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INVARIANT GIBBS MEASURES FOR THE 2-d DEFOCUSING

NONLINEAR WAVE EQUATIONS

TADAHIRO OH AND LAURENT THOMANN

Abstract. We consider the defocusing nonlinear wave equations (NLW) on the two-
dimensional torus. In particular, we construct invariant Gibbs measures for the renormal-
ized so-called Wick ordered NLW. We then prove weak universality of the Wick ordered
NLW, showing that the Wick ordered NLW naturally appears as a suitable scaling limit
of non-renormalized NLW with Gaussian random initial data.

Résumé. On considère les équations des ondes non-linéaires défocalisantes sur le tore
de dimension deux. On construit des mesures de Gibbs invariantes pour les équations
renormalisées au sens de Wick. On prouve ensuite une propriété d’universalité faible pour
ces équations renormalisées, en montrant qu’elle apparaissent comme limites d’équations
d’ondes non renormalisées avec conditions initiales aléatoires de loi gaussienne.

1. Introduction

1.1. Nonlinear wave equations. We consider the defocusing nonlinear wave equations

(NLW) in two spatial dimensions:
{
∂2t u−∆u+ ρu+ u2m+1 = 0

(u, ∂tu)|t=0 = (φ0, φ1),
(t, x) ∈ R×M, (1.1)

where ρ ≥ 0 and m ∈ N. When ρ > 0, (1.1) is also referred to as the nonlinear Klein-

Gordon equation. We, however, simply refer to (1.1) as NLW and moreover restrict our

attention to the real-valued setting. In the following, we mainly consider (1.1) on the two-

dimensional torus M = T
2 = (R/Z)2 but we also provide a brief discussion when M is

a two-dimensional compact Riemannian manifold without boundary or a bounded domain

in R
2 (with the Dirichlet or Neumann boundary condition). See Theorem 1.7 below.

Our main goal in this paper is to construct an invariant Gibbs measure for a renormalized

version of (1.1) by studying dynamical properties of the renormalized equation.

1.2. Gibbs measures and Wick renormalization. With v = ∂tu, we can write the

equation (1.1) in the following Hamiltonian formulation:

∂t

(
u
v

)
=

(
0 1
−1 0

)
∂H

∂(u, v)
,

where H = H(u, v) is the Hamiltonian given by

H(u, v) =
1

2

ˆ

T2

(
ρu2 + |∇u|2

)
dx+

1

2

ˆ

T2

v2dx+
1

2m+ 2

ˆ

T2

u2m+2dx. (1.2)
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By drawing an analogy to the finite dimensional setting, the Hamiltonian structure of the

equation and the conservation of the Hamiltonian suggest that the Gibbs measure P
(2m+2)
2

of the form: 1

“dP
(2m+2)
2 = Z−1 exp(−βH(u, v))du ⊗ dv” (1.3)

is invariant under the dynamics of (1.1). 2 With (1.2), we can rewrite the formal expres-

sion (1.3) as

dP
(2m+2)
2 = Z−1e−

1
2m+2

´

u2m+2dxe−
1
2

´

(ρu2+|∇u|2)dxdu⊗ e−
1
2

´

v2dxdv

∼ e−
1

2m+2

´

u2m+2dxdµ, (1.4)

where µ is the Gaussian measure µ on D′(T2)×D′(T2) with the density 3

dµ = Z−1e−
1
2

´

(ρu2+|∇u|2)dxdu⊗ e−
1
2

´

v2dxdv. (1.5)

Note that µ has a tensorial structure: µ = µ0⊗µ1, where the marginal measures µ0 and µ1
are given by

dµ0 = Z−1
0 e−

1
2

´

(ρu2+|∇u|2)dxdu and dµ1 = Z−1
1 e−

1
2

´

v2dxdv. (1.6)

Namely, µ0 is the Ornstein-Uhlenbeck measure and µ1 is the white noise measure on T
2.

Recall that µ is the induced probability measure under the map: 4

ω ∈ Ω 7−→ (u, v) =

( ∑

n∈Z2

g0,n(ω)

〈n〉ρ
ein·x,

∑

n∈Z2

g1,n(ω)e
in·x

)
, (1.7)

where 〈n〉ρ =
√
ρ+ |n|2 and {g0,n, g1,n}n∈Z2 is a sequence of independent standard

complex-valued Gaussian random variables on a probability space (Ω,F , P ) conditioned

that gj,−n = gj,n, n ∈ Z
2, j = 0, 1. In view of (1.7), it is easy to see that µ is supported on

Hs(T2) := Hs(T2)×Hs−1(T2), s < 0.

Moreover, we have µ(H0(T2)) = 0. This implies that
´

u2m+2dx = ∞ almost surely with

respect to µ. In particular, the right-hand side of (1.4) would not be a probability measure,

thus requiring a renormalization of the potential part of the Hamiltonian. In the two-

dimensional case, it is known that a Wick ordering suffices for this purpose. See Simon [31]

and Glimm-Jaffe [15]. Also, see Da Prato-Tubaro [12] for a concise discussion on T
2, where

the Gibbs measures naturally appear in the context of the stochastic quantization equation.

In the following, we give a brief review of the Wick renormalization on T
2. See [12] for

more details. Let u denote a typical element under µ0 defined in (1.6). Since u /∈ L2(T2)

almost surely, we have
ˆ

T2

u2dx = lim
N→∞

ˆ

T2

(PNu)
2dx = ∞

almost surely, where PN is the Dirichlet projection onto the frequencies {|n| ≤ N}.

1. Henceforth, we use Z, ZN , etc. to denote various normalizing constants so that the corresponding
measures are probability measures when appropriate.

2. We simply set β = 1 in the following. While our analysis holds for any β > 0, the resulting
(renormalized) Gibbs measures are mutually singular for different values of β > 0. See [28].

3. On T
2, we need to assume ρ > 0 in order to avoid a problem at the zeroth frequency. See (1.7) below.

In the case of a bounded domain in R
2 with the Dirichlet boundary condition, we can take ρ = 0.

4. We drop the harmless factor 2π in the following.
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For each x ∈ T
2, PNu(x) is a mean-zero real-valued Gaussian random variable with

variance 5

σN
def
= E[(PNu)

2(x)] =
∑

|n|≤N

1

ρ+ |n|2 ∼ logN. (1.8)

This motivates us to define the Wick ordered monomial : (PNu)
k : by

:(PNu)
k(x) := Hk(PNu(x);σN ) (1.9)

in a pointwise manner. Here, Hk(x;σ) is the Hermite polynomial of degree k defined

in (2.1). Then, with (1.7) and (1.8), it is easy to see that the random variables XN (u)

defined by

XN (u) =

ˆ

T2

: (PNu)
2(x) : dx

have uniformly bounded second moments and converge to some random variable in L2(dµ0)

which we denote by

X∞(u) =

ˆ

T2

:u2 : dx ∈ L2(dµ0).

In view of the Wiener chaos estimate (Lemma 2.2), we see that XN (u) also converges to

X∞(u) in Lp(dµ0), p <∞.

In general, given any m ∈ N, one can show that the limit
ˆ

T2

:u2m+2 : dx = lim
N→∞

ˆ

T2

: (PNu)
2m+2 : dx (1.10)

exists in Lp(µ) for any finite p ≥ 1. Moreover, we have the following proposition.

