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Abstract
A novel approach to bound the Local Truncation Error of explicit and implicit Runge-Kutta methods

is presented. This approach takes its roots in the modern theory of Runge-Kutta methods, namely the
order condition theorem, defined by John Butcher in the 60’s. More precisely, our work is an instance, for
Runge-Kutta methods, of the generic algorithm defined by Ferenc Bartha and Hans Munthe-Kaas in 2014
which computes B-series with automatic differentiation techniques. In particular, this specialised algorithm
is combined with interval analysis tools to define validated numerical integration methods based on Runge-
Kutta methods.

1 Introduction
Differential equations are used in many domains to describe the temporal evolution or the dynamics of systems
(e.g., in chemistry, biology or physics). Most of the time, simpler form of differential equations that is Ordinary
Differential Equation (ODE) is considered and has to be solved. A closed form of the solution of an ODE is
usually no computable, except for some particular classes of ODEs, e.g., linear ordinary differential equations,
then this is usually done by numerical integration.

More precisely, numerical integration methods are able to solve initial value problem (IVP) of non-autonomous
ODE defined by

ẏ = f(t,y) with y(0) = y0 and t ∈ [0, tend] . (1)

The function f : R× Rn → Rn is the flow, y ∈ Rn is the vector of state variables, and ẏ is the derivative of y
with respect to time t. We shall always assume at least that f is globally Lipschitz in y, so Equation (1) admits
a unique solution [1] for a given initial condition y0. Even more, for our purpose, we shall assume that f is
continuously differentiable as needed. The exact solution of Equation (1) is denoted by y(t;y0).

The goal of a numerical integration is to compute a sequence of time instants 0 = t0 < t1 < · · · < tN = tend
(not necessarily equidistant) and a sequence of states y0, . . . , yN produced by the numerical integration method
such that ∀` ∈ [0, N ], y` ≈ y(t`,y`−1).

To solve IVP-ODE problems with numerical integration, several methods have been studied and defined for
a long time [1]. These methods are gathered in different classes following different criteria such as single-step
or multi-step methods; as fixed step-size or variable step-size methods; or also as explicit or implicit methods.
This work is focused on single-step, variable step-size, explicit and implicit methods belonging to the familly of
Runge-Kutta methods.

Validated numerical integration is an appealing approach to produce rigorous results on the solution of
IVP-ODEs. Most of the rigorous techniques defined so far, since Ramon Moore’s seminal work [2], are based
on Taylor series approach, see for example [3, 4, 5, 6] and the references therein. Nevertheless, it is unlikely
that only one kind of methods is adapted to all various classes of ODEs. So, more recent work [7, 8, 9, 10, 11]
deals with the adaptation of Runge-Kutta methods for ODEs and DAEs (Differential-Algebraic Equations),
see [12]. The motivation having validated Runge-Kutta methods is to benefit the strong stability properties of
these methods such as the A-stability which is a relevant requirement when dealing with stiff problems. A new
guaranteed numerical integration scheme based on Runge-Kutta methods has already been introduced in [13]
by the authors. The challenge is in the computation of an enclosure of the method error. This error is defined
by the Local Truncation Error (LTE) which involve high order temporal derivatives of f . This previous work
was not based on Automatic Differentiation [14] but on symbolic differentiation of the flow f . The symbolic
approach introduces some limitations on the size of the IVP-ODEs which has to be solved.

In this article, we propose an enhancement of this guaranteed numerical integration method by computing
the local truncation error using B-series which stand for Butcher series. B-series were introduced by E. Hairer
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and G. Wanner in [15] after the seminal work of J. Butcher [16]. They follow the results from Cayley [17] and
Merson [18] on the expressions arising when studying the derivatives of the solution of an ODE. Since then, a
lot of attention has been made in the study of B-series (see, e.g., [19], [20] or [21]). More recently, results on the
computation of B-series were published in [22] on which this work strongly rely. Nevertheless, enhancements of
this algorithm have been defined and are the main results of this article which are

• an instance of the approach based on automatic differentiation defined in [22] is given, to efficiently
compute the local truncation error of explicit and implicit Runge-Kutta methods;

• a set-membership method to compute an enclosure of the local truncation error producing rigorous bounds
of the error method is presented;

• an experimental evaluation of the conjectured time complexity of the approach defined in [22] is performed.

This article is presented as follows: Section 2 recalls results of the literature on Runge-Kutta theory which are
mandatory to the comprehension of this work. In Section 3, the previous results on the computation of B-series
are briefly introduced before the main result of this work, validated numerical integration based on Runge-Kutta
methods, is presented in Section 4. Experiments are provided in Section 5 to study the time complexity of our
method using automatic differentiation compared to a previous one using symbolic differentiation before the
conclusion.

2 A Recall on Modern Runge-Kutta Theory
This section is dedicated to the introduction of the Runge-Kutta methods and the relevant work on it for the
purpose of this article.

2.1 Runge-Kutta Methods
Runge-Kutta methods [23, 24] are numerical methods to the computation of the solution of IVP-ODE defined
in Equation (1).

