = 0 for any i, j such
that i = i0, j < {1, j0} or i = i1, j < {1, j1}. Assume also that γi0, j0 = γi1, j1 . A base
change of the form B(i0, j0),(i1, j1) preserves all the tuples γi, j except when i = i0,
j = 1 where the base change implies γi0,1 ← γi0,1 + ωγi1,1

Naturally, Proposition 5.5 and subsequent remarks also hold with (um,t)m,t instead
of (vi, j)i, j and µ instead of λ. The effect on the γm

i, j is easier to describe. For instance,

a base change of the form
(
um ←

∑
m′ ω

m′
m um′

)
m

induces an action on W, the space of
tuples, as follows: for each (i, j) we get γi, j ← Aγi, j where A is the h × h-matrix whose
entry in line m and column m′ is ωm′

m .
We describe below a few base changes of interest which always satisfy condition

(3). Given s ∈ [[1, h]], we define Ws as the subpace of W generated by the first s vectors
of the canonical basis (e1, . . . , eh) and set W0 := {0}. Given j, define

D j :

um ←
∑
m′
ωm′

m um′


m

with


S = [[m1, . . . ,m2]] := {m | µm = j},
A := (ωm′

m )m,m′ ∈ GLh,
∀s < S , Aes = es, ∀s ∈ S , Aes ∈ Wm2 .

(5)

Given m and j < µm, we define

Em, j :
(
um′ ← um′ + ωm′um, j

)
m′ | µm′> j

, ∀m′ : ωm′ ∈ K

and such that every remaining um′ is unchanged.

Tools 5.7. These base changes allow the following actions on the coefficients γm
i, j.

D Given (im1 , jm1 ), . . . , (im1+p, jm1+p) such that the p different (]S )-tuples (γm
is, js

)m∈S

are linearly independant, D j allows to set each (γm
is, js

)m∈[[1,m2]] ∈ Wm2 to es ∈ Wm2 ,
stabilizing the es′ for s′ < S .

E Given m, assume that there exists exactly one index i such that γm
i,µm

is non-zero
(note that γm

i′, j′ = 0 whenever j′ > µm). Then a base change of the form Em, j

( j < µm) allows to kill the tuple γi, j, without modifying any γi′, j′ with j′ > j (set
ωm′ := γm′

i, j/γ
m
i,µm

). Pictorially, if there is a single tuple with non-zero m-th entry
in the column µm, then we can kill any tuple lying on the same row left of this
one without modfying tuples on columns right to the annihilated one.

5.3 Reductions
With the combinatorial tools of the previous subsection, the game is to reduce every
possible diagram as in 5.4 to a diagram with coefficients in {0, 1}. First note that, for
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our basis (vi, j)i, j and (ui, j)i, j, we have γm
i, j = 0 whenever j > µm since um ∈ Ker( f µm ). In

particular, only columns of index less or equal than µ1 may have non-zero tuples. The
usual procedure will consider columns from right to left and, in each column, we will
proceed from bottom to top. We prove the following proposition.

Proposition 5.8. With base changes of the forms 5.6 and 5.7, we can reduce the setup
to a case where the labeled Young diagram satisfies the following conditions

1. If µ = (3, 2), then there is an index i0, such that γi0,1 = (1, 1). Otherwise, there
might be one index i∗, such that γi∗,1 , 0 and there exists at most one non-zero
tuple γi∗, j with j > 2.

2. Each tuple γi, j with (i, j) , (i0, 1) is either zero or of the form es for some s, such
that µs > j.

3. In each row i , i∗ there exists at most one non-zero tuple γi, j.

4. In each column j , 1, for each s, there is at most one γi, j equal to es. For each s
there exists at most one index i , i∗ such that γi,1 equal to es.

At some point of the proof, we will meet some indices called i∗ and i0. They should
be seen as candidates to be the specific indices of the proposition. However, we will
meet some cases where γi0,1 = es or γi∗,1 = 0. In these cases, the index should be
discarded.

Proof. We distinguish three main cases, depending on µ.

a) µ = (2a, 1l−2a) for some a ∈ N.

b) µ = (a, 1l−a) for some a > 3,

c) µ = (3, 2),

Case a) Set j := µ1 ∈ {1, 2}.

First step of case a): We focus at first on column j.

We initialize s to 0 and apply the following iterative procedure for decreasing i from
max{i|λi > j} to 1. During each loop, no γi′, j for i′ > i is modified. After each loop, we
will have γi, j ∈ {0, es} while γs′

i′, j = 0 for any s′ 6 s and i′ < i. In particular, we will
never begin a loop with γi, j ∈ Ws \ {0}.