Proposition 1.1. Let m ∈ N. Then, RN (u)
def
= e−

1
2m+2

´

T2
:(PNu)2m+2: dx ∈ Lp(µ) for any

finite p ≥ 1 with a uniform bound in N , depending on p ≥ 1. Moreover, for any finite

p ≥ 1, RN (u) converges to some R(u) in Lp(µ) as N → ∞.

This proposition follows from the hypercontractivity of the Ornstein-Uhlenbeck semi-

group and Nelson’s estimate [26]. See also [12, 30]. Denoting the limit R(u) ∈ Lp(µ)

by

R(u) = e−
1

2m+2

´

T2
:u2m+2: dx,

Proposition 1.1 allows us to define the Gibbs measure P
(2m+2)
2 associated with the Wick

ordered Hamiltonian:

HWick(u, v) =
1

2

ˆ

T2

(
ρu2 + |∇u|2

)
dx+

1

2

ˆ

T2

v2dx+
1

2m+ 2

ˆ

T2

:u2m+2 : dx

by

dP
(2m+2)
2 = Z−1e−HWick(u,v)du⊗ dv = Z−1e−

1
2m+2

´

T2 :u
2m+2: dxdµ

= Z−1R(u)dµ.

5. Note that σN defined in (1.8) is independent of x ∈ T
2. When M is a two-dimensional compact

Riemannian manifold without boundary or a bounded domain in R
2, the variance σN (x) = E[(PNu)2(x)]

depends on x ∈ M but satisfies the logarithmic bound in N . See (1.12) below.
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It follows from Proposition 1.1 that P
(2m+2)
2 ≪ µ and, in particular, P

(2m+2)
2 is a probability

measure on Hs(T2) \ H0(T2), s < 0. Moreover, defining P
(2m+2)
2,N by

dP
(2m+2)
2,N = Z−1

N RN (u)dµ,

we see that P
(2m+2)
2,N converges “uniformly” to P

(2m+2)
2 in the sense that given any ε > 0,

there exists N0 ∈ N such that
∣∣P (2m+2)

2,N (A) − P
(2m+2)
2 (A)

∣∣ < ε

for any N ≥ N0 and any measurable set A ⊂ Hs(T), s < 0.

Lastly, let us briefly discuss the construction of the Gibbs measure P
(2m+2)
2 when M is

a two-dimensional compact Riemannian manifold without boundary or a bounded domain

in R
2 (with the Dirichlet or Neumann boundary condition). In this case, the Gaussian

measure µ in (1.5) represents the induced probability measure under the map:

ω ∈ Ω 7−→ (u, v) =

(∑

n∈N

g0,n(ω)

(ρ+ λ2n)
1
2

ϕn(x),
∑

n∈N

g1,n(ω)ϕn(x)

)
, (1.11)

where {ϕn}n∈N is an orthonormal basis of L2(M) consisting of eigenfunctions of the

Laplace-Beltrami operator −∆ with the corresponding eigenvalues {λ2n}n∈N, which we as-

sume to be arranged in the increasing order. It is easy to see from (1.11) that µ is supported

on Hs(M) \ H0(M), s < 0.

Given N ∈ N, we define σN by

σN (x) = E[(PNuN )2(x)] =
∑

λn≤N

ϕn(x)
2

ρ+ λ2n
. logN, (1.12)

where PN denotes the spectral projector defined by

PNu =
∑

λn≤N

û(n)ϕn.

Note that unlike the situation on T
2, σN (x) now depends on x ∈ M. The last inequality

in (1.12), however, holds independently of x ∈ M thanks to Weyl’s law λn ≈ n
1
2 (see [33,

Chapter 14]) and [8, Proposition 8.1]. With this definition of σN (x), we can define the Wick

ordered monomials : (PNu)
k : as in (1.9) and : uk : by the limiting procedure. Then, the

discussion above for T2, in particular Proposition 1.1, also holds onM. See Section 4 of [30].

While the presentation in [30] is given in the complex-valued setting, a straightforward

modification yields the corresponding result for the real-valued setting.

In the next subsection, we discuss the dynamical problem. Our main goal in this paper

is to construct dynamics for the renormalized equation associated with the Wick ordered

Hamiltonian HWick with initial data distributed according to the Gibbs measure P
(2m+2)
2 .

1.3. Dynamical problem: Wick ordered NLW. We now consider the following dy-

namical problem on T
2 associated with the Wick ordered Hamiltonian:





∂t

(
u

v

)
=

(
0 1

−1 0

)
∂HWick

∂(u, v)

(u, v)|t=0 = (φω0 , φ
ω
1 ),

(1.13)
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where the initial data (φω0 , φ
ω
1 ) is distributed according to the Gibbs measure P

(2m+2)
2 .

In view of the absolute continuity of P
(2m+2)
2 with respect to the Gaussian measure µ

(Proposition 1.1), we consider the random initial data (φω0 , φ
ω
1 ) distributed according to µ

in the following discussion. Namely, we assume that

(
φω0 , φ

ω
1

)
=

( ∑

n∈Z2

g0,n(ω)

〈n〉ρ
ein·x,

∑

n∈Z2

g1,n(ω)e
in·x

)
, (1.14)

where {g0,n, g1,n}n∈Z2 is as in (1.7). Note that, at this point, the potential part 1
2m+2

´

T2 :

u2m+2 : dx of the Wick ordered Hamiltonian is defined only for u distributed according to

the Gaussian measure µ via (1.10). In the following, we extend this definition to a wider

class of functions in order to treat the Cauchy problem (1.13).

Given N ∈ N, define the truncated Wick ordered Hamiltonian HN
Wick by

HN
Wick

(u, v) =
1

2

ˆ

T2

(
ρu2 + |∇u|2

)
dx+

1

2

ˆ

T2

v2dx+
1

2m+ 2

ˆ

T2

: (PNu)
2m+2 : dx (1.15)

and consider the associated Hamiltonian dynamics:



∂t

(
uN

vN

)
=

(
0 1

−1 0

)
∂HN

Wick

∂(uN , vN )

(uN , vN )|t=0 = (φω0 , φ
ω
1 ).

Thanks to (1.9) and ∂xHk(x;σ) = kHk−1(x;σ), we can rewrite the system (1.15) as the

following truncated Wick ordered NLW:
{
∂2t uN −∆uN + ρuN +PN

[
: (PNuN )2m+1 :

]
= 0

(uN , ∂tuN )|t=0 = (φω0 , φ
ω
1 ),

(1.16)

where the truncated Wick ordered nonlinearity is interpreted as

PN

[
: (PNuN )2m+1 :

]
= PN

[
H2m+1(PNuN ;σN )

]
.

Let z = zω denote the random linear solution:

z(t) = S(t)(φω0 , φ
ω
1 ) = cos(t〈∇〉ρ)φω0 +

sin(t〈∇〉ρ)
〈∇〉ρ

φω1 , (1.17)

where 〈∇〉ρ =
√
ρ−∆. In view of the Duhamel formula, it is natural to decompose the

solution uN to (1.16) as

uN = z + wN .