Definition 1 (Runge-Kutta method). Let f : R × Rn → Rn be a flow and the point y0 = y(t0) at time t0.
y1 ≈ y(t0 + h;y0) is computed using a given step-size h and following the process

ki = f(t0 + cih,y0 +Yi), i = 1, . . . , s

Yi = h
∑s
j=1 aijkj , i = 1, . . . , s

y1 = y0 + h
∑s
j=1 bjkj

(2)

with ki, Yi ∈ Rn and ci, aij , bj ∈ R.

Note that ci =
∑s
j=1 aij and the real coefficients ci, aij and bi fully characterise a Runge-Kutta method,

see [21]. They can be represented by a partitioned tableau, known as the Butcher tableau [25]:

c A

bT
(3)

with A = (aij)16i,j6s, b = (bi)16i6s and c = (ci)16i6s.
The form of the square matrix A determines the Runge-Kutta method: explicit for A strictly lower trian-

gular, diagonally implicit when A is lower triangular and fully implicit for a full matrix A.
In order to simply the notation, autonomous systems of ODEs will be considered. This restriction is not

severe as it is always possible to transform non-autonomous systems of ODEs as defined in Equation (1) into
an autonomous one using the rewriting rule

ẏ = f(t,y) with y(0) = y0 ⇐⇒ ż =

(
ẏ
ẋ

)
=

(
f(x,y)

1

)
= g(z) with z(0) =

(
y0

0

)
.

2.2 Order Theory of Runge-Kutta Methods
The accuracy of numerical integration methods is related to the notion of order. More precisely, the order of a
method is p if and only if the local truncation error (LTE) is such that

||y(t`;y`−1)− y`|| = O(hp+1)
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with || · || some norm in Rn and h = t` − t`−1. In the context of Runge-Kutta methods, the order p means
that the Taylor expansion of the exact solution y(t`;y`−1) and the one of the Runge-Kutta method y` share
the same p first Taylor components. From the work of John Butcher in [25], these coefficients for the exact and
the numerical solution can be expressed on the same basis of elementary differentials. If we write the Taylor
expansion of the exact solution of Equation (1), i.e., y(t`;y`−1), one has

y(t`;y`−1) = y(t`−1) + hẏ(t`−1) +
1

2
h2ÿ(t`−1) +

1

3!
h3y(3)(t`−1) +

1

4!
h4y(4)(t`−1) + . . . , (4)

the components can be rewritten in terms of these elementary differentials

ẏ = f(y) = f

ÿ = f (1)(y)ẏ = f (1)f

y(3) = f (2)(y)(ẏ, ẏ) + f (1)(y)ÿ = f (2)(f , f) + f (1)f (1)f

y(4) = f (1)(y)(f (1)(y)(f (1)(y)(ẏ))) + 3f (2)(y)(ẏ, f (1)(y)ẏ) + f (1)(y)(f (2)(y)(ẏ, ẏ))

+f (3)(y)(ẏ, ẏ, ẏ)

= f (1)f (1)f (1)f + 3f (2)(f , f (1)f) + f (1)(f (2)(f , f)) + f (3)(f , f , f)

...

with f (k)(y) the k-th derivative of the vector field f w.r.t. y, which is a multilinear map. Equation (4) can then
be rewritten as a sum of elementary differentials. From work by Merson [18] (and developed in [26]), elementary
differentials can be in one-to-one correspondence with rooted trees which will be a useful data structure to
compute these elementary differentials. Rooted trees are connected acyclic graphs with a vertex designated as
the root. For any rooted tree τ , we denote F(τ) its corresponding elementary differential.

Example 1. The elementary differentials f (2)(f , f) is associated to the tree

f f

f (2)

and f (1)(f (1)(f)) corresponds to the tree described by

f (1)
f (1)

f

�

A rooted tree τ is associated to properties given by (see [25] for more details): the order denoted r(τ) is
the number of vertices in τ , the symmetry σ(τ) is order of automorphism group, the density denoted γ(τ) is
the product over all vertices of the order of the subtree rooted to that vertex, and α(τ) is the number of ways
of labeling with ordered set. These functions will play an essential part in the computation of the elementary
differentials.

A rooted tree τ can be represented by the list of its corresponding subtree(s), i.e., the list of trees appearing
when the root is removed.

Example 2. The representation of the tree

in term of list of subtrees is the list [
,

]
.

�

Furthermore isomorphic subtrees can be factorised meaning that a tree τ can be represented by the list of its
subtrees [τm1

1 τm2
2 . . . τmk

k ] with mi the number of occurrences of τi as a subtree of τ . Using this representation,
we now recall the formal statement of recursions for the computation of r(τ), σ(τ) and γ(τ).

Theorem 2.1 (Theorem 301A in [26], p. 140). Let τ = [τm1
1 τm2

2 . . . τmk

k ] be a rooted tree where τ1, . . . , τk are
distinct. Then, for the tree consisting in only a root,

r( ) = σ( ) = γ( ) = 1
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and

r(τ) = 1 +

k∑
i=1

mir(τi),

σ(τ) =

k∏
i=1

mi!σ(τi)
mi ,

γ(τ) = r(τ)

k∏
i=1

γ(τi)
mi .