Given i, if γi, j , 0, then γi, j < Ws. So a base change of the form D j sends γi, j to
es+1 and preserves e1, . . . es. Apply then a base change of the form Ci, j to bring any
γs

i′, j′ to 0 for any i′ 6 i, j′ 6 j, (i′, j′) , (i, j). If j = 2, apply also a base change of the
form Es,1 to provide γi,1 = 0. Set is+1 := i for later use and s← s + 1.

If γi, j = 0, we do nothing.
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We are thus left with a picture of the following form. Note that this gives the desired
result when j = 1, that is when µ = (1l).

(0, 0, ∗) 0 0
0 (0, 1, 0) 0

(0, ∗) 0 0
(0, ∗) 0
0 (1, 0)

(∗) 0
(∗)

i2

i1

(6)

Second step of case a): All that remains to be done is to reduce the first column in
the case µ1 = 2. This will be achieved using base changes on U of the form D j where
the matrix A is in upper triangular form.

We initialize a variable subset S ⊆ [[1, h]] to ∅ and we apply an iterative procedure
for decreasing i = g, . . . , 1. After each loop the above shape (6) is preserved and no
γi′,1 is modified for i′ > i. Moreover, we will have γs

i′,1 = 0 for any i′ < i and s ∈ S . In
particular, we will have γi,1 < Ws \Ws−1 for any s ∈ S at the beginning of every loop.

Given i such that γi,1 , 0:
• We define s ∈ [[1, h]] via γi,1 ∈ Ws \Ws−1.
• If s > a (resp. if s 6 a) then a base change of the form D1 (resp. D2) brings γi,1

to es, fixing each es′ for s , s′. Meanwhile, among the previously fixed tuples,
only γis,2 may have changed (if s 6 a), and the new tuple still lies in Ws, since
the matrix A in (5) of this particular base change is triangular. In this case, since
is′ > is for s′ < s, base changes of the form Cis′ ,2 (s′ 6 s) and Mis allow to bring
γis,2 back to es.
• Applying Ci,1 allows then to set γs

i′,1 = 0 for any i′ < i.
• Set S ← S ∪ {s}.

If γi,1 = 0, we do nothing.

Case b). Set µ2 := 0 if h = 1, that is, if µ = (µ1). We have µ1 > µ2 and the only
non-zero coefficients γm

i, j with µ2 < j 6 µ1 arise when m = 1.

First step of case b): Iteratively for decreasing j = µ1, . . . , µ2+1 we apply the following
algorithm.
• Consider the lowermost non-zero tuple in column j (if it exists) and denote by i j

the index of its row.
• Apply a base change of the form Mi j to bring γi j, j to e1.
• Apply a base change of the form Ci j, j to kill the first entry of tuples in the quad-

rant northwest to (i j, j) to zero. In particular, γi′, j = 0 when i′ < i j.
Note that this gives Proposition 5.8 if h = 1.
From now on, let h > 2, that is, µ2 = 1. All that remains to be done is to modify the

entries on the first column. Some difficulties arise when considering non-zero tuples
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γi j,1 for some 1 < j 6 µ1 − 1. Since l 6 5, either h = 2, so all such non-zero tuples are
colinear (multiples of (0, 1)), or h > 3, so µ1 6 3. In the first case, base changes of the
form B(i j, j),(i j′ , j′) for j > j′ kill all γi j′ ,1 but the lowermost non-zero one (if exists). In
the second case, we can apply a base change of the form E1,iµ1

to kill γiµ1 ,1. In this last
case, the only possible remaining non-zero tuple γi j,1 arises for j = 2.

In a compatible way to Proposition 5.8, we define i∗ := i j where j is the index such
that γi j,1 , 0, if exists. We are thus left with a picture of the following form.

(0, ∗) 0 0 0 0 0
0 0 0 0 (1,0) 0
0 0 (1,0) 0

(0, ∗) 0 0
(0, ∗) (1,0)

(∗) 0
(∗)

i5
i3

i2 = i∗

(7)

µ1

Second step of case b):
We initialize S to ∅ and we apply an iterative procedure for decreasing i = g, . . . , 1.

After each step the above shape (7) is preserved (with µ2=1) and for each i′ > i, the
tuple γi′,1(∈ {0} ∪ {es | s ∈ S ∪ {2}}) is preserved (up to a possible permutation of the
coordinates when i = i∗). The only case with i′ > i, γi′,1 = e2, 2 < S will arise when
i′ = i∗. We will also have γs

i′,1 = 0 for any i′ < i and any s ∈ S . In particular, we will
have γi,1 < Ws \Ws−1 for every s ∈ S at the beginning of every loop.