Note that we have PNwN = wN . By recalling the following identities for the Hermite

polynomials:

Hk(x+ y) =
k∑

ℓ=0

(
k
ℓ

)
Hℓ(y) · xk−ℓ and Hk(x;σ) = σ

k
2Hk(σ

− 1
2x), (1.18)

we have

:(PNuN )2m+1: = H2m+1(zN +wN ;σN )

=

2m+1∑

ℓ=0

(
2m+ 1

ℓ

)
Hℓ(zN ;σN ) · w2m+1−ℓ

N , (1.19)
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where zN = PNz. This shows that applying the Wick ordering to the monomial

(PNuN )2m+1 = (zN + wN )2m+1 =

2m+1∑

ℓ=0

(
2m+ 1

ℓ

)
zℓN · w2m+1−ℓ

N (1.20)

is equivalent to Wick ordering all the monomials zℓN . Namely, replacing each zℓ in (1.20)

by

:zℓN : = Hℓ(zN ;σN )

yields the Wick ordered monomial : (PNuN )2m+1: via (1.19). In Proposition 2.3 below, we

prove that

:zℓN :∈ Lp(Ω;Lq([−T, T ];W−ε,r(T2)))

for any p, q, r <∞, T > 0, and ε > 0 with a bound uniform in N . Moreover, the sequence{
:zℓN :

}
N∈N

is a Cauchy sequence in the same space, thus allowing us to define

:zℓ : = :zℓ∞ :
def
= lim

N→∞
:zℓN : (1.21)

in Lp(Ω;Lq([−T, T ];W−ε,r(T2))) for any p, q, r <∞, T > 0, and ε > 0 (and for any ℓ ∈ N).

Now, consider a function u of the form

u = z + w (1.22)

for some “nice” w. Then, we can use (1.18) and (1.21) to define the Wick ordered monomial

:u2m+1 : for functions u of the form (1.22) by

:u2m+1: = :(z + w)2m+1: =
2m+1∑

ℓ=0

(
2m+ 1

ℓ

)
:zℓ : ·w2m+1−ℓ. (1.23)

Hence, we finally arrive at the defocusing Wick ordered NLW:
{
∂2t u−∆u+ ρu+ :u2m+1 : = 0

(u, ∂tu)|t=0 = (φω0 , φ
ω
1 ),

(1.24)

where (φω0 , φ
ω
1 ) is as in (1.14).

Before we state our main result, we first recall two critical regularities associated with

(1.1) on R
2 with ρ = 0. On the one hand, the scaling symmetry for (1.1) induces the

so-called scaling critical Sobolev index: s1 = 1 − 1
m
. On the other hand, the Lorentzian

invariance (conformal symmetry) induces another critical regularity: s2 =
3
4 − 1

2m (at least

in the focusing case). Hence, we set scrit by

scrit = max

(
1− 1

m
,
3

4
− 1

2m

)
=

{
1
4 if m = 1,

1− 1
m

if m ≥ 2.

We now state our main result.

Theorem 1.2. Let M = T
2, m ∈ N, and ρ > 0. Then, the Wick ordered NLW (1.24)

is almost surely locally well-posed with respect to the Gaussian measure µ defined in (1.5).

More precisely, letting (φω0 , φ
ω
1 ) be as in (1.14), there exist C, c > 0 such that for each

T ≪ 1, there exists a set ΩT ⊂ Ω with the following properties:

(i) P (Ωc
T ) ≤ C exp

(
− 1

T c

)
,
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(ii) For each ω ∈ ΩT , there exists a (unique) solution u to (1.24) with (u, ∂tu)|t=0 =

(φω0 , φ
ω
1 ) in the class

S(t)(φω0 , φ
ω
1 ) + C([−T, T ];Hs(T2)) ∩Xs, 1

2
+

T ⊂ C([−T, T ];H−ε(T2))

for any s ∈ (scrit, 1) and ε > 0. Here, X
s, 1

2
+

T denotes the local-in-time version of the

hyperbolic Sobolev space. See Section 3.

We emphasize that the Wick ordered NLW (1.24) is defined only for functions u of the

form (1.22). Then, the residual term w = u − z satisfies the following perturbed Wick

ordered NLW: {
∂2t w −∆w + ρw+ :(w + z)2m+1 : = 0

(w, ∂tw)|t=0 = (0, 0).
(1.25)

By writing (1.25) in the Duhamel formulation, we obtain

w(t) = −
ˆ t

0

sin((t− t′)〈∇〉ρ)
〈∇〉ρ

: (w + z)2m+1(t′) : dt′

= −
2m+1∑

ℓ=0

ˆ t

0

sin((t− t′)〈∇〉ρ)
〈∇〉ρ

(
2m+ 1

ℓ

)
:zℓ(t′) : ·w2m+1−ℓ(t′)dt′. (1.26)

We prove Theorem 1.2 by solving the fixed point problem (1.26) for w in

C([−T, T ];Hs(T2)) ∩Xs, 1
2
+

T , s > scrit. In Section 2, we study the regularity of the random

linear solution z and the associated Wick ordered monomials :zℓ :. In particular, while they

are rough, :zℓ : enjoys enhanced integrability both in space and time. See Proposition 2.3.

In Section 3, we then use the standard Fourier restriction norm method to solve the fixed

point problem (1.26). The original idea of this argument with the decomposition (1.22)

appears in McKean [25] and Bourgain [4] in the context of the nonlinear Schrödinger equa-

tions on T
d, d = 1, 2. See also Burq-Tzvetkov [9]. In the field of the stochastic PDEs, this

method is known as Da Prato-Debussche trick [11].

Remark 1.3. As in the study of singular stochastic PDEs, our proof consists of factorizing

the ill-defined solution map: (φω0 , φ
ω
1 ) 7→ u into a canonical lift followed by a (continuous)

solutions map Ψ:

(φω0 , φ
ω
1 )

lift7−→ (zω1 , z
ω
3 , . . . , z

ω
2m+1)

Ψ7−→w ∈ C([−T, T ];Hs(T2))

7−→u = z + w ∈ C([−T, T ];H−ε(T2)),

for s ∈ (scrit, 1) and ε > 0, where zk
def
= : zk: . On the one hand, we use probability theory

to construct the data set {z2j+1}mj=0 in the first step. On the other hand, the second step

is entirely deterministic. Moreover, the solution map Ψ in the second step is continuous

from
∏m

j=0 S
j
T to X

s, 1
2
+

T , where Sj
T denotes some appropriate Strichartz space for z2j+1. See

Section 3.

Remark 1.4. The same almost sure local well-posedness holds for the truncated Wick

ordered NLW (1.16). More precisely, we can choose ΩT , independent of N ∈ N, such that

the statement in Theorem 1.2 holds for (1.24) and (1.16). Moreover, by possibly shrinking
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the time, one can also prove that the solution uN = uωN to (1.16) converges to the solution

u = uω to (1.24) as N → ∞.

Once we have almost sure local well-posedness of (1.24), the invariant measure argument

by Bourgain [3, 4] yields the following almost sure global well-posedness of (1.24) and

invariance of the Gibbs measure P
(2m+2)
2 .

Theorem 1.5. Let M = T
2, m ∈ N, and ρ > 0. Then, the defocusing Wick ordered

NLW (1.24) is almost surely globally well-posed with respect to the Gibbs measure P
(2m+2)
2 .

Moreover, P
(2m+2)
2 is invariant under the dynamics of (1.24).

The proof of Theorem 1.5 exploits the invariance of the truncated Gibbs measure P
(2m+2)
2,N

for the truncated Wick ordered NLW (1.16) and combines it with an approximation argu-

ment. See Remark 1.4. As this argument is standard by now, we omit the proof. See

Bourgain [4] and Burq-Tzvetkov [10] for details.

