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INVARIANT GIBBS MEASURES FOR THE 2-d DEFOCUSING
NONLINEAR WAVE EQUATIONS

TADAHIRO OH AND LAURENT THOMANN

ABSTRACT. We consider the defocusing nonlinear wave equations (NLW) on the two-
dimensional torus. In particular, we construct invariant Gibbs measures for the renormal-
ized so-called Wick ordered NLW. We then prove weak universality of the Wick ordered
NLW, showing that the Wick ordered NLW naturally appears as a suitable scaling limit
of non-renormalized NLW with Gaussian random initial data.

RESUME. On considére les équations des ondes non-linéaires défocalisantes sur le tore
de dimension deux. On construit des mesures de Gibbs invariantes pour les équations
renormalisées au sens de Wick. On prouve ensuite une propriété d’universalité faible pour
ces équations renormalisées, en montrant qu’elle apparaissent comme limites d’équations
d’ondes non renormalisées avec conditions initiales aléatoires de loi gaussienne.

1. INTRODUCTION

1.1. Nonlinear wave equations. We consider the defocusing nonlinear wave equations
(NLW) in two spatial dimensions:

?u — Au+ pu 4wt =0
(U, atu)‘tzo = ((bOa ¢1)7

where p > 0 and m € N. When p > 0, (LI)) is also referred to as the nonlinear Klein-
Gordon equation. We, however, simply refer to (LI) as NLW and moreover restrict our
attention to the real-valued setting. In the following, we mainly consider (ILI]) on the two-
dimensional torus M = T? = (R/Z)? but we also provide a brief discussion when M is
a two-dimensional compact Riemannian manifold without boundary or a bounded domain
in R? (with the Dirichlet or Neumann boundary condition). See Theorem [[7] below.

Our main goal in this paper is to construct an invariant Gibbs measure for a renormalized
version of (LI by studying dynamical properties of the renormalized equation.

(t,z) € R x M, (1.1)

1.2. Gibbs measures and Wick renormalization. With v = 0;u, we can write the
equation (L)) in the following Hamiltonian formulation:

o () = 0 1\ 0H
! v) \-1 0 8(”7 U) 7
where H = H(u,v) is the Hamiltonian given by

1 1 1
H(u,v) = 3 /qr2 (pu® + |Vul?) dz + 5 /T2 v?dx + pTe—— /11‘2 w2y, (1.2)
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2 T. OH AND L. THOMANN

By drawing an analogy to the finite dimensional setting, the Hamiltonian structure of the
P(2m+2)

equation and the conservation of the Hamiltonian suggest that the Gibbs measure P,

of the form:
“dP2(2m+2) = Z Yexp(—BH (u,v))du ® dv” (1.3)
is invariant under the dynamics of (ED])E With ([L2]), we can rewrite the formal expres-

sion (L3) as

dP(2m+2) Z—le—ﬁ / U27”+2dace_% f(puz—i—\Vu\z)dxdu ® e—% fvzdgcdv
~ ¢ Ty [u Ry, (1.4)

where y is the Gaussian measure p on D'(T?) x D'(T?) with the densityﬁ
dp = 7 tem2 [(eu* +Vulf)dz gy @) =5 [ v?de gy, (1.5)

Note that p has a tensorial structure: p = pg ® w1, where the marginal measures po and pig
are given by

duog = Zo_le_% [+ Vult)de g, and duy = Z; e 2 3 [ vtz gy, (1.6)

Namely, 1 is the Ornstein-Uhlenbeck measure and y; is the white noise measure on T2.
Recall that p is the induced probability measure under the map'H

w e Qr— (u,v) (Zgon e Zgln zn-x>7 (1.7)

nez? nez?

where (n), = +/p+n|?> and {gon,g1n}tnezz is a sequence of independent standard
complex-valued Gaussian random variables on a probability space (€, F, P) conditioned
that gj _n = Gjn, n € 72,7 =0,1. In view of (I7), it is easy to see that y is supported on

HE(T?) := H5(T?) x H*"Y(T?), s<0.

Moreover, we have p(H°(T?)) = 0. This implies that [u*"™?dx = co almost surely with
respect to p. In particular, the right-hand side of (IL4]) would not be a probability measure,
thus requiring a renormalization of the potential part of the Hamiltonian. In the two-
dimensional case, it is known that a Wick ordering suffices for this purpose. See Simon [31]
and Glimm-Jaffe [I5]. Also, see Da Prato-Tubaro [I2] for a concise discussion on T2, where
the Gibbs measures naturally appear in the context of the stochastic quantization equation.