Given i, if γi,1 , 0, we consider the following cases:
• Assume that (i > i∗) or (i < i∗ and γi,1 < Kγi∗,1) or (i∗ does not exists).

Define s as the index such that γ ∈ Ws \Ws−1. We have s < S .
– If s = 1, apply Mi to bring γi,1 to e1.
– If s , 1, a base change of the form D1 brings γi,1 to es, thereby fixing

each tuple in the picture which is given by es′ (s , s′). Note that γ1
i,1 = 0

whenever i < i∗ and γi∗,1 = e2, so s , 2 and γi∗,1 is preserved.
Then apply a base change of the form Ci,1 to kill each γs

i′,1 (i′ < i).
Set S ← S ∪ {s}.

• If i = i∗, then γi,1 ∈ Ws \ Ws−1 for some s , 1. A base change of the form D1
turns γi,1 to es, fixing each es′ (s′ , s).
Define the map σ : [[1, g]] → [[1, g]] via σ(s) = 2, σ(s′) = s′ + 1 for 2 6 s′ < s,
and σ(s) = s otherwise. An additional base change of the form D1 sends each
es′ to eσ(s′). Set S ← σ(S ), then.

• If i < i∗ and γi,1 ∈ Kγi∗,1, then a base change of the form Mi brings γi,1 to e2.
Apply Ci,1 to kill each γ2

i′,1 (i′ < i), then. Set S ← S ∪ {2}.

If γi,1 = 0, we do nothing.
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Case c): µ = (3, 2).

First step of case c): Arguing as in case a) with µ = (2, 1), we can reduce columns 3
and 2. Then there exists a single index i3 such that γi3,3 , 0, and γi3,3 = (1, 0). There
also exist at most 2 indices i = i2, i∗, such that γi,2 , 0 and we obtain γi2,2 = (0, 1) and
γi∗,2 = (1, 0). Moreover, i3, i2, i∗ are distinct and i∗ > i3.

Next we apply E1,1 and E2,1 to kill γi3,1 and γi2,1. We also apply Ci3,3, and Ci∗,1
(resp. Ci2,2) to set γ1

i,1 = 0 (resp. γ2
i,1) for i 6 max(i3, i∗) (resp. i 6 i2). The picture then

looks as follows

0 0 0 0
0 (0, 1) 0 0

(0, ∗) 0 0
0 0 (1, 0)

(0, ∗) 0 0
(0, ∗) (1, 0)

(∗) 0
(∗)

i2

i3

i∗

Second step of case c): Consider now the lowermost non-zero tuple on the first
column γi0,1. We will conclude using base changes on U and V; however those base
changes used on U are always of the form

u1 ← αu1, u2 ← βu2. (8)

• Assume that γi0,1 < Ke1 ∪ Ke2. Then i0 < {i3, i2, i∗} and i0 > i∗ (otherwise
γ1

i0,1
= 0).

A base change of the form (8) followed by base changes of the form Mi1 , Mi2 ,
Mi3 brings γi0,1 to (1, 1) without modifying column 2 and 3.
Apply a base change of the form Ci0,1 to kill any γ2

i′,1 (i′ < i0) and note that the
corresponding entries γ1

i′,1 are changed, thereby. But, in particular if i∗ exists, the
whole tuple γi∗,1 is killed by an additional base change of the form Ci∗,2.
The next lowermost non-zero couple on the first column γi,1 can then be brought
to (1, 0) by a base change Mi and allows to kill any γi′,1 (i′ < i) by a base change
of the form Ci,1.

• Assume that γi0,1 ∈ Kes for some (s ∈ {1, 2}). We apply the following procedure
for decreasing i = i0, . . . , 1. At the beginning of each loop i, we will have γi,1 ∈

Kes for some s ∈ {1, 2}.
Given i, assume that γi,1 , 0 (otherwise do nothing and go over to the next
smaller i):

– If i , i∗, then a base change of the form Mi allows to set γi,1 to es for some
s ∈ {1, 2}.
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Apply then Ci,1 to get γs
i′,1 = 0 (i′ < i). Note that this implies γi′,1 ∈ Kes′

(i′ < i) where s′ is the index, such that {s, s′} = {1, 2}.

– If i = i∗, then γi,1 ∈ Ke2. A base change of the form (8) on u2 followed by
base change Mi2 yields γi,1 = e2 without modifying entries in column 2 and
3. �

Corollary 5.9. The number of P-orbits in Np is finite if bP = (5, k) for some k.

5.4 Main cases
Relying on the results of the previous subsection, we now indicate how to deduce
finiteness in the four maximal cases of diagram B.2.