Remark 1.6. We point that the convergence result in Remark 1.4 and invariance of the

Gibbs measure in Theorem 1.5 already appear (without a proof) in the lecture note by

Bourgain [5]. See [5, Theorem 111 on p. 63] and a comment that follows (118) on p. 64

in [5]. To the best of our knowledge, however, there seems to be no proof available in a

published paper. In fact, one of the main purposes of this paper is to present the details of

the proof of Bourgain’s claim in [5].

Next, we briefly discuss the situation when the spatial domain M is a two-dimensional

compact Riemannian manifold without boundary or a bounded domain in R
2 (with the

Dirichlet or Neumann boundary condition). In this case, one can exploit the invariance of

the truncated Gibbs measures P
(2m+2)
2,N for (1.16) to construct global-in-time weak solutions

(without uniqueness) to the Wick ordered NLW (1.24). Moreover, it also allows us to

establish invariance of the Gibbs measure P
(2m+2)
2 in some mild sense.

Theorem 1.7. Let m ∈ N and ρ > 0. Let M be a two-dimensional compact Riemannian

manifold without boundary or a bounded domain in R
2 (with the Dirichlet or Neumann

boundary condition). In the latter case with the Dirichlet boundary condition, we can also

take ρ = 0. Then, there exists a set Σ of full measure with respect to P
(2m+2)
2 such that for

every φ ∈ Σ, the defocusing Wick ordered NLW (1.24) with initial data distributed according

to P
(2m+2)
2 has a global-in-time solution u ∈ C(R;Hs(M)) for any s < 0. Moreover, for

all t ∈ R, the law of the random function (u, ∂tu)(t) is given by P
(2m+2)
2 .

In [30], we proved an analogous result for the defocusing Wick ordered nonlinear

Schrödinger equations on M. Theorem 1.7 follows from repeating the argument presented

in [30] with systematic modifications and thus we omit details. See also [1, 11, 8, 29]. The

main ingredient for Theorem 1.7 is to establish tightness (= compactness) of measures νN

on space-time functions, emanating from the truncated Gibbs measure P
(2m+2)
2,N and then

upgrading the weak convergence of νN (up to a subsequence) to an almost sure convergence

of the corresponding random variables via Skorokhod’s theorem. Due to the compactness

argument, Theorem 1.7 claims only the existence of a global-in-time solution u. Lastly, note

that Theorem 1.7 only claims that the law of the Hs-valued random variable (u, ∂tu)(t) is
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given by the Gibbs measure P
(2m+2)
2 for any t ∈ R. In particular, this mild invariance for a

general geometric setting is weaker than the invariance stated in Theorem 1.5 for the Wick

ordered NLW (1.24) on T
2.

Remark 1.8. On the one hand, the defocusing/focusing nature of the equation does not

play any role in the almost sure local well-posedness result (Theorem 1.2) and thus Theo-

rem 1.2 also holds in the focusing case. It can also be extended to Wick ordered even power

monomials in the equation. On the other hand, the defocusing nature of the equation plays

a crucial role in the proof of Proposition 1.1 and hence in Theorems 1.5 and 1.7. In the

focusing case (i.e. with −u2m+1, m ∈ N, in (1.1)), it is known that the Gibbs measure can

not be normalized in the two dimensional case. See Brydges-Slade [6]. Lastly, we point out

that in the case of the quadratic nonlinearity (which is neither defocusing nor focusing),

one can introduce the following modified Gibbs measure:

dP
(3)
2 = Z−1e−

1
3

´

:u3:−A(
´

:u2: )2dµ

for sufficiently large A ≫ 1 and study the associated dynamical problem. See [5] for the

construction of this modified Gibbs measure P
(3)
2 .

1.4. Wick ordered NLW as a scaling limit. As an application of the local well-

posedness argument, we show how the Wick ordered NLW (1.24) appears as a scaling

limit of non-renormalized NLW equations on dilated tori. This part of the discussion is

strongly motivated by the weak universality result for the Wick ordered stochastic NLW

on T
2 studied by the first author with Gubinelli and Koch in [16].

Fix ρ > 0. Given small ε > 0, we consider the following non-renormalized NLW equation

on a dilated torus T2
ε
def
= (ε−1

T)2:
{
∂2t vε −∆vε + ρεvε = f(vε)

(vε, ∂tvε)|t=0 = (ψω
ε,0, ψ

ω
ε,1),

(t, x) ∈ R× T
2
ε (1.27)

with Gaussian random initial data (ψω
ε,0, ψ

ω
ε,1), where f : R → R is a smooth odd 6 function

with the following bound:

|f (4)(x)| . 1 + |x|M (1.28)

for some M ≥ 0 and ρε is a parameter to be chosen later. In the following, we choose ψω
ε,0

and ψω
ε,1 to be a smoothed Ornstein-Uhlenbeck process and a smoothed white noise on T

2
ε,

respectively. For the sake of concreteness, we set 7

(ψω
ε,0, ψ

ω
ε,1) =

(
∑

n∈(εZ)2

|n|≤1

g0,ε−1n

ε−1
√
ε2ρ+ |n|2

ein·x

ε−1
,
∑

n∈(εZ)2

|n|≤1

g1,ε−1n

ein·x

ε−1

)
,

6. It follows from the proof of Theorem 1.9 that it suffices to assume that f(0) = f ′′(0) = 0 for the cubic
case considered in Theorem 1.9.

7. Note that
{

εein·x
}

n∈(εZ)2
forms an orthonormal basis of L2(T2

ε). Moreover, recall that the Fourier-

Wiener series
∑

n∈(εZ)2

g0,n

ε−1|n|

ein·x

ε−1

represents the periodic Wiener process on T
2
ε.
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where {g0,n, g1,n}n∈Z2 is as in (1.7). Our main goal is to study the behavior of the solution

to (1.27) as ε→ 0 by applying a suitable scaling.

Let uε(t, x)
def
= ε−1vε(ε

−1x, ε−1t). Then, uε satisfies
{
∂2t uε −∆uε + ρuε = ε−3

{
f(εuε) + ε(ε2ρ− ρε)uε

}

(uε, ∂tuε)|t=0 = (φωε,0, φ
ω
ε,1),

(t, x) ∈ R× T
2, (1.29)

where (φωε,0, φ
ω
ε,1) on T

2 is given by

(φωε,0, φ
ω
ε,1) =

(
∑

n∈Z2

|n|≤ε−1

g0,n√
ρ+ |n|2

ein·x,
∑

n∈Z2

|n|≤ε−1

g1,ne
in·x

)
. (1.30)

Note that (φωε,0, φ
ω
ε,1) converges to (φω0 , φ

ω
1 ) in (1.14) distributed according to the Gaussian

measure µ defined in (1.5).

The rescaled model (1.29) on T
2 allows us to study the large temporal and spatial scale

behavior of the solution vε to (1.27). Moreover, by suitably choosing ρε, the family {uε}ε>0

converges to the solution u to the Wick ordered NLW on T
2 with a parameter λ = λ(f),

depending only on f .

Theorem 1.9. Let ρ > 0. Then, there exists a choice of ρε such that, as ε→ 0, the family

of the solutions {uε}ε>0 to (1.29) converges almost surely to the solution u to the following

Wick ordered cubic NLW on T
2:
{
∂2t u−∆u+ ρu = λ :u3 :

(u, ∂tu)|t=0 = (φω0 , φ
ω
1 ),

(1.31)

where the convergence takes place in C([−Tω, Tω];Hs(T2)), s < 0, for some Tω > 0. Here,

the constant λ is given by λ = f(3)(0)
6 , depending only on the function f .