In the following, we give a brief review of the Wick renormalization on T?. See [12] for
more details. Let u denote a typical element under jio defined in (L6]). Since u ¢ L?(T?)
almost surely, we have

/ u’dz = lim (Pyu)?dr = oo
T2 N—oo J2

almost surely, where P is the Dirichlet projection onto the frequencies {|n| < N}.

1. Henceforth, we use Z, Zn, etc. to denote various normalizing constants so that the corresponding
measures are probability measures when appropriate.

2. We simply set § = 1 in the following. While our analysis holds for any S > 0, the resulting
(renormalized) Gibbs measures are mutually singular for different values of 8 > 0. See [28].

3. On T?, we need to assume p > 0 in order to avoid a problem at the zeroth frequency. See (T0) below.
In the case of a bounded domain in R? with the Dirichlet boundary condition, we can take p = 0.

4. We drop the harmless factor 27 in the following.
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For each € T?, Pyu(x) is a mean-zero real-valued Gaussian random variable with
Varianceﬁ

on WEPyu)(e)] = 3 —— ~log . (1.8)

This motivates us to define the Wick ordered monomial : (P yu)*: by
((Pyu)f(z): = Hy(Pyu(z);on) (1.9)

in a pointwise manner. Here, Hy(z;0) is the Hermite polynomial of degree k defined
in 21)). Then, with (I7) and (LS), it is easy to see that the random variables Xy (u)
defined by

Xn(u) = /Tz :(Pyu)?(z): dr

have uniformly bounded second moments and converge to some random variable in L?(dpug)
which we denote by

Koo(u) = /T2 cu?: da € L*(dpo).

In view of the Wiener chaos estimate (Lemma 22)), we see that Xy (u) also converges to
Xoo(u) in LP(dpg), p < oo.
In general, given any m € N, one can show that the limit

/ ™2 dr = lim ((Pyu)?™ T2 da (1.10)
T2

N—oco J2

exists in LP(u) for any finite p > 1. Moreover, we have the following proposition.

Proposition 1.1. Let m € N. Then, Ry(u) df oo S (B w) % de LP(u) for any
finite p > 1 with a uniform bound in N, depending on p > 1. Moreover, for any finite
p > 1, Ry(u) converges to some R(u) in LP(u) as N — co.

This proposition follows from the hypercontractivity of the Ornstein-Uhlenbeck semi-
group and Nelson’s estimate [26]. See also [12 B0]. Denoting the limit R(u) € LP(u)
by

2m+2. gy

R(u) = ¢~ T3 Jr2iu ,

Proposition [I[1] allows us to define the Gibbs measure P2(2m+2) associated with the Wick
ordered Hamiltonian:

1 1 1
Hyia(u,v) = 3 /W (pu® + |Vul?) dz + 3 /T2 vidr + G— /11‘2 2 dy

by
AP = gl Hwia(uo) gy @ dy = z~ L~ T e i dr g,
= Z7'R(u)dp.
5. Note that on defined in (L) is independent of € T?. When M is a two-dimensional compact

Riemannian manifold without boundary or a bounded domain in R?, the variance on(z) = E[(Pyu)?(z)]
depends on x € M but satisfies the logarithmic bound in N. See (II2) below.
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It follows from Proposition [L.Ilthat P(2m+2) < p and, in particular, P2(2m+2) is a probability
measure on H*(T?) \ H°(T?), s < 0. Moreover, defining P(2m+2) by

2m+-2 —
dP2(,N = ZNlRN(U)dM,

2m+2) (2m+2)

we see that P( converges “uniformly” to P,
there exists No € N such that

[P (4) - PP (4)] < e

for any N > Ny and any measurable set A C H*(T), s < 0.

Lastly, let us briefly discuss the construction of the Gibbs measure P2(2m+2) when M is
a two-dimensional compact Riemannian manifold without boundary or a bounded domain
in R? (with the Dirichlet or Neumann boundary condition). In this case, the Gaussian

in the sense that given any € > 0,

measure 4 in (L5 represents the induced probability measure under the map:

wEQb—>(u,fu):< 90"7 Zgln ©n( >, (1.11)
nen (P +A7)2 neN
where {¢, }nen is an orthonormal basis of L?(M) consisting of eigenfunctions of the
Laplace-Beltrami operator —A with the corresponding eigenvalues {\2},cn, which we as-
sume to be arranged in the increasing order. It is easy to see from ([LI1) that u is supported
on H¥ (M) \ H' (M), s < 0.