Proof of Lemma 5.2. Let bP = (5, k, 1). We consider quadruples of the form (U,V, f , ϕ)
with (U,V, f ) giving rise to a representation of repinj(Q2, In) of dimension (5, k + 6) as
in (1) and ϕ ∈ V∗, such that U ⊂ ker(ϕ) and ker(ϕ) is f -stable. The corresponding
representation of repinj(Q3, In) is

U ker(ϕ) V

f|U f|Ker(ϕ) f

We consider these quadruples up to isomorphism, that is, up to an isomorphism of
repinj(Q2, In) together with a scalar multiplication on ϕ. Given such (U,V, f , ϕ), we first
consider the triple (V, f , ϕ). It follows from a dual statement to [7, Lemma 5.3] that
there exists a basis (vi, j)i, j of V , such that f is in Jordan normal form in this basis and
such that there exists i• with λi < λi• for any i > i• and ϕ(vi, j) = 0 unless (i, j) = (i•, λi• ).

We can carry out the whole reduction procedure of Section 5.3 applied to the pair
(U,V, f ) while parallely considering how the applied base changes modify ϕ. Within
the used base changes on V of Tools 5.6, (namely M, C and B), only Mi0 can mod-
ify ϕ and this modification is just a scalar multiplication. In particular, ker(ϕ) =

〈vi, j〉(i, j),(i•,λi• ) and there are at most ]{λi | i ∈ [[1, g]]} different isomorphism classes
(U,V, f , ϕ) for each isomorphism class (U,V, f ). Finiteness follows for the case bP =

(5, k, 1).

We will now consider the cases bP ∈ {(1, 3, k), (3, 1, k), (1, 1, 1, k)}. For these, we
will reduce to a finite number of isomorphism classes, applying base changes on U and
on V , such that every base changes on V is one of the three tools 5.6.

Let us consider the case bP = (1, l, k), l 6 3. It amounts to classify quadruples
(u′,U,V, f ) with (U,V, f ) as in previous subsections, dim U = l + 1, dim V = k + l + 1
and u′ ∈ U ∩ ker f . The quadruples should be considered up to isomorphism which is
given in the corresponding representation context and arises by base changes on U, V
and scalar multiplication on u′. Using the notation introduced in 5.1, we distinguish 2
cases: either a) µ1 6 2 or b) µ ∈ {(4), (3), (3, 1)}.
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• In case a), we carry out the reductions of Section 5.3 on (U,V, f ) in order to get
a labeled Young diagram as in Proposition 5.8. Then, writing u′ =

∑
ηmum,1, we

proceed to the following base change on U

um ← ηmum for each m, such that ηm , 0.

Meanwhile, in the labeled Young diagram, each em has been changed to ηmem.
Since for each row i, there is at most one box (i, j), such that γi, j , 0, base
changes on V of the form Mi allow to recover the original labeled Young diagram.
We, thus, have our finiteness result: each situation can be reduced to a case
where (U,V, f ) fulfills the conditions of Proposition 5.8 and u′ =

∑
εmum with

εm ∈ {0, 1} for all m.
• In case b), we first assume that u′ ∈ f µ1−1(U). This way, no infinite family can

arise, since dim f µ1−1(U) = 1 in all provided cases.
The only remaining case to consider is µ = (3, 1) and u′ < f 2(U). Choosing
u1 < ker f 2, u1,t := f 3−t(u1) and u2 := u′, a basis of U arises in which f is in
Jordan normal form. It is then possible to carry out the reductions of Section
5.3, using as base changes on U only those of the form (8) (and accordingly
u′ ← βu′). Indeed, the second and third column of the labeled Young diagram
can be treated as in the first step of case b) of Section 5.3 without the use of base
change E1, j. The first column can then be reduced as in the second step of case
c) of Section 5.3.

The case (l, 1, k) (l 6 3) amounts to classify quadruples (ϕ,U,V, f ) with (U,V, f )
as in previous subsections, dim U = l + 1, dim V = k + l + 1 and ϕ ∈ U∗, such
that ker(ϕ) is f -stable. The isomorphisms are given by base changes on U, V and
scalar multiplication on ϕ. Since f is nilpotent and dimK U/ kerϕ = 1, we know that
f (U) ⊂ ker(ϕ) and given a basis (um,t)m,t in which f is in Jordan normal form, ϕ is
completely determined by (ϕ(um))m.