This theorem shows a kind of weak universality for the Wick ordered NLW. See [16] for

a similar result for the Wick ordered stochastic NLW. We also refer readers to [19, 17, 18]

for more discussion on weak universality (for stochastic parabolic equations, in particular

the KPZ equation).

Remark 1.10. By starting with the following NLW on T
2
ε:

{
∂2t vε −∆vε + ρεvε +

∑m−1
j=1 aj(ε)v

2j+1
ε = f(vε)

(vε, ∂tvε)|t=0 = (ψω
ε,0, ψ

ω
ε,1),

we can tune the m parameters ρε, aj(ε), j = 1, . . . ,m−1, such that by a small modification

of the proof of Theorem 1.9, we obtain the following Wick ordered NLW:
{
∂2t u−∆u+ ρu = λ :u2m+1 :

(u, ∂tu)|t=0 = (φω0 , φ
ω
1 ),

for some λ = λ(f), as ε → 0. In this case, one needs to use the scaling uε(t, x) =

ε−γvε(ε
−1x, ε−1t) for some suitably chosen γ = γ(m) > 0 and also assume a bound analo-

gous to (1.28) for a higher order derivative of f .
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2. Probabilistic tools

In this section, we first recall basic probabilistic tools. Then, we prove a uniform (in N)

bound on the Wick ordered monomials :zℓN : = Hℓ(zN , σN ), consisting of the random linear

solution (Proposition 2.3). Moreover, we prove that
{
: zℓN :

}
N∈N

is a Cauchy sequence,

allowing us to define :zℓ : by (1.21).

2.1. Hermite polynomials and white noise functional. First, recall the Hermite poly-

nomials Hk(x;σ) defined via the generating function:

F (t, x;σ) := etx−
1
2
σt2 =

∞∑

k=0

tk

k!
Hk(x;σ). (2.1)

For simplicity, we set Hk(x) := Hk(x; 1). In the following, we list the first few Hermite

polynomials for readers’ convenience:

H0(x;σ) = 1, H1(x;σ) = x, H2(x;σ) = x2 − σ,

H3(x;σ) = x3 − 3σx, H4(x;σ) = x4 − 6σx2 + 3σ2.
(2.2)

Next, we define the white noise functional. Let ξ(x;ω) be the (real-valued) mean-zero

Gaussian white noise on T
2 defined by

ξ(x;ω) =
∑

n∈Z2

gn(ω)e
in·x,

where {gn}n∈Z2 is a sequence of independent standard complex-valued Gaussian random

variables conditioned that g−n = gn, n ∈ Z
2. It is easy to see that ξ ∈ Hs(T2) \ H−1(T2),

s < −1, almost surely. In particular, ξ is a distribution, acting on smooth functions. In

fact, the action of ξ can be defined on L2(T2).

We define the white noise functional W(·) : L
2(T2) → L2(Ω) by

Wf (ω) = 〈f, ξ(ω)〉L2 =
∑

n∈Z2

f̂(n)gn(ω) (2.3)

for a real-valued function f ∈ L2(T2). Note thatWf = ξ(f) is basically the Wiener integral

of f . In particular, Wf is a real-valued Gaussian random variable with mean 0 and variance

‖f‖2
L2 . Moreover, W(·) is unitary:

E
[
WfWh] = 〈f, h〉L2

x
(2.4)

for f, h ∈ L2(T2). The following lemma extends the relation (2.4) to a more general setting.

Lemma 2.1. Let f, h ∈ L2(T2) such that ‖f‖L2 = ‖h‖L2 = 1. Then, for k,m ∈ Z≥0, we

have

E
[
Hk(Wf )Hm(Wh)

]
= δkmk![〈f, h〉]k.

Here, δkm denotes the Kronecker’s delta function.

This lemma follows from computing the left-hand side of

E[F (t,Wf )F (s,Wh)] =

∞∑

k,m=0

tk

k!

sm

m!
E
[
Hk(Wf )Hm(Wh)

]

and comparing the coefficients. See [12, 29] for details.
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We also recall the following Wiener chaos estimate [31, Theorem I.22].

Lemma 2.2. Fix k ∈ N and c(n1, . . . , nk) ∈ C. Given d ∈ N, let {gn}dn=1 be a sequence of

independent standard complex-valued Gaussian random variables and set g−n = gn. Define

Sk(ω) by

Sk(ω) =
∑

Γ(k,d)

c(n1, . . . , nk)gn1(ω) · · · gnk
(ω),

where Γ(k, d) is defined by

Γ(k, d) =
{
(n1, . . . , nk) ∈ {0,±1, . . . ,±d}k

}
.

Then, for p ≥ 2, we have

‖Sk‖Lp(Ω) ≤ (p− 1)
k
2 ‖Sk‖L2(Ω). (2.5)

The crucial point is that the constant in (2.5) is independent of d ∈ N. This lemma is

a direct corollary to the hypercontractivity of the Ornstein-Uhlenbeck semigroup due to

Nelson [26].

2.2. Stochastic estimate on Wick ordered monomials. In this subsection, we study

the Wick ordered monomials : zℓN : and : zℓ :, consisting of the random linear solution z

defined in (1.17). From (1.14) and (1.17), we have

ẑ(t, n) =
cos(t〈n〉ρ)

〈n〉ρ
g0,n +

sin(t〈n〉ρ)
〈n〉ρ

g1,n. (2.6)

In order to avoid the combinatorial complexity in higher ordered monomials, we use the

white noise functional as in [30]. We, however, need to adapt the white noise functional to

z(t). In view of (2.6), we define the white noise functional W t
(·) : L

2(T2) → L2(Ω) with a

parameter t ∈ R by

W t
f (ω) = 〈f, ξt(ω)〉L2 =

∑

n∈Z2

f̂(n)gtn(ω). (2.7)

Here, ξt denotes (a specific realization of) the white noise on T
2 given by

ξt(x;ω) =
∑

n∈Z2

gtn(ω)e
in·x,

where gtn is define by

gtn = cos(t〈n〉ρ)g0,n + sin(t〈n〉ρ)g1,n.
Note that E[gtn] = 0 and Var(gtn) = cos2(t〈n〉ρ)+sin2(t〈n〉ρ) = 1. Thus, for each fixed t ∈ R,

{gtn}n∈Z2 is a sequence of independent standard Gaussian random variables conditioned that

gt−n = gtn for all n ∈ N. Therefore, the white noise functional W t
(·) defined in (2.7) satisfies

the same properties as the standard white noise functional W(·) defined in (2.3). Lastly,

note that, in view of (2.6), the random linear solution zN = PNz can be expressed as

zN (t, x) =
∑

|n|≤N

gtn(ω)

〈n〉ρ
ein·x. (2.8)

In the following, we use the short-hand notation Lq
T = Lq

t ([−T, T ]), etc.
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Proposition 2.3. Let ℓ ∈ N and ρ > 0. Then, given 2 ≤ q, r < ∞ and ε > 0, there exist

C, c > 0 such that

P
(
‖〈∇〉−ε :zℓN : ‖Lq

T
Lr
x
> λ

)
≤ C exp

(
− c

λ
2
ℓ

T
2
qℓ

)
(2.9)

for any T > 0, λ > 0, and any N ∈ N. Moreover, the sequence
{
: zℓN :

}
N∈N

is a Cauchy

sequence in Lp(Ω;Lq([−T, T ];W−ε,r(T2))). In particular, denoting the limit by : zℓ :, we

have :zℓ :∈ Lq([−T, T ];W−ε,r(T2)) almost surely, satisfying the tail estimate (2.9).