The elementary differentials are made of sums of partial derivatives of f with respect to the components of
y. An other achievement in [25] was to relate these partial derivatives of order q to a combinatorial problem to
enumerate all the rooted trees τ with exactly q nodes (r(τ) = q).

It is then possible to express the Taylor components of the exact solution of an IVP-ODE term of elementary
differentials. This is expressed in the following theorem.

Theorem 2.2. The q-th derivative w.r.t. time of the exact solution is given by

y(q) =
∑
r(τ)=q

α(τ)F(τ)(y0)

with α(τ) = r(τ)!
σ(τ)γ(τ) .

It is obvious that expressing the Taylor expansion of the numerical methods is a tedious work. The clever
idea of John Butcher in [25] is to express them also in terms of elementary differentials, i.e., on the same basis
of functions that the Taylor expansion of the exact solution. Moreover, a relation between the coefficients ci, aij
and bi of the Butcher tableau with these elementary differentials are then possible. In consequence, the rooted
tree structure can be used to compute also elementary weights which are particular coefficients of elementary
differentials expressed in terms of coefficients of the Butcher tableau. We denote by φ(τ) the elementary weight
of τ based based on the coefficients defining a Runge-Kutta method. Following the structure of τ , φ(τ) are
computed as defined in Definition 2.

Definition 2 (Elementary weight [27]). Let τ = [τm1
1 τm2

2 . . . τmk

k ] be a rooted tree where τ1, . . . , τk are distinct
trees, is the tree with only a root. For i = 1, 2, . . . , s, s+ 1, we define

φi( ) =

s∑
j=1

aij = ci

φi(τ) =

s∑
j=1

aij

k∏
`=1

φj(τ`)
m` .

We then define φ( ) =
∑
i bi and φ(τ) = φs+1(τ).

The next theorem gives the definition of the q-nth derivative of the numerical solution y1 with respects to
time t.

Theorem 2.3. The q-th derivative w.r.t. time of the numerical solution is given by

y
(q)
1 =

∑
r(τ)=q

γ(τ)φ(τ)α(τ)F(τ)(y0)

with α(τ) = r(τ)!
σ(τ)γ(τ) .

Finally, using theorems 2.2 and 2.3, the order condition of a Runge-Kutta can be exhibited.

Theorem 2.4 (Order condition). A Runge-Kutta method has order p iff

φ(τ) =
1

γ(τ)
∀τ, r(τ) 6 p .

The consequence of Theorem 2.4 is that the definition of new Runge-Kutta methods can be stated as the
solution of a non-linear systems of equations made of all the conditions of the form φ(τ) = 1

γ(τ) for all τ such that
r(τ) 6 p. Note that this system of nonlinear equations is generally under-constrained and so the computation
of the coefficients ci, aij and bi of the Butcher tableau is usually hard.

In context of validated numerical integration based on Runge-Kutta methods, the problem is much simpler
than building a new method because the starting point is the coefficients of the Butcher tableau. The challenge
is then an efficient computation of the higher order derivatives expressed in terms of elementary differentials.
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2.3 Local Truncation Error of Runge-Kutta Methods
As previously mentioned, and following the order condition given in Theorem 2.4, a Runge-Kutta method is of
order p if the p first terms of the Taylor form associated to the numerical solution y` are equal to the terms of the
exact solution of (1) that is y(t`;y`−1) assuming the same initial condition. In this case the LTE corresponds
to the difference of the two Taylor remainders. The challenge is to compute these Taylor remainders. In
consequence of Theorems 2.2–2.4, if the order p of the considered Runge-Kutta method is known, its LTE is
then defined by

y(tj ;y(t`;y`−1)− y` =
hp+1

(p+ 1)!

∑
r(τ)=p+1

α(τ)
[
1− γ(τ)φ(τ)

]
F(τ)(y(ξ)) ξ ∈]tj , t`[ (5)

with F(τ)(y(ξ)) the elementary differential associated to τ computed at point y(ξ).
Remark 1. Equation (5) is valid for explicit and implicit Runge-Kutta methods. Indeed, elementary weights
can be computed following Definition 2 and this computation only depends of the structure of rooted trees and
the coefficients of the Butcher tableau.

3 Computation Methods of B-Series
Following Section 2.3, the computation of the LTE of an explicit or implicit Runge-Kutta method involves the
computation of high order derivatives of f . For that goal, two different ways of computing Equation (5) can
be considered: by symbolic differentiation or by automatic differentiation approach. In other terms, automatic
differentiation (see, e.g., [14] and references therein) produces the derivative of a function on a particular point of
its domain while symbolic differentiation produces an analytical expression of the derivative. The main drawback
of the symbolic differentiation approach is its lack of scaling according to the dimension of the problem.

B-series are sums of elementary differentials (such as the one occurring in Equation (4)). They are a
fundamental tool to design Runge-Kutta methods. Remaining that they allow to exhibit the necessary conditions
a Runge-Kutta method must fulfil to be of a specific order (see [19]). B-series play also a central role in validated
numerical integration method as the LTE is based on such mathematical object.