We can then proceed as in the (1, l, k)-case. Namely, in case a) we argue in the same
way, with base changes on U given by (um ← (ϕ(um))−1um)ϕ(um),0; here um := um,µm .
In case b), the generic cases happen with µ = (3, 1) and ker(ϕ) , ker( f|U)2. In this
situation, we choose u1 ∈ ker(ϕ) \ ker(( f|U)2) and obtain ker(ϕ) = Ku1 ⊕ K f (u1) ⊕
K f 2(u1). Choose u2 ∈ ker( f ) \ K f 2(u1) in order to get a basis in which f is in Jordan
normal form. Then the same arguments as in the (1, 3, k)-case apply.

The last case to consider is bP := (1, 1, 1, k). It amounts to classify quintuples
(U′′,U′,U,V, f ) with (U,V, f ) as in previous subsections, U′′ ⊂ U′ ⊂ U all f -stable
and (dim U′′, dim U′, dim U, dim V) = (1, 2, 3, k + 3). We have 3 cases to consider:

• If µ = (3), by Proposition 5.8 we can reduce to a finite number of choices for
(U,V, f ). Then U′′ = Ku1,1 and U′ = U′′ ⊕ Ku1,2 follow without a choice and,
thus, finiteness.
• Assume that µ = (2, 1).

– If U′ = ker f|U the finiteness follows from the classification of quadruples
(U′′,U,V, f ) which has been achieved in the case bP = (1, 2, k).
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– If U′ , ker f|U , then f (U′) is its only f -stable subspace of dimension 1.
So U′′ = f (U′) = f (U) and finiteness follows from the classification of
quadruples (U′,U,V, f ) which has been achieved in the case bP = (2, 1, k).

• Assume that µ = (1, 1, 1). Choose a basis (u1, u2, u3) of U, such that U′′ = Ku3,
U′ = Ku3 ⊕ Ku2. Without modifying these spaces, we can apply base changes
of the form

u1 ← ω1
1u1 + ω2

1u2 + ω3
1u3, u2 ← ω2

2u2 + ω3
2u3, u3 ← ω3

3u3.

as introduced in Subsection 5.2. The reduction of the first column of the labeled
Young diagram can then be achieved as in the second step of case a) of Section
5.3 (with p = 0).

We have shown finiteness for bP ∈ {(1, l, k), (l, 1, k), (1, 1, 1, k) | l ≤ 3, k ∈ N}. Enlarging
these tuples bP by an extra 1 on the right means that we have to add an extra data ϕ ∈ V∗

to the considered representations of repinj(Qp, In) as explained in case (5, k, 1). These
cases can be dealt with in the very same way as above, where we deduced the (5, k, 1)-
case from the (5, k)-case. �

6 Applications to Hilbert schemes and commuting va-
rieties

In this section, we assume for simplicity that K is algebraically closed of characteristic
zero.

A motivation to consider the classification of nilpotent P-orbits in p comes up in
the context of commuting varieties and nested punctual Hilbert schemes [7].

Consider the nilpotent commuting variety of p

C(Np) := {(x, y) ∈ Np × Np | [x, y] = 0},

an important subvariety of the commuting variety C(p) := {(x, y) ∈ p × p| [x, y] = 0} of
p. We refer to [22, 21], (resp. [19, 14], resp. [13, 7]) for ground results on commut-
ing varieties and nilpotent commuting varieties of semisimple algebras (resp. Borel
subalgebras, resp. parabolic subalgebras).

Clearly, P acts diagonally via conjugation on both varieties. For x ∈ Np, we define
px = {y ∈ p | [x, y] = 0} and say that x is distinguished if px ∩ sln ⊂ Np. A P-orbit in
Np is said to be distinguished, if all of its elements are distinguished.

Proposition 6.1. 1. If P acts finitely onNp, then dimC(Np) = dim p−1. Moreover,
the irreducible components of maximal dimension are in one-to-one correspon-
dence with the distinguished orbits in Np.

2. If there are infinitely many distinguished P-orbits in Np, then dimC(Np) >
dim p.
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Proof. We begin by proving 1 and assume that the number of P-orbits in Np is finite.
Then we can decompose C(Np) into finitely many disjoint subsets as follows:

C(Np) =
⋃

P.x∈Np

P.(x, px ∩ Np) (9)

It follows from [7, (14)], that dim P.(x, px ∩ Np) = dim p − codimpx (px ∩ Np). Since
px = K · id⊕(px∩sln), we see that codimpx (px∩Np) > 1 with equality if and only if x is
distinguished. In this case, P.(x, px ∩ Np) = P.(x, px ∩ sln) is irreducible. We still have
to see that distinguished elements exist. An example is given by the regular nilpotent
element in Jordan normal form.