Before proceeding to the proof of Proposition 2.3, we introduce some notations. Let σN
be as in (1.8). For fixed x ∈ T

2 and N ∈ N, we also define

ηN (x)(·) def
=

1

σ
1
2
N

∑

|n|≤N

en(x)

〈n〉ρ
en(·) and γN (·) def

=
∑

|n|≤N

1

〈n〉2ρ
en(·), (2.10)

where en(y) = ein·y. Note that ηN (x)(·) is real-valued with ‖ηN (x)‖L2(T2) = 1 for all x ∈ T
2

and all N ∈ N. Moreover, we have

〈ηM (x), ηN (y)〉L2 =
1

σ
1
2
Mσ

1
2
N

γN (y − x) =
1

σ
1
2
Mσ

1
2
N

γN (x− y), (2.11)

for fixed x, y ∈ T
2 and M ≥ N ≥ 1.

Proof. From (2.8) and (2.10), we have

zN (t, x) = σ
1
2
N

zN (t, x)

σ
1
2
N

= σ
1
2
NW

t

ηN (x)
= σ

1
2
NW

t
ηN (x). (2.12)

Then, from (1.18) and (2.12), we have

:zℓN (t, x) := Hℓ(zN (t, x);σN ) = σ
ℓ
2
NHℓ

(
W t

ηN (x)

)
. (2.13)

Given n ∈ Z
2, define Γℓ(n) by

Γℓ(n) = {(n1, . . . , nℓ) ∈ (Z2)ℓ : n1 + · · ·+ nℓ = n}.

Then, for (n1, . . . , nℓ) ∈ Γℓ(n), we have maxj |nj | & |n|. Thus, it follows from Lemma 2.1

with (2.13) and (2.11) that

‖〈 :zℓN (t) :, en〉‖2L2(Ω) = σℓN

ˆ

T2
x×T2

y

en(x)en(y)

ˆ

Ω
Hℓ

(
W t

ηN (x)

)
Hℓ

(
W t

ηN (y)

)
dPdxdy

= ℓ!

ˆ

T2
x×T2

y

[γN (x− y)]ℓen(x− y)dxdy

= ℓ! · F [γℓN ](n) = ℓ!
∑

Γℓ(n)
|nj |≤N

ℓ∏

j=1

1

〈nj〉2ρ
.

1

〈n〉2(1−θ)
(2.14)
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for any θ > 0. On the other hand, for n 6= n′, we have
ˆ

Ω
〈 :zℓN (t) :, en〉〈 :zℓN (t) :, en′〉dP

= σℓN

ˆ

T2
x×T2

y

en(x)en′(y)

ˆ

Ω
Hℓ

(
W t

ηN (x)

)
Hℓ

(
W t

ηN (y)

)
dPdxdy

= ℓ!

ˆ

T2
x

ˆ

T2
y

[γN (x− y)]ℓen′(x− y)dy en(x)en′(x)dx

= ℓ! · F [γℓN ](n′)

ˆ

T2
x

en(x)en′(x)dx = 0. (2.15)

Hence, given x ∈ T
2 and t ∈ R, it follows from (2.14) and (2.15) that

‖〈∇〉−ε :zℓN (t, x) : ‖L2(Ω) =

∥∥∥∥
∑

n∈Z2

〈n〉−εFx

[
:zℓN (t) :

]
(n) ein·x

∥∥∥∥
L2(Ω)

≤ Cℓ

( ∑

n∈Z2

〈n〉−2εF [γℓN ](n)

) 1
2

≤ Cℓ

( ∑

n∈Z2

〈n〉−2(1+ε−θ)

)1
2

<∞, (2.16)

uniformly in N ∈ N, as long as 0 < θ < ε.

Fix 2 ≤ q, r < ∞. Then, by Minkowski’s integral inequality, Lemma 2.2 (with (2.8)),

and (2.16), we have

∥∥∥‖〈∇〉−ε :zℓN : ‖Lq
T
Lr
x

∥∥∥∥
Lp(Ω)

≤
∥∥∥‖〈∇〉−ε :zℓN (t, x) : ‖Lp(Ω)

∥∥∥∥
L
q
T
Lr
x

≤ Cℓ p
ℓ
2

∥∥∥‖〈∇〉−ε :zℓN (t, x) : ‖L2(Ω)

∥∥∥
L
q
T
Lr
x

. T
1
q p

ℓ
2 , (2.17)

for all p ≥ max(q, r). Finally, (2.9) follows from (2.17) and Chebyshev’s inequality.

A similar computation with Lemma 2.1, (2.11), and Lemma 2.2 shows that the sequence{
:zℓN :

}
N∈N

is a Cauchy sequence in Lp(Ω;Lq([−T, T ];W−ε,r(T2))). �

Remark 2.4. As a corollary to Proposition 2.3, we can show that the tail estimate (2.9)

and the convergence of : zℓN : to : zℓ : hold even when q = ∞ and/or r = ∞. This follows

from applying Sobolev’s inequality (in time and/or space) and using the fact that z solves

the linear wave/Klein-Gordon equation. See [7]. With this observation, we can easily show

that :zℓN :, :zℓ :∈ C([−T, T ];W−ε,r(T2)) almost surely. See also [16, 27].

3. Local well-posedness of the Wick ordered NLW

In this section, we present the proof of Theorem 1.2. We combine the deterministic

analysis via the Fourier restriction norm method (with the hyperbolic Sobolev spaces) and

the stochastic estimate on the Wick ordered monomials : zℓ : (Proposition 2.3). In the

following, we fix ρ > 0.
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3.1. Hyperbolic Sobolev spaces and Strichartz estimates. We first recall the hyper-

bolic Sobolev space Xs,b due to Klainerman-Machedon [22] and Bourgain [2], defined by

the norm

‖u‖Xs,b(R×T2) = ‖〈n〉s〈|τ | − 〈n〉ρ〉bû(τ, n)‖ℓ2nL2
τ (R×Z2).

For b > 1
2 , we have Xs,b ⊂ C(R;Hs). Given an interval I ⊂ R, we define the local-in-time

version Xs,b(I) as a restriction norm:

‖u‖Xs,b(I) = inf
{
‖v‖Xs,b(R×T2) : v|I = u

}
.

When I = [−T, T ], we set Xs,b
T = Xs,b(I).

The main deterministic tool for the proof of Theorem 1.2 is the following Strichartz

estimates for the linear wave/Klein-Gordon equation. Given 0 ≤ s ≤ 1, we say that a pair

(q, r) is s-admissible if 2 < q ≤ ∞, 2 ≤ r <∞,

1

q
+

2

r
= 1− s, and

1

q
+

1

2r
≤ 1

4
.

Then, we have the following Strichartz estimates.

Lemma 3.1. Let T ≤ 1. Given 0 ≤ s ≤ 1, let (q, r) be s-admissible. Then, we have

‖S(t)(φ0, φ1)‖Lq
T
Lr
x(T

2) . ‖(φ0, φ1)‖Hs(T2). (3.1)

See Ginibre-Velo [14], Lindblad-Sogge [24], and Keel-Tao [20] for the Strichartz estimates

on R
d. See also [21]. The Strichartz estimates (3.1) on T

2 in Lemma 3.1 follows from those

on R
2 and the finite speed of propagation.