Given N € N, we define oy by

on(z) = E[(Pyun)?(z)] = ©n(z)

<log N, (1.12)

where Py denotes the spectral projector defined by

Pyu = Z u(n)pn.
An <N
Note that unlike the situation on T?, oy (z) now depends on x € M. The last inequality
in (LI2]), however, holds independently of z € M thanks to Weyl’s law \,, =~ ns (see [33,
Chapter 14]) and [§, Proposition 8.1]. With this definition of o (x), we can define the Wick
ordered monomials : (Pyu)*: as in (LJ) and :u* : by the limiting procedure. Then, the
discussion above for T2, in particular Proposition [[.T} also holds on M. See Section 4 of [30].
While the presentation in [30] is given in the complex-valued setting, a straightforward
modification yields the corresponding result for the real-valued setting.

In the next subsection, we discuss the dynamical problem. Our main goal in this paper
is to construct dynamics for the renormalized equation associated with the Wick ordered
Hamiltonian Hwyjq, with initial data distributed according to the Gibbs measure P2(2m+2).
1.3. Dynamical problem: Wick ordered NLW. We now consider the following dy-
namical problem on T? associated with the Wick ordered Hamiltonian:

8 u _ 0 1 8HWick
“\v ~1 0) 9(u,v) (1.13)

(’LL, U)|t=0 = (¢(6)Jv Q%J)a
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where the initial data (4§, ¢¢) is distributed according to the Gibbs measure P2(2m+2).

P2(2m+2)

In view of the absolute continuity of with respect to the Gaussian measure pu

(Proposition [[1]), we consider the random initial data (¢f, ¢%) distributed according to p
in the following discussion. Namely, we assume that

w’ w) _ Lem x’ g ’n(w)emx ’ (114)
( 0 1 (ngzé <n>p n§2 1 >

where {go.n, 91,ntnezz is as in (L7). Note that, at this point, the potential part ﬁ Jp2
u?™*2: dx of the Wick ordered Hamiltonian is defined only for u distributed according to
the Gaussian measure p via (LI0). In the following, we extend this definition to a wider
class of functions in order to treat the Cauchy problem (LI3]).

Given N € N, define the truncated Wick ordered Hamiltonian HVA\;iCk by

1 1
Hi (u,0) = 5 / (pu? + |Vul?) do + = / vidx + / (Pyu)2™2: do (1.15)
2 T2 2 T2 T2

and consider the associated Hamiltonian dynamics:

o (tv)_ [0 1 OHY
“Nov/) =1 0) o(un,vn)

(un,vN)|i=0 = (¢F, d7)-

Thanks to (LI) and 0, Hi(x;0) = kHp—1(x;0), we can rewrite the system (LI5]) as the
following truncated Wick ordered NLW:

aEuN — Auy + pun + PN[ :(PNuN)2m+l: ] =0
(un, Opun)|i=0 = (9, ¢%),

where the truncated Wick ordered nonlinearity is interpreted as
PN [ : (PNUN)2m+1 : ] = PN [H2m+1(PNuN; O'N)] .

Let z = 2“ denote the random linear solution:

© w W . sin(t(V w

£(0) = S()(05, ) = cos(t(¥),)05 + L e (1.17)
p

where (V), = v/p— A. In view of the Duhamel formula, it is natural to decompose the
solution uy to (LI6]) as

2m + 2

(1.16)

UN = Z + WHN.

Note that we have Pywy = wy. By recalling the following identities for the Hermite
polynomials:
k

Hip(zx+y) = Z <];> Hy(y) - k¢ and Hy(z;0) = ang(a_%m), (1.18)
=0
we have

:(PNuN)2m+1: = Homy1(2n +wnsonN)

2m+1
2m + 1 et
= Z <m£ >HE(ZN;O'N)-ZU]2V +1 é, (1.19)
(=0



6 T. OH AND L. THOMANN

where zy = Pyz. This shows that applying the Wick ordering to the monomial

p 2m+1 _ 2m41 _ A 2m 1 ¢ 2mt1-—t
(Pyun) = (2y +wn) =y ) )Avwy (1.20)
=0

is equivalent to Wick ordering all the monomials zf&,. Namely, replacing each z* in (20)
by
25 = Hy(zn;0n)
yields the Wick ordered monomial : (P yuy)?™ ! via (LI9). In Proposition below, we
prove that
12 € LP(Q LY([—T, T); W=7 (T?)))
for any p,q,r < oo, T'> 0, and € > 0 with a bound uniform in N. Moreover, the sequence

{ :zf(,: } Nen 1S @ Cauchy sequence in the same space, thus allowing us to define
2t = :zﬁozd:Cf lim :z: (1.21)

N—oo

in LP(Q; LY([-T,T); W=5"(T?))) for any p,q,r < 0o, T > 0, and € > 0 (and for any ¢ € N).
Now, consider a function u of the form

u=z+w (1.22)

for some “nice” w. Then, we can use ([.I8]) and (T.2I)) to define the Wick ordered monomial
:u?m L for functions u of the form (22) by

2m+1 om + 1
:u2m+1: _ Z(Z +w)2m+1:: Z < mg ) :ZZI ,w2m+1—f. (1'23)
/=0

Hence, we finally arrive at the defocusing Wick ordered NLW:

O2u — Au+ pu+ :u?mt =0
(u, atu)’tzo = ( L(*))v(#lu)v
where (¢§, ¢7) is as in (LI4)).