We show 2 and assume that there are infinitely many distinguished P-orbits in Np.
It follows from (9) that C(Np) contains an infinite union of (dim p − 1)-dimensional
disjoint constructible subvarieties. The result follows. �

Lemma 6.2. Let x ∈ Np and M be a corresponding representation of repinj(Qp, In)(dP).
Then x is distinguished if and only if M is indecomposable.

Proof. If x is not distinguished then x commutes with a semisimple element s ∈ sln∩p.
Up to P-conjugacy, we can assume that s is a diagonal matrix with entries α1, . . . , αn.
Denote by β1, . . . , βl (l > 2) the distinct eigenvalues of s and by Ji := { j|α j = βi} for
each i ∈ [[1, l]].

Let glJi be the set of matrices A ∈ gln, such that Ae j ∈ 〈ek | k ∈ Ji〉 if j ∈ Ji

and Ae j = 0, otherwise. This means that
⊕

i glJi is (up to reordering of the ek) a
block-diagonal Levi subalgebra of gln which equals the centralizer of s.

Then we can decompose x =
∑l

i=1 xi with xi ∈ glJi ∩ p. Note that glJi ∩ p is a
parabolic subalgebra of glJi .

Given, i, j, define di
j := ](Ji ∩ [[1, . . . d j]]) and di := (di

1, . . . , d
i
p). Then, M �

⊕
Mi

where Mi is a representation of repinj
di (Qp, In) corresponding to xi.

Assume now that we have a decomposition into non-trivial summands M = M1 ⊕

M2. Denote by d1 and d2 the respective dimension vectors of M1 and M2. Then we can
reason backwards and split [[1, n]] into J1, J2 via J1 :=

⋃
j[[d1

j−1 +d2
j−1 +1, d1

j +d2
j−1]] and

J2 :=
⋃

j[[d1
j + d2

j−1 + 1, d1
j + d2

j ]], setting d0 := 0. Then, we can assume that x = x1 + x2
with xi ∈ glJi so x commutes with the diagonal matrix of sln whose diagonal entries
α1, . . . , αn are defined via α j := 1/

∑
j d1

j (resp. α j := (−1)/
∑

j d2
j ) if j ∈ J1 (resp.

j ∈ J2). �

As a consequence, we see that in the critical cases of Proposition 4.3, namely bP ∈

{(6, 6), (2, 2, 2), (4, 1, 4), (1, 4, 6), (1, 4, 4, 1), (1, 2, 1, 4), (1, 2, 1, 2, 1)}, we always have a
one-parameter family of indecomposables of repinj(Q̂p, În) and hence of repinj(Qp, In).
So dimC(Np) > dim p holds true in these cases. It is unclear whether this last property
holds whenever P acts onNp with infinitely many orbits (e.g. if b = (2, 3, 2)). However,
it is sometimes easy to extend the indecomposables of Figures 1 and 2 to indecompos-
ables with greater dimension. For instance, Figure 3 provides an indecomposable in
the case b = (k, k′) with k, k′ > 6. We can therefore state
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Figure 3: d = (k, n) with k, n − k > 6

Proposition 6.3. If P is a maximal parabolic, then dimC(Np) = dim p − 1 if and only
if one of the blocks of p is of size at most 5. Otherwise, dimC(Np) > dim p.

In correspondence with these commuting varieties, one can study the so-called
nested punctual Hilbert schemes. These Hilbert schemes were introduced in [8]. We
refer to [7, Definition 3.7] for a scheme-theoretic definition. Such scheme depends on
a non-decreasing sequence d = (d1, . . . , dp) and we will focus on Hilbert schemes on
the plane A2 which we denote by Hilb[d]

0 (A2). We recall that, set-theoretically,

Hilb[d]
0 (A2) = {z1 ⊂ z2 ⊂ · · · ⊂ zp | zi is a subscheme of A2 of length di}.

Equivalently, we can consider Hilb[d]
0 (A2) as the set of sequences of inclusions I1 ⊃

· · · ⊃ Ip with Ii an ideal of codimension di in K[X,Y].
Let us consider the open subvariety

Ccyc(Np) := {(x, y) ∈ C(Np)| ∃v ∈ Kn s.t.
〈
xiy j.v

〉
i, j = Kn},

of C(Np) now, that is, the set of couples admitting a cyclic vector. We will use the
following result of [7, Proposition 3.13]. Recall that given P, denote the block sizes of
p by bP = (b1, . . . , bp) and that we define dP = (d1, . . . dp) with di =

∑
j6i b j.