The previous work [22] defines an algorithm to compute B-series. The elementary differentials are vector-
fields and have to be computed at point x ∈ Rn. We have F( )(x) = f(x) and, from Equation (2.7) in [22], for
the tree τ = [τm1

1 τm2
2 . . . τmk

k ],

F(τ)(x) = ∂
∑

imif(x+ z1F(τ1)(x) + z2F(τ2)(x) + · · ·+ zpF(τk)(x))
∂zm1

1 ∂zm2
2 . . . ∂zmk

k

∣∣∣∣
z=0

. (6)

In Section 3.1, we briefly recall our previous work on computing the LTE of Runge-Kutta methods [13]
based on symbolic differentiation. In Section 3.2, we also recall the basis of the algorithm defined in [22] based
on automatic differentiation.

3.1 A Symbolic Approach
A symbolic approach for the computation of these B-series was discussed in [13]. The elementary differentials,
as expressed in (6), can be be associated to Fréchet derivatives:

Definition 3 (M -th Fréchet derivatives [27]). Let f : Rn → Rm be a function and z ∈ Rn. The M -Fréchet
derivative of f is defined by

f (M)(z)(K1,K2, . . . ,KM) =

m∑
i=1

m∑
j1=1

m∑
j2=1

· · ·
m∑

jM=1

ifj1j2...jM
j1K1

j2K2 . . .
jMKMei (7)

with

fj1j2...jM =
∂M

∂j1z∂j2z . . . ∂jM z

and Kk = [1K1,
2K2, . . . ,

MKM ] ∈ Rm, for k = 1, . . . ,M . The notation `x is the `-th component of x and ei is
the vector of 0 except for its i-th component which is 1.

Note that in Definition 3, the vector made of Ki element can be associated to the structure of a rooted tree τ
with r(τ) =M . In consequence, the main idea of the approach in [13] is to enumerate all the partial derivatives
of f up to order p and then use the structure of the Fréchet derivative to combine them. The drawback of this
approach is that the number of partial derivatives grows exponentially with the order of the method then it
requires an algorithm with a complexity in O(nM+1) to produce these M + 1 sums in (7). While efficient it is
then only suitable for small dimension problems.
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3.2 An Automatic Differentiation Approach
Following [22] it is possible to make the correspondence between the computation of elementary differentials and
the one of Taylor coefficients of a particular univariate function. This is resumed in the following proposition

Proposition 3.1 (Taylor to tensor conversion (Proposition 10.2 in [14])). Let f : Rn 7→ Rm be at least d-times
continuously differentiable at some point x ∈ Rn and denote by Fr(x, s) the rth Taylor coefficient of the curve
f(x+ ts) at t = 0 for some direction s ∈ Rn. Then we have for any seed matrix S = (sj)16j6p ∈ Rn×p and any
multi-index i = (i1, . . . , ip) ∈ Np with |i| =

∑p
r=1 ir 6 d the identity

∂|i|f(x+ z1s1 + z2s2 + · · ·+ zpsp)

∂zi11 ∂z
i2
2 . . . ∂z

ip
p

∣∣∣∣∣
z=0

=
∑
|j|=d

ϕ(i, j)F|i|(x,Sj), (8)

where the constant coefficients ϕ(i, j) are given by the finite sums of product of multinomials

ϕ(i, j) =
∑

0<k6i

(−1)|i−k|
(

i
k

)(
dk/|k|

j

)(
|k|
d

)|i|
(9)

Using Equation (6) and Proposition 3.1, the computation of the elementary differential F(t) is then the
computation of a sum of Taylor coefficients of an univariate function with the seed matrix S = [F(τ1), . . . ,F(τk)]
the matrix for which columns are elementary differentials of the subtrees τi of τ = [τm1

1 τm2
2 . . . τmk

k ]. This is
done with Proposition 3.1 using automatic differentiation with the techniques described in [28]. The next section
focuses on the adaptation of these techniques in the case of set-membership computation.

4 Validated Numerical Integration Based on Runge-Kutta Methods
This section is dedicated to the adaptation of the results given in [22] to the computation of bounds on the
local truncation error of Runge-Kutta methods. Firstly, the IVP-ODE is stated when uncertainties occur and
a brief introduction to set-membership computation is provided. It then follows the main results of this article.

4.1 Problem Statement
When dealing with validated computation, mathematical representation of an IVP-ODE is as follows:{

ẏ = f(t,y)

y(0) ∈ Y0 ⊆ Rn.
(10)

The set Y0 of initial conditions is used to model some (bounded) uncertainties. For a given initial condition
y0 ∈ Y0, the solution at time t > 0 when it exists is denoted y(t;y0). The goal, for validated (or rigorous)
numerical integration methods, is then to compute the set of solutions of (10), i.e., the set of possible solutions
at time t given the initial condition in the set of initial conditions Y0:

y(t;Y0) = {y(t;y0) | y0 ∈ Y0}. (11)

Validated numerical integration schemes using set-membership framework aims at producing the solution
of the IVP-ODE that is the set defined in (11). It results in the computation of an outer approximation of
y(t;Y0).