Before we state our main result, we first recall two critical regularities associated with
(CI) on R? with p = 0. On the one hand, the scaling symmetry for (LI induces the
so-called scaling critical Sobolev index: s; = 1 — % On the other hand, the Lorentzian
invariance (conformal symmetry) induces another critical regularity: so = % — L (at least

2m
in the focusing case). Hence, we set sqit by

13 1 I if m=1,
Serit =max | 1 — —,— — — | =
et m’'4  2m 1-L if m>2

We now state our main result.

(1.24)

Theorem 1.2. Let M = T?, m € N, and p > 0. Then, the Wick ordered NLW (.24))
is almost surely locally well-posed with respect to the Gaussian measure p defined in (L5).
More precisely, letting (¢f, ¢5) be as in (LI4), there exist C,c > 0 such that for each
T < 1, there exists a set Qp C ) with the following properties:

(i) P(Q7) < Cexp (= 72),
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(ii) For each w € Qp, there exists a (unique) solution u to (L24]) with (u,dyu)|i=g =
(@8, dY) in the class

S(1)(é6, 6%) + C(-T.TL HY(T) 0 X52 " € O[T, T H(T%)
for any s € (Seit, 1) and € > 0. Here, X;’§+ denotes the local-in-time version of the
hyperbolic Sobolev space. See Section[3.

We emphasize that the Wick ordered NLW ([L24)) is defined only for functions u of the
form ([22]). Then, the residual term w = u — z satisfies the following perturbed Wick
ordered NLW:

Otw — Aw + pw + :(w + 2)*™ L =0 (1.25)
(w, Z?tw)]tzo = (O, 0) '
By writing (L.25]) in the Duhamel formulation, we obtain
w(t) _ _/ Sln((t —t )<V>P) Z(’LU + z)2m+1(t/): dt/
0 {(V)o
2m+1 . /
__ Z *sin( t t i) <2m£+ 1) () w2 (1.26)

We prove Theorem [[2] by solving the fixed point problem (L26) for w in
C([-T,T}; H*(T?)) n X22F
linear Solutlon z and the assomated Wick ordered monomials : z¢:. In particular, while they
are rough, :z¢: enjoys enhanced integrability both in space and time. See Proposition 2.31
In Section [B] we then use the standard Fourier restriction norm method to solve the fixed
point problem (L26). The original idea of this argument with the decomposition (L22])
appears in McKean [25] and Bourgain [4] in the context of the nonlinear Schrédinger equa-
tions on T?, d = 1,2. See also Burq-Tzvetkov [9]. In the field of the stochastic PDEs, this
method is known as Da Prato-Debussche trick [I1].

, 8 > Serit. In Section 2 we study the regularity of the random

Remark 1.3. As in the study of singular stochastic PDEs, our proof consists of factorizing
the ill-defined solution map: (¢§,¢{) +— w into a canonical lift followed by a (continuous)
solutions map V:

(49, 67) —

Jift w v s
(27,25, ..., 25,) —w e C([-T,T; H (Tz))

——u=z+we C([-T,T); H¢(T?)),

for s € (Scrit, 1) and € > 0, where zj, def, :zF:. On the one hand, we use probability theory
to construct the data set {zg;41}"" Jep in the ﬁrst step. On the other hand, the second step
is entirely deterministic. Moreover, the solution map ¥ in the second step is continuous

. 1 .
from H;nzo ST to X;’2+, where S7. denotes some appropriate Strichartz space for 2j41. See
Section [3

Remark 1.4. The same almost sure local well-posedness holds for the truncated Wick
ordered NLW (LI6]). More precisely, we can choose Q7, independent of N € N, such that
the statement in Theorem [[2 holds for (I24)) and (ILI6). Moreover, by possibly shrinking
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the time, one can also prove that the solution uy = u%; to (LI6]) converges to the solution
u=u" to (L24) as N — oo.

Once we have almost sure local well-posedness of ([[L24]), the invariant measure argument
by Bourgain [3|, 4] yields the following almost sure global well-posedness of (L[24]) and

invariance of the Gibbs measure P2(2m+2).