Proposition 6.4. There is a one-to-one correspondence between the irreducible com-
ponents of Ccyc(Np) of dimension m + dim p − n and the irreducible components of

Hilb[dP]
0 (A2) of dimension m, where dP := (n − dp−1, . . . , n − d1, n)

A deeper connection between related schemes is expressed in [7, Proposition 3.2].
Let us mention that there always exists a component of Hilb[dP]

0 (A2) of dimension n−1,
the so-called curvilinear component. Proposition 6.4 is used in [7, Theorem 7.5]show
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that Hilb[2,n]
0 (A2) and Hilb[n−2,n]

0 (A2) are equidimensional of dimension n − 1. With the
results of the present paper, we are now able to state the following:

Theorem 6.5. 1. If there are finitely many nilpotent orbits in the action of P on its
Lie algebra p, then dim Hilb[dP]

0 (A2) = n − 1. In particular, this is the case for
d = (k, n) with k 6 5 or n − k 6 5.

2. If d = (k, n) with k > 6 and n − k > 6 then dim Hilb[d]
0 (A2) > n.

Proof. Using the transposition t(·) as in Subsection 3.2, we see that it provides an
isomorphism C(Np) � C(Ntp). Since Ccyc(Ntp) is an open subvariety of C(Ntp), the first
statement of the theorem is a consequence of Propositions 6.1 and 6.4.

For the second assertion, for simplicity of notation, we will focus on p instead of tp.
We need to show that a component of dimension at least dim p provided by Proposition
6.3 still appears in Ccyc(Np). This is done as follows. From Figure 3, we build a one-
parameter family of non-conjugate elements which are distinguished by Lemma 6.2.
That is, we let xt ∈ Np (t ∈ K×) be defined by its action on the canonical basis (ei)i∈[[1,n]]
of Kn via

en → · · · → ek+5 → ek+4 → ek+3 → ek−1 → ek−5 → ek−6 → · · · → e1 → 0
ek+2 → ek+1 → ek → ek−1 + ek−4
ek−2 → ek−3 → ek−4 → tek−5

where an arrow ei → z means that xt(ei) := z. In Jordan form for general t ∈ K, this
gives

en → en−1 → en−2 → en−3 → . . .

ek+2−

(1 + t)ek+5
→

ek+1−

(1 + t)ek+4
→

ek−

(1 + t)ek+3
→

ek−4−

tek−1
→ 0

ek+1−

ek−2 − ek+4
→

ek−

ek−3 − ek+3
→ 0

where the first line is as before (note that n − 3 > k + 3). Define yt in this new basis via

en → ek+2 − (1 + t)ek+5 → ek+1 − ek−2 − ek+4 → α(ek − (1 + t)ek+3)
en−1 → ek+1 − (1 + t)ek+4 → ek − ek−3 − ek+3 → α(ek−4 − tek−1)
en−2 → (ek − (1 + t)ek+3)→ 0
en−3 → (ek−4 − tek−1)→ 0
ei → 0 if n − 4 ≥ i ≥ k + 3 or i = k − 1 or k − 5 ≥ i ≥ 1

with α := t if n = k+6 and α := 0 if n > k+7. It is straightforward to check that y(U) ⊂
U, where U = 〈ei〉i∈[[1,k]]. Then (xt, yt) is a nilpotent commuting pair of p for general t,
which admits en as a cyclic vector. Hence,

⋃
t C

cyc(Np)∩
(
P.(xt, p

xt ∩ Np)
)

is an infinite
union of (dim p−1)-dimensional disjoint constructible subvarieties of Ccyc(Np). Hence
dimCcyc(Np′ ) > dim p and the result follows from Proposition 6.4. �

Remark 6.6. In the first case of the previous theorem, the same proof together with
Lemma 6.2 yields a more precise result. Namely, the irreducible components of Hilb[dP]

0 (A2)
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of maximal dimension are in one-to-one correspondence with distinguished orbits P.x ∈
Np satisfying the following property:

∃y ∈ Np ∩ px such that (t x, ty) admits a cyclic vector.

Remark 6.7. Since any prime is good for GLn, it is plausible that the results of this
section remain true when K is algebraically closed of any characteristic. In particu-
lar, note that [7] considers fields of any characteristic. In positive characteristic, one
should be careful when defining a distinguished nilpotent element. One can find clues
about how to proceed in positive characteristic in [21, Section 3].

In the study of the irreducibility of the (non-nilpotent) commuting varieties C(p), it
is crucial to estimate the modality of the action of the group on the cone of nilpotent el-
ements, see e.g. the recent paper [13, Theorem 1.1]. The known examples of reducible
commuting variety [13, Theorem 1.3 and Section 8] have at least 15 blocks and arise
from the study of the modality of the action of P on np. In particular, no example can
arise with such method if P has less than 6 blocks.