When b > 1
2 , the X

s,b-spaces enjoy the transference principle. In particular, as a corollary

to Lemma 3.1, we obtain the following space-time estimate. See [23, 32] for the proof.

Lemma 3.2. Let T ≤ 1. Given 0 ≤ s ≤ 1, let (q, r) be s-admissible. Then, for b > 1
2 , we

have

‖u‖Lq
T
Lr
x
. ‖u‖

X
s,b
T

.

Lastly, we state the nonhomogeneous linear estimate. See [13].

Lemma 3.3. Let −1
2 < b′ ≤ 0 ≤ b ≤ b′ + 1. Then, for T ≤ 1, we have

∥∥∥∥
ˆ t

0

sin((t− t′)〈∇〉ρ)
〈∇〉ρ

F (t′)dt′
∥∥∥∥
X

s,b
T

. T 1−b+b′‖F‖
X

s−1,b′

T

.

3.2. Proof of Theorem 1.2. In the following, we simply consider the case s = scrit + δ

with δ ≪ 1. Given T ≤ 1, define Ψ(w) by

Ψ(w)(t) = Ψω(w)(t)
def
=

ˆ t

0

sin((t− t′)〈∇〉ρ)
〈∇〉ρ

: (w + z)2m+1(t′) : dt′.

Let b = 1
2+. Then, for 0 < θ ≤ 1− b, by Lemma 3.3, we have

‖Ψ(w)‖
X

s,b
T

. T θ‖ : (w + z)2m+1: ‖
X

s−1,b−1+θ
T

. (3.2)
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From (1.23), we have

:(w + z)2m+1: =

2m+1∑

ℓ=0

(
2m+ 1

ℓ

)
w2m+1−ℓ :zℓ : .

Then, by duality, we have

‖ : (w + z)2m+1: ‖
X

s−1,b−1+θ
T

≤
2m+1∑

ℓ=0

Cm,ℓ‖w2m+1−ℓ :zℓ : ‖
X

s−1,b−1+θ
T

≤
2m+1∑

ℓ=0

Cm,ℓ sup
hℓ

∣∣∣∣
¨

1[−T,T ] w̃
2m+1−ℓ :zℓ : hℓ dxdt

∣∣∣∣, (3.3)

for any extension w̃ of w, where the supremum is taken over hℓ ∈ X1−s,1−b−θ with

‖hℓ‖X1−s,1−b−θ = 1. By choosing θ > 0 sufficiently small, we have 1− b− θ = 1
2−.

• Case 1: m = 1.

In this case, we have s = scrit+δ =
1
4 +δ. Noting that

(
12

1+2δ ,
3

1−δ

)
is
(
1
4+

1
2δ
)
-admissible,

it follows from Lemma 3.2 that

‖〈∇〉εw̃‖
L

12
1+2δ
T

L
3

1−δ
x

. ‖w̃‖
X

1
4+1

2 δ+ε,12+ . ‖w̃‖
X

s, 12+

for any extension w̃ of w, as long as ε ≤ 1
2δ. By taking an infimum over all the extensions

w̃ of w, we obtain

inf
w̃|[−T,T ]=w

‖〈∇〉εw̃‖
L

12
1+2δ
T

L
3

1−δ
x

. ‖w‖
X

s, 12+

T

. (3.4)

On the one hand, noting that
(

4
1−2δ ,

1
δ

)
is
(
3
4 − 3

2δ
)
-admissible, Hölder’s inequality (with

T ≤ 1) and Lemma 3.2 yield

‖〈∇〉εhℓ‖
L

4
3−2δ
T

L
1
δ
x

. ‖〈∇〉εhℓ‖
L

4
1−2δ
T

L
1
δ
x

. ‖〈∇〉εhℓ‖
X

3
4−

3
2 δ, 12+. (3.5)

On the other hand, applying Hölder’s inequality in t and Sobolev’s inequality in x, we have

‖〈∇〉εhℓ‖
L

4
3−2δ
T

L
1
δ
x

. ‖〈∇〉εhℓ‖
L2
T
L

1
δ
x

. ‖〈∇〉εhℓ‖X1−2δ,0 . (3.6)

Interpolating (3.5) and (3.6) with sufficiently small θ > 0, we obtain

‖〈∇〉εhℓ‖
L

4
3−2δ
T

L
1
δ
x

. ‖hℓ‖
X

3
4−

5
4 δ+ε,1−b−θ . ‖hℓ‖X1−s,1−b−θ (3.7)

as long as ε ≤ 1
4δ.

For ℓ = 0, 1, 2, 3, define (qℓ, rℓ) by

1 = (3− ℓ)
1 + 2δ

12
+

3− 2δ

4
+

1

qℓ
and 1 = (3− ℓ)

1− δ

3
+ δ +

1

rℓ
.
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When ℓ = 0, we have q0 = r0 = ∞ and : z0 : ≡ 1. Then, by fractional Leibniz rule and

Hölder’s inequality with (3.4) and (3.7), we have

inf
w̃|[−T,T ]=w

∣∣∣∣
¨

1[−T,T ]w̃
3−ℓ :zℓ : hℓ dxdt

∣∣∣∣

= inf
w̃|[−T,T ]=w

∣∣∣∣
¨

1[−T,T ]〈∇〉ε(w̃3−ℓhℓ)〈∇〉−ε :zℓ : dxdt

∣∣∣∣

. inf
w̃|[−T,T ]=w

‖〈∇〉εw̃‖3−ℓ

L
12

1+2δ
T

L
3

1−δ
x

‖〈∇〉εhℓ‖
L

4
3−2δ
T

L
1
δ
x

‖〈∇〉−ε :zℓ : ‖Lqℓ
T
L
rℓ
x

. ‖w‖3−ℓ

X
s,b
T

‖hℓ‖X1−s,1−b−θ‖〈∇〉−ε :zℓ : ‖
L
qℓ
T
L
rℓ
x

= ‖w‖3−ℓ

X
s,b
T

‖〈∇〉−ε :zℓ : ‖
L
qℓ
T
L
rℓ
x

(3.8)

as long as 0 < ε ≤ 1
4δ. Hence, by Proposition 2.3 with (3.2), (3.3), and (3.8), we obtain

‖Ψ(w)‖
X

s,b
T

. T θ
3∑

ℓ=0

‖w‖3−ℓ

X
s,b
T

(3.9)

outside a set of probability < exp
(
− 1

T c

)
for some c > 0. Similarly, we have

‖Ψ(w1)−Ψ(w2)‖Xs,b
T

. T θ
2∑

ℓ=0

(
‖w1‖2−ℓ

X
s,b
T

+ ‖w2‖2−ℓ

X
s,b
T

)
‖w1 − w2‖Xs,b

T

(3.10)

outside a set of probability < exp
(
− 1

T c

)
. Therefore, it follows from (3.9) and (3.10) that

for each T ≪ 1, there exists a set ΩT with P (Ωc
T ) < exp

(
− 1

T c

)
such that, for each ω ∈ ΩT ,

Ψω is a contraction on a ball of radius O(1) in Xs,b
T .

• Case 2: m ≥ 2.

In this case, we have s = scrit + δ = 1− 1
m

+ δ. Define (q, r) by

1

q
=

3m− 1

3m(2m+ 1)
+
δ

6
and

1

r
=

3m+ 4

6m(2m+ 1)
− δ

3
.