Theorem 1.5. Let M = T?, m € N, and p > 0. Then, the defocusing Wick ordered

NLW ([L24]) is almost surely globally well-posed with respect to the Gibbs measure P2(2m+2).

Moreover, P2(2m+2) is invariant under the dynamics of (L24]).

The proof of Theorem [L.5l exploits the invariance of the truncated Gibbs measure P2(2]? +2)
for the truncated Wick ordered NLW ([LT6]) and combines it with an approximation argu-
ment. See Remark [[4 As this argument is standard by now, we omit the proof. See
Bourgain [4] and Burg-Tzvetkov [I0] for details.

Remark 1.6. We point that the convergence result in Remark [[L4] and invariance of the
Gibbs measure in Theorem already appear (without a proof) in the lecture note by
Bourgain [5]. See [B, Theorem 111 on p.63] and a comment that follows (118) on p. 64
in [5]. To the best of our knowledge, however, there seems to be no proof available in a
published paper. In fact, one of the main purposes of this paper is to present the details of
the proof of Bourgain’s claim in [5].

Next, we briefly discuss the situation when the spatial domain M is a two-dimensional
compact Riemannian manifold without boundary or a bounded domain in R? (with the
Dirichlet or Neumann boundary condition). In this case, one can exploit the invariance of
the truncated Gibbs measures Pﬁ@”z) for (LLI6]) to construct global-in-time weak solutions
(without uniqueness) to the Wick ordered NLW (L24]). Moreover, it also allows us to

P(2m+2)

establish invariance of the Gibbs measure P, in some mild sense.

Theorem 1.7. Let m € N and p > 0. Let M be a two-dimensional compact Riemannian
manifold without boundary or a bounded domain in R? (with the Dirichlet or Neumann
boundary condition). In the latter case with the Dirichlet boundary condition, we can also
take p = 0. Then, there exists a set 3 of full measure with respect to P2(2m+2) such that for
every ¢ € X, the defocusing Wick ordered NLW (L24)) with initial data distributed according

to P2(2m+2) has a global-in-time solution u € C(R; H*(M)) for any s < 0. Moreover, for

P2(2m+2) .

all t € R, the law of the random function (u,Opu)(t) is given by

In [30], we proved an analogous result for the defocusing Wick ordered nonlinear
Schrodinger equations on M. Theorem [[L7] follows from repeating the argument presented
in [30] with systematic modifications and thus we omit details. See also [I], 11 [8, 29]. The
main ingredient for Theorem [[7]is to establish tightness (= compactness) of measures vy
on space-time functions, emanating from the truncated Gibbs measure P2(2](',1 *2) and then
upgrading the weak convergence of vy (up to a subsequence) to an almost sure convergence
of the corresponding random variables via Skorokhod’s theorem. Due to the compactness
argument, Theorem [[.7] claims only the existence of a global-in-time solution u. Lastly, note
that Theorem [[7] only claims that the law of the H?®-valued random variable (u, dyu)(t) is
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given by the Gibbs measure P2(2m+2)

general geometric setting is weaker than the invariance stated in Theorem for the Wick
ordered NLW (L.24)) on T?.

for any ¢ € R. In particular, this mild invariance for a

Remark 1.8. On the one hand, the defocusing/focusing nature of the equation does not
play any role in the almost sure local well-posedness result (Theorem [[2)) and thus Theo-
rem also holds in the focusing case. It can also be extended to Wick ordered even power
monomials in the equation. On the other hand, the defocusing nature of the equation plays
a crucial role in the proof of Proposition [[.T] and hence in Theorems and [ In the
focusing case (i.e. with —u?™*1 m € N, in (1)), it is known that the Gibbs measure can
not be normalized in the two dimensional case. See Brydges-Slade [6]. Lastly, we point out
that in the case of the quadratic nonlinearity (which is neither defocusing nor focusing),
one can introduce the following modified Gibbs measure:

dP2(3):Z1——[u —A[u d,u

for sufficiently large A > 1 and study the associated dynamical problem. See [5] for the
construction of this modified Gibbs measure P2(3).
1.4. Wick ordered NLW as a scaling limit. As an application of the local well-
posedness argument, we show how the Wick ordered NLW ([L24]) appears as a scaling
limit of non-renormalized NLW equations on dilated tori. This part of the discussion is
strongly motivated by the weak universality result for the Wick ordered stochastic NLW
on T? studied by the first author with Gubinelli and Koch in [I6].