The approach of the present paper might help to find examples of parabolics P
with few blocks and a big modality on Np. Indeed, using ordinary quiver theory, it
is possible to find families of representations with a great number of parameters in
repinj(Q̂p, În). For instance, if d = (di, j)i, j is such that Rinj

d (Q̂p, În) , ∅ and the irre-

ducible components of Rd(Q̂p, În) are all of dimension at least m+dim GLd with m > 0,
then there exists a m + 1-parameter family in Rinj

d (Q̂p, În). This family translates to a

m + 1-parameter family of Rinj
d′ (Qp, In) via Proposition 4.1 and, for the corresponding

parabolic p, the modality of Np is at least m + 1.
As an example, consider the following dimension vector in Q̂2 and Q̂5

0 20
0 40
0 60

20 80
60 80
60 60
40 40
20 20

and

0 0 0 0 1
0 0 0 0 2
0 0 0 1 4
0 0 1 4 7
0 1 4 9 11
0 3 9 12 12
2 7 10 11 11
3 6 7 7 7
3 4 4 4 4
2 2 2 2 2
1 1 1 1 1

Here, (m+1, n−1) is equal to (401, 399) in the first case and (64, 61) in the second case.
Then, it follows from [13] that the corresponding parabolic subalgebras p of block sizes
bP = (200, 400) or (11, 13, 14, 13, 11) have a reducible commuting variety C(p).
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A Auslander-Reiten quivers

A.1 The Auslander-Reiten quiver of Â(2, 2)n

01(0)

↗

↘

11(0)

↘

01
01

(0)↗

01
11

(0)
↗

↘
→

01(1)

↘
11
11

(0)

→

10(0)
↗

↗

11
10

(0)
↗

↘

01
01

(1)

↘
01
11
10

(0)↗

↘

11(1)

↗
↘

↘

↗
→

01
01

(n−1)
↗

11
10

(n−2)
↗

↘01
11
10

(n−2)

↘

↘

11(n−1)

↗

10
10

(n−2)
↗

01
11

(n−1)
↗

↘
→

01(n)

↘
11
11

(n−1)

→

10(n−1)

↗

11
10

(n−1)
↗

↘

10
10

(n−1)

↘

11(n)

↗
10(n)

↗

↘

↗
→

01
01

(i+1)

↘

11
10

(i)
↗

↘

01
11
10

(i)

↘

↗

11(i+1)
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(i)
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↘
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A.2 The Auslander-Reiten quiver of Â(3, 2)n
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A.3 The Auslander-Reiten quiver of Â(2, 3)n
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B Case diagrams

B.1 Infinite cases

(2,2,2)3 blocks

4 blocks

5 blocks

≥ 6 blocks

≤ 2 blocks

(1,1,1,1,1,1) > 6 blocks

> 3 blocks
of size >2

(1,1,2,1,1)
(1,1,k,1,1)

k > 2

(1,1,1,1,2)
(1,1,1,1,k)

k > 2

5 blocks
with 2 blocks

of size >2

(1,2,1,2,1)

(1,1,2,2)
(1,1,k,k’)
k,k’ > 2

(1,2,1,4)

(2,1,1,2)
(k,1,1,k’)
k,k’ > 2

(1,k,1,k’)
k > 2, k’> 4

(1,4,6)

(1,4,4,1)
(1,k,k’,1)
k,k’ > 4

(1,k,k’)
k > 4, k’> 6

(4,1,4)
(k,1,k’)
k,k’ > 4

(6,6) 2 blocks > 6

Key: initial
infinite case

see Figures 1, 2
and Prop 4.3

deduced
case

deduced
case

Lemma 3.5 Lemma 3.3

B.2 Finite cases

5 blocks

4 blocks

3 blocks

2 blocks

(1,1,1,k,1)
k> 2

(1,1,1,k)
k> 1

(1,3,k,1)
k> 3

(1,2,k,1)
k> 2

(1,k,1,3)
k> 2

(1,k,1,2)
k> 2

(1,1,k,1)
k> 1

(1,k,5)
k> 4

(1,k,4)
k> 4

(1,k,3)
k> 4

(1,k,2)
k > 1

(1,k,1)
k > 1

(1,3,k)
k > 3

(1,2,k)
k > 1

(3,1,k)
k > 3

(2,1,k)
k > 1

(1,1,k)
k > 1

(5,k)
k> 4

(k,k’)
k6 4

Key: initial
finite case see Lemma 5.2

deduced
case

deduced
case

Lemma 3.5 Lemma 3.3
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