4.2 Set-Membership Framework
4.2.1 Interval Arithmetic

Interval analysis [29] is a method designed to produce outer-approximation of the set of possible values for
variables occurring in some computations in a sound manner. Hereafter, an interval is denoted [x] = [x, x] with
x 6 x and the set of intervals is IR = {[x] = [x, x] | x, x ∈ R, x 6 x}. The Cartesian product of intervals
[x] ∈ IRn is a box. The main result of interval analysis is its fundamental theorem stating that the evaluation
of an expression using intervals leads to an outer-approximation of the resulting set of values for this expression
whatever the values considered in the intervals. In order to deal with interval functions, an interval inclusion
function also known as interval extension of a function can be defined.

Definition 4 (Interval extension). Consider a function f : Rn → Rm. The interval function [f ] : IRn → IRm is
an interval extension of f if the evaluation of [f ] ([x]) gives an outer approximation of the image of [x] by the
function f , noted f([x]) = {f(x)|x ∈ Rn}:

∀ [x] ∈ IRn, f([x]) = {f(x)|x ∈ Rn} ⊆ [f ] ([x]). (12)
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Many interval extensions of functions can be defined thenceforth they verify (12) (see [2]). We can cite
the natural extension [29] which replaces the operations on reals by their interval counterparts using interval
arithmetic.
Example 3. Considering a scalar initial value problem defined by ẏ = −y with y(0) ∈ [0, 1]. Applying the Euler
numerical integration method, one get

yn+1 = yn + h(−yn) (13)

with h the integration step-size. Evaluating this expression into intervals, one get

yn+1 = [0, 1] + h× (−[0, 1]) = [0, 1] + [−h, 0] = [−h, 1] .

Another interval extension is the mean value extension [29] which linearizes the function around its mean
value.

Theorem 4.1 (Mean value extension (a.k.a. centered form [29])). Let the function f : Rn → Rm be a Cp

function, p > 1, [x] ∈ IRn an interval, x̃ ∈ [x] and
[
J
[x]
f

]
∈ IRm×n an interval matrix such that

(
∂fi
∂xj

)
16i6m
16j6n

(x) | x ∈ [x]

 ⊆ [J[x]
f

]
The function [fc] : IRn × Rn → IRm defined as follows:

[fc] ([x] , x̃) = f(x̃) +
[
J
[x]
f

]
([x]− x̃) (14)

is an interval extension of f .

Example 4. Let denote g(y) = y − hy as defined in Example 3. The computation of the centered form requires
an outer approximation of the derivative of g along y. We consider this outer approximation as the natural
inclusion of the function g′(y) = 1 − h. Then the computation of the centered form, using ỹ as m([y]), the
midpoint of [y] gives

[gc] ([y] ,m([y])) = g(m([y])) + (1− h)([y]−m([y])

=
1

2
− 1

2
h+ (1− h)([−0.5, 0.5])

=
1

2
(1− h) +

[
−1

2
(1− h), 1

2
(1− h)

]
=

[
1

2
(1− h)− 1

2
(1− h), 1

2
(1− h) + 1

2
(1− h)

]
= [0, 1− h]

which is here a better result than the one computed with natural extension in Example 3.

4.2.2 Affine Arithmetic

As interval arithmetic, affine arithmetic is a model to produce outer-approximation of ranges of set-valued
expression which aims is to improve interval arithmetic in certain situations. It is designed to keep track of
the linear dependencies between variables occurring in a computation. An affine form x̂ representing the set of
values taken by a variable x is denoted by:

x̂ = αx0 +

n∑
i=1

αxi εi, (15)

with αxi ∈ R for all i. Each noise symbol εi ∈ [−1, 1] is unknown. It represents an independent component of
the global uncertainty on x̂. An interval x = [x, x] can easily be converted to an affine form x̂:

x̂ =
x+ x

2
+
x− x
2

ε1. (16)

From an affine form, the associated interval can be computed by replacing each noise symbol by the interval
[−1, 1] and use interval arithmetic:

[x̂] = αx0 +

n∑
i=1

αxi [−1, 1] (17)
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which is an outer approximation of the values x can take. When nonlinear operations occur on affine forms,
the nonlinear dependencies are represented by a new noise symbol η with its associated partial deviation. They
represent an outer approximation of the associated nonlinear dependency. For example, a possible way to
compute the multiplication between two affine forms x̂ = αx0 +

∑n
i=1 α

x
i εi and ŷ = αy0 +

∑n
i=1 α

y
i εi is

x̂× ŷ = αx0α
y
0 +

1

2

n∑
i=1

αxi α
y
i +

n∑
i=1

(αx0α
y
i + αy0α

x
i )εi +

1

2

∣∣∣∣∣
n∑
i=1

αxi α
y
i

∣∣∣∣∣+
∣∣∣∣∣∣∣∣
n∑
i=1

n∑
j=1
j 6=i

αxi α
y
j

∣∣∣∣∣∣∣∣
 η (18)

Example 5. The function defined in Example 3 is once more considered. The affine form associated to y is then
ŷ = 1

2 + 1
2ε1. The computation of g(y) using affine arithmetic then gives

g(ŷ) =
1

2
+

1

2
ε1 + h

(
−
(
1

2
+

1

2
ε1

))
=

1

2
− 1

2
h︸ ︷︷ ︸

α0

+

(
1

2
− 1

2
h

)
︸ ︷︷ ︸

α1

ε1

which is associated to the interval value, using Equation (17),

1

2
− 1

2
h+

(
1

2
− 1

2
h

)
[−1, 1] = [0, 1− h]

The choice between using interval arithmetic or affine arithmetic is essentially based on the trade-of between
precision and time computation. However some intrinsic properties of affine arithmetic makes them more
suitable for our work. Indeed, the well-known wrapping effect which appears in interval arithmetic when some
geometric rotation appears, typically when matrix-vector multiplication appears, need special treatment to
reduce over-approximation. For example, see [3] for a more detailed explanation. In contrary, affine arithmetic
which as a geometric representation based on zonotopes benefits of a rotational stability property. Here, affine
arithmetic will be used when such precision is mandatory to keep sound approximation without introducing too
much pessimism.