Fix p > 0. Given small € > (0, we consider the following non-renormalized NLW equation

on a dilated torus T? & (e71T)2:
81‘?”6 — Ave + peve = f(va)
(Ve, Opve ) |1=0 = (ngoﬂ/’g)l)

with Gaussian random initial data (¢, ¢%;), where f : R — R is a smooth oddf function
with the following bound:

(t,z) € R x T? (1.27)

D@ S 1+ J2M (1.28)

for some M > 0 and p. is a parameter to be chosen later. In the following, we choose (g
and ¢, to be a smoothed Ornstein-Uhlenbeck process and a smoothed white noise on T?,
respectively. For the sake of concreteness, we Setﬁ

Jdo,e—1n e
(V2o ¢ZJ1):< E ——— E 9 )
s b s _1 2 2 1 ) 6 — b
ne(ezZ)? < &P |’I’L| ° n€(ez)?

In|<1 In|<1

6. Tt follows from the proof of Theorem [[9lthat it suffices to assume that f(0) = f”(0) = 0 for the cubic
case considered in Theorem
7. Note that {ee““”}

Wiener series

forms an orthonormal basis of L?(T?2). Moreover, recall that the Fourier-

Z g(),n ein-z
e tn| et

ne(eZ)?

ne(eZ)?

represents the periodic Wiener process on TZ.
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where {go n, 91,0 tnez2 is as in (7). Our main goal is to study the behavior of the solution
to (L27)) as € — 0 by applying a suitable scaling.

Let uc(t,x) def - Y. (e7tw,e7't). Then, u. satisfies

2, _ =3 2,
{@ ue — Aug + pue = e 3{ f(eu.) + e(e?p — pe)uc} (t,z) € R x T?, (1.29)

(u€7 atue) |t=0 = (¢§-§07 ¢§-§1)7

where (¢, ¢¥) on T? is given by

gO n in»m in-x
) g , E e . 1.30
( €,0 < nEZZ o+ ‘n‘Q = 9din > ( )

n|<e™! n|<e~?

Note that (¢, ¢ ) converges to (¢, ¢¢) in (LI4) distributed according to the Gaussian
measure 4 defined in ().

The rescaled model (L29) on T? allows us to study the large temporal and spatial scale
behavior of the solution v, to (IL27]). Moreover, by suitably choosing p., the family {u. }~0
converges to the solution u to the Wick ordered NLW on T? with a parameter A = A(f),
depending only on f.

Theorem 1.9. Let p > 0. Then, there exists a choice of p. such that, as € — 0, the family
of the solutions {u.}e~o to (L29) converges almost surely to the solution u to the following
Wick ordered cubic NLW on T?:
O2u — Au+ pu = \:ud:
(u78tu)|t=0 = ( (6}7¢(f)7

where the convergence takes place in C([~T,,T,]; H*(T?)), s < 0, for some T,, > 0. Here,
®3)(o
A= 1 ( )

(1.31)

the constant X\ is given by , depending only on the function f.

This theorem shows a kind of weak universality for the Wick ordered NLW. See [16] for
a similar result for the Wick ordered stochastic NLW. We also refer readers to [19] [17} 18]
for more discussion on weak universality (for stochastic parabolic equations, in particular
the KPZ equation).

Remark 1.10. By starting with the following NLW on T?:

OFve — Avz + pove + X0 ai () = f(ve)
(Uaa atva)‘tzo = (1/}2‘),07 w;l%

we can tune the m parameters p.,a;(e), 7 = 1,...,m—1, such that by a small modification
of the proof of Theorem [[L9, we obtain the following Wick ordered NLW:

O2u — Au+ pu = X :u?mt:
(’LL, atu)|t=0 = ( ((/)Jv¢LiJ)7
for some A\ = A(f), as ¢ — 0. In this case, one needs to use the scaling u.(t,z) =

e Vv (e o, e71t) for some suitably chosen v = (m) > 0 and also assume a bound analo-
gous to (L2])) for a higher order derivative of f.
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2. PROBABILISTIC TOOLS

In this section, we first recall basic probabilistic tools. Then, we prove a uniform (in N)
bound on the Wick ordered monomials :zf&, := Hy(zn,0nN), consisting of the random linear
solution (Proposition 23]). Moreover, we prove that { :zﬁfz } Nen 18 @ Cauchy sequence,
allowing us to define : 2¢: by (2.

2.1. Hermite polynomials and white noise functional. First, recall the Hermite poly-
nomials Hy(x;0) defined via the generating function:
12 . ¢k
F(t,gj;o') = etm_ia—t = ZEHk(x’O-) (21)
k=0
For simplicity, we set Hy(z) := Hg(z;1). In the following, we list the first few Hermite
polynomials for readers’ convenience:
Ho(z;0) =1,  Hi(z;0) =z,  Hi(w;0) =2° o, 22)
Hs(z;0) = 2® — 3o, Hy(z;0) = 2t — 602? + 302 .