Noting that (q, r) is
(
scrit +

1
2δ
)
-admissible, it follows from Lemma 3.2 that

‖〈∇〉εw̃‖Lq
T
Lr
x
. ‖w̃‖

X
scrit+

1
2 δ+ε, 12+ . ‖w̃‖

X
s, 12+

for any extension w̃ of w, as long as ε ≤ 1
2δ. By taking an infimum over all the extensions

w̃ of w, we obtain

inf
w̃|[−T,T ]=w

‖〈∇〉εw̃‖Lq
T
Lr
x
. ‖w‖

X
s, 12+

T

. (3.11)

Now, define (q̃, r̃) by

1

q̃
=

1

3m
− 2m+ 1

6
δ and

1

r̃
=

3m− 4

6m
+

2m+ 1

3
δ.

Then, (q̃, r̃) is
(
1− scrit − 2m+1

2 δ
)
-admissible. On the one hand, by Lemma 3.2, we have

‖〈∇〉εhℓ‖Lq̃
T
Lr̃
x
. ‖〈∇〉εhℓ‖

X1−scrit−
2m+1

2 δ, 12+ . (3.12)

On the other hand, by Sobolev’s inequality, we have

‖〈∇〉εhℓ‖Lq̃
T
Lr̃
x
. ‖〈∇〉εhℓ‖

X1− 3m−4
3m −

4m+2
3 δ, 12−

1
3m+2m+1

6 δ
. (3.13)
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Note that the temporal regularity on the right-hand side of (3.13) is less than 1
2 by choosing

δ > 0 sufficiently small. Hence, by interpolating (3.12) and (3.13) with sufficiently small

θ > 0, we obtain

‖〈∇〉εhℓ‖Lq̃
T
Lr̃
x
. ‖hℓ‖X1−scrit−mδ+ε,1−b−θ . ‖hℓ‖X1−s,1−b−θ (3.14)

as long as ε ≤ (m− 1)δ.

Proceeding as before, it follows from Hölder’s inequality with (3.11) and (3.14) that
∣∣∣∣
¨

inf
w̃|[−T,T ]=w

1[−T,T ]w̃
2m+1−ℓ :zℓ : hℓ dxdt

∣∣∣∣

= inf
w̃|[−T,T ]=w

∣∣∣∣
¨

1[−T,T ]〈∇〉ε(w̃2m+1−ℓhℓ)〈∇〉−ε :zℓ : dxdt

∣∣∣∣

. inf
w̃|[−T,T ]=w

‖〈∇〉εw̃‖2m+1−ℓ
L
q
T
Lr
x

‖〈∇〉εhℓ‖Lq̃
T
Lr̃
x
‖〈∇〉−ε :zℓ : ‖

L
q
ℓ
T
L

r
ℓ
x

. ‖w‖2m+1−ℓ

X
s,b
T

‖hℓ‖X1−s,1−b−θ‖〈∇〉−ε :zℓ : ‖
L

q
ℓ
T
L

r
ℓ
x

= ‖w‖2m+1−ℓ

X
s,b
T

‖〈∇〉−ε :zℓ : ‖
L

q
ℓ
T
L

r
ℓ
x

(3.15)

as long as 0 < ε ≤ 1
2δ. Hence, by Proposition 2.3 with (3.2), (3.3), and (3.15), we obtain

‖Ψ(w)‖
X

s,b
T

. T θ
2m+1∑

ℓ=0

‖w‖2m+1−ℓ

X
s,b
T

,

‖Ψ(w1)−Ψ(w2)‖Xs,b
T

. T θ
2m∑

ℓ=0

(
‖w1‖2m−ℓ

X
s,b
T

+ ‖w2‖2m−ℓ

X
s,b
T

)
‖w1 − w2‖Xs,b

T

outside a set of probability < exp
(
− 1

T c

)
for some c > 0. Therefore, for each T ≪ 1, there

exists a set ΩT with P (Ωc
T ) < exp

(
− 1

T c

)
such that, for each ω ∈ ΩT , Ψ

ω is a contraction

on a ball of radius O(1) in Xs,b
T .

This completes the proof of Theorem 1.2.

4. Weak universality: Wick ordered NLW as a scaling limit

In this section, we present the proof of Theorem 1.9. We follow closely the argument

in [16]. With zε = zωε = S(t)(φωε,0, φ
ω
ε,1), let us decompose uε = zε + wε as in (1.22). Then,

the residual term wε satisfies

∂2t wε −∆wε + ρwε = Fε(wε), (4.1)

where Fε(wε) is given by

Fε(wε) = ε−3
{
f(ε(zε + wε)) + ε(ε2ρ− ρε)(zε + wε)

}

= ε−2{f ′(0) + ε2ρ− ρε}(zε + wε) +
f (3)(0)

6
(zε + wε)

3 +Rε, (4.2)

where the second equality follows from f(0) = f ′′(0) = 0 and Taylor’s remainder theorem

with the remainder term Rε given by

Rε = ε

ˆ 1

0

(1− θ)3

6
f (4)(θε(zε + wε))dθ · (zε + wε)

4. (4.3)
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From (1.30), we see that zε(t, x) is a mean-zero real-valued Gaussian random variable

with variance

σε = E[z2ε (t, x)] ∼ log ε−1.

Note that σε is independent of x ∈ T
2 and t ∈ R. Recalling from (2.2) that x3 = H3(x;σ)+

3σx, it follows from (4.2) and (4.3) that

Fε(wε) = ε−2

{
f ′(0) + ε2ρ− ρε + 3ε2σε

f (3)(0)

6

}
(zε + wε)

+
f (3)(0)

6
H3(zε + wε;σε) +Rε.

For each ε > 0, we set ρε by

ρε = f ′(0) + ε2ρ+ ε2σε
f (3)(0)

2

so that the first term on the right-hand side vanishes. Then, by letting λ = f(3)(0)
6 , we

obtain

Fε(wε) = λH3(zε + wε;σε) +Rε
def
= λ :u3ε : +Rε.

From (4.3) and (1.28), we have

|Rε| =
∣∣∣∣ε
ˆ 1

0

(1− θ)3

6
f (4)(θε(zε + wε))dθ · (zε + wε)

4

∣∣∣∣

. ε
{
|zε|+ |wε|

}M+4
.

In particular, we can write (4.1) as

∂2t wε −∆wε + ρwε = λ
3∑

ℓ=0

(
3

ℓ

)
:zℓε : w

3−ℓ
ε +O

(
ε
{
|zε|+ |wε|

}M+4)
. (4.4)

It follows from Proposition 2.3 with (1.30) that

ε‖zε‖M+4
L
q
T
Lr
x
= oε(1)

almost surely. Then, by proceeding as in Section 3 (where we handle the second term on

the right-hand side of (4.4) by applying the argument in Section 3 with 2m+ 1 ≥M + 4),

we obtain an a priori bound on wε, uniformly in ε > 0. Moreover, the local existence time

T = Tω can be chosen to be independent of ε > 0.

Let u be the solution to (1.31). In an analogous manner, we can estimate the difference

w−wε, where w = u− z as in (1.22). Together with the almost sure convergence of zε to z

(see Remark 2.4), we see that uε converges to u in C([−Tω, Tω];Hs(T2)) for s < 0. This

completes the proof of Theorem 1.9.
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Kôkyûroku Bessatsu (2016).

[19] M. Hairer, J. Quastel, A class of growth models rescaling to KPZ, arXiv:1512.07845 [math-ph].

[20] M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955–980.
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