4.2.3 Validated Numerical Integration Method

The use of set-membership computation for the problem described in Section 4.1 makes possible the design of
an inclusion function for the computation of [y] (t; [y0]) which is an outer approximation of y(t; [y0]) defined
in (11). To do so, a sequence of time instants t1, . . . , tn such that t1 < · · · < tn = t and a sequences of boxes
[y1] , . . . , [yn] such that y(ti+1; [yi]) ⊆ [yi+1], ∀i ∈ [0, n− 1] are computed. From [yi], computing the box [yi+1]
is a classical 2-step method (see [3]):

Phase 1 compute an a priori enclosure [y(ξ)] of the set {y(tk;yi) | tk ∈ [ti, ti+1] ,yi ∈ [yi]} such that y(tk; [yi])
is guaranteed to exist,

Phase 2 compute a tight enclosure of the solution [yi+1] at time ti+1.

4.3 Validated Computation of the Local Truncation Error
In summary, our approach to design a validated Runge-Kutta method (see [13]) is defined by

[ki] = f([y0] + [Yi]), i = 1, . . . , s

[Yi] = h
∑s
j=1 aij [kj ] , i = 1, . . . , s

[y1] = [y0] + h
∑s
j=1 bj [kj ] + LTE(t, [y(ξ)])

(19)

with [y(ξ)] ⊇ {y(tk;yi) | tk ∈ [ti, ti+1] ,yi ∈ [yi]} computed in Phase 1. it is bounded following classical
approach in validated numerical integration methods. More precisely, a variant of the Picard operator, see [3],
is used in combination with affine arithmetic.

Note that in case of implicit Runge-Kutta methods, the equations [ki], for i = 1, . . . , s, form a contracting
system of equations. In consequence, we can easily build an interval contractor from the system of ki and so we
can solve it easily.

Independently to the given IVP-ODE, computing the LTE of Runge-Kutta methods always requires the
same amount of elementary differentials which depends on the order of the used method. As described in [28],
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Order 3 rooted trees
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3

Figure 1: Representation of the rooted trees of order 4 as a wDAG.

we use a structure of weighted directed acyclic graphs (wDAG) of rooted trees to represent the elementary
differentials. Since a method of order p requires to produce the rooted trees of order p + 1 (see Eq. (5)), the
wDAG representing these rooted trees is produced.

As an example, we represent in Figure 1 the DAG of the rooted trees of order 4, mandatory to the com-
putation of the LTE for methods of order 3. Each node of the wDAG will represent a rooted tree and each
edge from it is a subtree of the one represented by the node. The weighting represents the number of identical
subtrees of a rooted tree. Once the dynamical system is known, the LTE is computed using the wDAG in a
depth first search manner for the computation of the elementary differentials. The structure of wDAG makes
possible the memoization of the result of the intermediate elementary differentials in order to not recompute it
for others rooted trees.

For example, in Figure 1, both first and second rooted trees of order 4 require the computation of the one of
order 2. The same for the rooted tree of order 1 which is required for any elementary differential computation.
In this case, the corresponding elementary differential is only computed once.

Each node of the wDAG representing a tree τ will also contain all the required values for the computation of
the LTE (using Equation (5)), namely r(τ), σ(τ) and γ(τ) (see Theorem 2.1) as well as the elementary weight
φ(τ) (see Definition 2). The computation of these associated values do not depend on the considered system so
they can be computed offline.

Eventually, a validated computation of the LTE on the interval [y(ξ)] uses the computation of∑
|j|=d

γ(i, j) [F ]|i| ([y(ξ)] ; [S] j)

with [F ]|i| an inclusion function for F|i|(y(ξ);Sj) the |i|-th Taylor coefficient of f(y(ξ)+Sj) and the computation
[F ]|i| ([y(ξ)] ; [Sj]) an outer approximation bounding the set

{F|i|(y(ξ);Sj) | y(ξ) ∈ [y(ξ)] ,S ∈ [S]}

which is the set of |i|-th Taylor coefficients of f(y(ξ) + Sj), y(ξ) ∈ [y(ξ)] and S ∈ [S]. The interval matrix
[S] ⊇ {[F(τ1)(y(ξ)), . . . ,F(τm)(y(ξ))] | y(ξ) ∈ [y(ξ)]}.

For a given rooted tree, the computation of its associated elementary differential strongly rely on the com-
putation of the one for its subtree and therefore generate a lot of redundant variables which is a well known
trouble for interval analysis to produce tights outer approximations. It is why affine arithmetic is preferred to
deal with this issue.