Next, we define the white noise functional. Let {(z;w) be the (real-valued) mean-zero
Gaussian white noise on T? defined by

) = 3 gal@)e™,
nez?

where {g,}ncz2 is a sequence of independent standard complex-valued Gaussian random
variables conditioned that g_,, = gn, n € Z2. It is easy to see that & € H*(T?) \ H~(T?),
s < —1, almost surely. In particular, £ is a distribution, acting on smooth functions. In
fact, the action of & can be defined on L?(T?).

We define the white noise functional W,y : L*(T?) — L*(Q2) by

Wi(w) = (f,6w)2 = D f(n)ga(w) (2.3)
nez?
for a real-valued function f € L?(T?). Note that Wy = &(f) is basically the Wiener integral
of f. In particular, Wy is a real-valued Gaussian random variable with mean 0 and variance
| £1172. Moreover, W is unitary:

E[WWi] = (f, k)12 (24)
for f,h € L?(T?). The following lemma extends the relation (Z4)) to a more general setting.
Lemma 2.1. Let f,h € L?(T?) such that || f||z2 = |hllz2 = 1. Then, for k,m € Z>q, we
have

E[Hy(Wp)Hi(Wh)] = Skl [(f, h)]".

Here, Oy, denotes the Kronecker’s delta function.

This lemma follows from computing the left-hand side of

th sm
E[F(t7 Wf)F(S7Wh)] = Eﬁ
kom=0 =~

and comparing the coefficients. See [12], 29] for details.

E[Hy(Wg)Hpy(Wh)]
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We also recall the following Wiener chaos estimate [31, Theorem 1.22].

Lemma 2.2. Fiz k € N and c(nq,...,n;) € C. Givend € N, let {g,}?_, be a sequence of
independent standard complez-valued Gaussian random variables and set g_,, = G,. Define

Sk(w) by
Siw) = D elnr . ) gn, (@) gy, (),
I(k,d)
where T'(k,d) is defined by
D(k,d) = {(n1,...,n) € {0, £1,..., £d}*}.
Then, for p > 2, we have
ISkllzee) < (0= 1)2[1Skllz2(0). (2.5)

The crucial point is that the constant in (23] is independent of d € N. This lemma is

a direct corollary to the hypercontractivity of the Ornstein-Uhlenbeck semigroup due to
Nelson [26].

2.2. Stochastic estimate on Wick ordered monomials. In this subsection, we study

the Wick ordered monomials : zfv :and : 2 :, consisting of the random linear solution z

defined in (LI7). From (LI4)) and (ILIT), we have
. cos(t(n),) sin(t(n),)
Z(t,n) = 9o, 9in-
(n)p " (n)y "
In order to avoid the combinatorial complexity in higher ordered monomials, we use the
white noise functional as in [30]. We, however, need to adapt the white noise functional to
z(t). In view of (Z.6]), we define the white noise functional W(t.) : L2(T?) — L?(Q) with a

parameter t € R by

(2.6)

Whw) = (f.6 W)z = Y F(n)gh(w). (2.7)

nez?
Here, ¢! denotes (a specific realization of) the white noise on T? given by

mw) = ghw)e™,

nez?

where ¢! is define by

g1, = cos(t(n) ) go,n + sin(t(n),) g1 n-

Note that E[g},] = 0 and Var(g},) = cos?(t(n),)+sin?(t(n),) = 1. Thus, for each fixed ¢ € R,
{g! }nez2 is a sequence of independent standard Gaussian random variables conditioned that
g", =gt for all n € N. Therefore, the white noise functional W(t.) defined in (2.7)) satisfies
the same properties as the standard white noise functional W,y defined in ([2.3). Lastly,
note that, in view of (2.6]), the random linear solution zy = Pz can be expressed as

<n>pe . (2.8)

In the following, we use the short-hand notation L1, = Li([-T,T1]), etc.

ZN(t, $) =
In|<N
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Proposition 2.3. Let £ € N and p > 0. Then, given 2 < q,r < 0o and € > 0, there exist

o AT

<H<V> Sty ey >)\) < Cexp —cTi (2.9)
ql

C,c > 0 such that

for any T > 0, A > 0, and any N € N. Moreover, the sequence { ZN }NeN is a Cauchy
In particular, denoting the limit by : 2 :, we

sequence in LP(Q; LY([—T,T); W=7 (T?)))
have :2*: € LA([~T,T); W=5"(T?)) almost surely, satisfying the tail estimate ([2.9)