4.3.1 Bounding Taylor coefficients of univariate functions

For each node of the wDAG, its corresponding elementary differential must be computed. As seen in Eq. (8)
it corresponds to the computation of the Taylor coefficients of a unary function. To achieve this, we use
the results in [28] using automatic differentiation. The first step is to produce the computational graph of the

9



x

×

sin

x

Figure 2: Computational graph for the function f(x) = x sin(x).

function decomposing the function to its atomic operations (such as addition, multiplication, sinus, exponential,
etc.). The method described in [28] to compute the Taylor coefficients of these operations are extended for the
computation using affine arithmetic. It results in the computation of an outer approximation of the Taylor
coefficients of these considered operations.

Example 6. Let f(x) = x sin(x). We want to compute the Taylor coefficients up to degree d for the variable
x for which its set of possible values is represented by the affine form x̂. The corresponding computational
graph of f is then the one described in figure 2. We extend the formulae provided by Table 10.2 in [28] for the
computation of the Taylor coefficients of sin(x) and cos(x) using the affine form x̂. The Taylor coefficients of
the leaves of the tree which are x̂ are then (x̂, 1, 0, 0, . . . ). For the sinus function, its k-th Taylor coefficient is

ŝk =

∑k
j=1 jx̂j ĉk−j

k

with

ĉk =

∑k
j=1−jx̂j ŝk−j

k
(20)

and for the multiplication of two affine forms û and ŵ, the k-th Taylor coefficient is
∑k
j=0 ûjŵk−j with ûi and

ŵi the i-th coefficient of û and ŵ respectively.

4.3.2 Algorithmic Complexity Analysis

The complexity of the algorithm is hard to expose but, thanks to the previous works [28, 22], a hint of it can
be produced. We focus on the computation of the elementary differential of a tree given by (8). The knowledge
of the time complexity to compute this can be separated in the computation of its different parts. Firstly it
requires to produce the seed matrix S that is the computation of the elementary differentials of all the sub-tree
of the considered tree. If we consider this computation for the rooted trees of order d, as for example the one
represented in Figure 1 for d = 4, the elementary differential at each node is computed only once and recorded
in the structure of the wDAG thanks to memoization. Then, the total number of computation of elementary
differentials equals the number of non-isomorphic rooted trees τ with r(τ) 6 d, that is, one for each vertex of
the wDAG. In [30], An approximation of the number of non-isomorphic rooted trees τ with r(τ) = d is given:

ρ(d) =

d∑
m=1

βα3/2

2
√
π

α−m

m3/2
(21)

with α ≈ 0.3383219 and β ≈ 7.924780. The number of vertices in a wDAG can then be approximated by∑d
i=1 ρ(i). Secondly, A. Griewank in [14] provides the time complexity of computing a d-th univariate Taylor

component which is in O(nd2). Thirdly, this computation has to be done each time a coefficient ϕ(i, j) is
different than zero. As described in [28], this number for i, j ∈ Nn0 is less or equal than

p(d, n) =

d∑
m=1

(
n
m

)(
d
m

)(
m+ d− 1

d

)
. (22)

Finally, it results that the complexity for computing (8) is in∑
τ

1<|τ |6d

p(|τ |, e(τ))O(n|τ |2) (23)

with e(τ) the number of resulting sub-trees if the root of τ is removed. It correspond to the sum over each
rooted tree τ of the number of non vanishing coefficients ϕ(i, j) multiplied by the time complexity of producing
the d-th univariate Taylor component.
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d\n 2 4 6 8 10 20 30 40
1 6 12 18 24 30 60 90 120
2 18 36 54 72 90 180 270 360
3 50 100 150 200 250 500 750 1000
4 140 280 420 560 700 1400 2100 2800
5 380 760 1140 1520 1900 3800 5700 7600
6 1052 2104 3156 4208 5260 10520 15780 21040
7 2892 5784 8676 11568 14460 28920 43380 57840
8 8040 16080 24120 32160 40200 80400 120600 160800
9 22420 44840 67260 89680 112100 224200 336300 448400
10 62944 125888 188832 251776 314720 629440 944160 1.26× 106

Table 1: Time complexity described in Equation 23 given dimensions n and orders d. Bold values mean a worse
time complexity than the symbolic approach and a better one otherwise.

In Table 1 is shown the time complexity for different values of the dimension of the system and the order of
the approach. These computation directly uses the generation of the corresponding wDAG to evaluate precisely
the number of non-isomorphic trees of a given order and the number of subtrees e(τ) of a given tree τ but uses
the outer approximation p(d, n) for the number of non vanishing coefficients γ(i, j). These result are compared
to the time complexity of the symbolic approach which is in O(nd). From these results one can deduce that the
time complexity is between O(ned) and O(n3d). The time complexity is experimentally examined in the next
section to assess the improvement of the automatic differentiation approach on time complexity compared to
the symbolic one.

5 Experiments
Our automatic differentiation approach has been implemented in the library DynIbex: a tool for Constraint
Reasoning with Differential Equations using the library IBEX as it was the case for the symbolic approach1. In
this Section, this implementation is used to compare the symbolic approach described in [13] with the new one.
Two experiments were designed, one to show the impact of the dimension of the state space on the computation
time and another one on the impact of the order of the Runge-Kutta method also on the computation time.
Both experiments use the same problem that is the numerical integration of a water tank system as introduced
in [31]. This system can be modeled as following using Toricelli’s law:

ẏ(t) =



0.1 + κ(4− yn(t))− k1
√
2gy1(t)

k1
√
2gy1(t)− k2

√
2gy2(t)

...
ki−1

√
2gyi−1(t)− ki

√
2gyi(t)

...
kn−1

√
2gyn−1(t)− kn

√
2gyn(t)



y(0) ∈



[1.9, 2.1]

[3.9, 4.1]

[3.9, 4.1]

[1.9, 2.1]

[9.9, 10.1]

[3.9, 4.1]
...

[3.9, 4.1]


.

(24)

The parameter n represents the number of tanks that is considered, yi(t) is the water level of tank i at time
t; v ∈ [−0.005, 0.005], κ = 0.01; ki ∈ [0.0149, 0.015] are tank specific parameters and g is the gravity constant.

1The library is available at the website http://perso.ensta-paristech.fr/~chapoutot/dynibex/
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Figure 3: Time computation for different state space dimensions for example in (24). n = 6, . . . , 50.

5.1 Computation time against state space dimension
For this first experimentation, example in (24) is taken for different state space dimensions n = 6, . . . , 50. The
Runge-Kutta method which is in use is fixed as an explicit one: the RK4 method (Cf. Appendix A.1 for the
Butcher tableau of the method). The results are presented in Figure 3 for the total time computation of the
solution of y(t) at time t = 400s for each dimension n. This illustrates the tremendous improvement of the
automatic differentiation approach compared to the symbolic one when the dimension of the state space is
sufficiently large. On our example, the benefit of using the automatic differentiation approach starts at n = 6.

5.2 Computation time against method order
We now exhibit the relation between time computation and the order of the Runge-Kutta method that is used.
The example that is taken is still the one described in (24) for a state dimension n = 3. Figure 4 shows the
results for explicit methods and Figure 5 for implicit methods. For explicit methods, this experiment shows
the improvement in computation time for the automatic differentiation approach compared to the symbolic
one. In the case of implicit methods, the use of a contractor based method to solve the contracting system of
equations (see Section 4.3) explains the difference in computation time against explicit methods. This shows
an even better improvement compared to the symbolic approach. The Butcher tableau of the different implicit
and explicit methods used for these experiments are described in Appendix A.

6 Conclusion
In this article is presented an automatic differentiation approach to produce validated bounds of the local trun-
cation errors of explicit and implicit Runge-Kutta methods. It is based on the work in [22] on the computation
of B-series. This makes possible the design of a validated numerical integration of the initial value problem of
ordinary differential equations using automatic differentiation and set-membership computation. It has been
implemented in a C++ library used to show the benefits of this automatic differentiation approach compared
to a symbolic approach previously published by the authors [13]. This was illustrated for space dimensions of
the ODE problem as well as the considered Runge-Kutta method order with several experiments showing the
decrease of time complexity.
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Figure 4: Time computation for different explicit methods for example in (24). n = 3.
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A Runge-Kutta methods used in the experiments
In this appendix are provided the Butcher tableaux of the Runge-Kutta methods that have been used in the
experiments in Section 5.

A.1 Explicit methods

1 0 1

1

2

1

2

0 0 0 0 0

1

2

1

2
0 0 0

1

2
0

1

2
0 0

1 0 0 1 0

1

6

1

3

1

3

1

6

0 0 0 0 0 0 0

1

5

1

5
0 0 0 0 0

3

10

3

40

9

40
0 0 0 0

4

5

44

45
−

56

15

32

9
0 0 0

8

9

19372

6561
−

25360

2187

64448

6561
−

212

729
0 0

1
9017

3168
−

355

33

46732

5247

49

176
−

5103

18656
0

35

384
0

500

1113

125

192
−

2187

6784

11

84

Heun (order 2) RK4 (order 4) DP5 (order 5)

A.2 Implicit methods

1

3

5

12

−1

12

1
3

4

1

4

1

2

1

2

2

5
−

√
6

10

11

45
−

7
√

6

360

37

225
−

169
√

6

1800
−

2

225
+

√
6

75
2

5
+

√
6

10

37

225
−

169
√

6

1800

11

45
+

7
√

6

360
−

2

225
−

√
6

75

1
4

9
−

√
6

36

4

9
+

√
6

36

1

9

4

9
−

√
6

36

4

9
−

√
6

36

1

9

Radau3 (order 3) Radau5 (order 5)

0 0 0 0

1

2

5

24

1

3
−

1

24

1
1

6

2

3

1

6

1

6

2

3

1

6

1

2
−

1

10

√
15

5

36

2

9
−

1

15

√
15

5

36
−

1

30

√
15

1

2

5

36
+

1

24

√
15

2

9

5

36
−

1

24

√
15

1

2
+

1

10

√
15

5

36
+

1

30

√
15

2

9
+

1

15

√
15

5

36

5

18

4

9

5

18

LA3 (order 4) Gauss6 (order 6)
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