2t
Before proceeding to the proof of Proposition 2.3 we introduce some notations. Let oy

be as in (LX). For fivzed x € T? and N € N, we also define
def 1 en () def 1
nn(z)(-) = — ) en(:) and () = Z Wen(')a (2.10)
O Inl<n NP nl<n P
where e, (y) = Y. Note that ny(z)(-) is real-valued with |[ny (2)|[z2(2) = 1 for all x € T?
and all N € N. Moreover, we have
1 1
<77M(‘T)777N(y)>L2 = "1 1 ’YN(y_x) = "1 1 ’YN(‘T_y% (2'11)
TNMON TMON
for fixed z,y € T?> and M > N > 1
Proof. From (2.8) and (2.I0), we have
3 an () 3 it 3t
N
(2.13)

Then, from (LI8) and ([2I2), we have

Hy(zn(t,x);0n) = UNHZ (Wmv(x))

2ot )=

Given n € Z?2, define T'y(n) by
<4 ng=n}.

) € (Z3H:ng+-

Ly(n) ={(nq,...,
Then, for (ni,...,ny) € I'y(n), we have max; |n;| 2 |n|. Thus, it follows from Lemma 2]
with (ZI3) and (ZI1)) that

12 a2y = ol / / Hy(W
T%xTQ

‘2N
= T — Ze T —
—af -y

(W Ny ))dea:dy

! (2.14)
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for any # > 0. On the other hand, for n # n’, we have

/Q(:zfv(t):,en>(:z§V(t):,en/>dP

11‘2><1I‘2

‘”/W/H”“" Vew (2 = 9)dy en@)en (2)ds

/ Hy(WE ) He(WE)dPdady

— 0 PP [ @@ )iz =0, (215)
TZ
Hence, given = € T? and t € R, it follows from (ZI4]) and (2I5) that

1V) 7 22yt 2): iz = || 3 m) o Fel 2 (0): () €

nez?2 L2(2)
: )
< @( 3 <n>—2€fhfﬂ<n>> < @( 3 <n>—2<1+5—0>)
nEZz nez2
<, (2.16)

uniformly in NV € N, as long as 0 < 6 < e.
Fix 2 < ¢, < oo. Then, by Minkowski’s integral inequality, Lemma (with (2.8])),

and (2.I6)), we have

< 10972 2248, 2): ooy

I169) 7% 524t g oy
LP(Q LLLY

)4
< Cyp?

1(V)7% 2 (82 o)

< Taps, (2.17)

LLLy

for all p > max(q,r). Finally, (2.9) follows from (ZI7) and Chebyshev’s inequality.
A similar computation with Lemma 2] (2.I1]), and Lemma [2.2] shows that the sequence
{:24: }NeN is a Cauchy sequence in LP(; LY([—~T,T); W=7 (T?))). O

Remark 2.4. As a corollary to Proposition 23] we can show that the tail estimate (29I
and the convergence of :zf\,: to : 2°: hold even when ¢ = oo and/or 7 = co. This follows
from applying Sobolev’s inequality (in time and/or space) and using the fact that z solves
the linear wave/Klein-Gordon equation. See [7]. With this observation, we can easily show
that :25:, :2f:€ O([-T,T]; W=7 (T?)) almost surely. See also [16] 27].

3. LOCAL WELL-POSEDNESS OF THE WICK ORDERED NLW

In this section, we present the proof of Theorem We combine the deterministic
analysis via the Fourier restriction norm method (with the hyperbolic Sobolev spaces) and
the stochastic estimate on the Wick ordered monomials : z* : (Proposition 23). In the
following, we fix p > 0.
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3.1. Hyperbolic Sobolev spaces and Strichartz estimates. We first recall the hyper-
bolic Sobolev space X*? due to Klainerman-Machedon [22] and Bourgain [2], defined by
the norm

ltll o2y = IR (7] = (n)p)"0(T, 1)l 2 L2 (Rxz2) -

For b > %, we have X% C C(R; H®). Given an interval I C R, we define the local-in-time
version X*%(I) as a restriction norm:

[ul| xs0(r) = inf {[[0]l xs0@xr2) = vIr = u}.

When I = [~T,T], we set X3:" = X*b(I).
The main deterministic tool for the proof of Theorem is the following Strichartz
estimates for the linear wave/Klein-Gordon equation. Given 0 < s < 1, we say that a pair
(g,r) is s-admissible if 2 < ¢ < 00, 2 <71 < o0,
! + 2 =1-s, and
q

Then, we have the following Strichartz estimates.

-

—|-1<
2r —

| =

Lemma 3.1. Let T < 1. Given 0 < s <1, let (q,r) be s-admissible. Then, we have
15(t) (G0, 1)l 2 Ly (v2) S (b0, 1) |35 (72)- (3.1)

See Ginibre-Velo [14], Lindblad-Sogge [24], and Keel-Tao [20] for the Strichartz estimates
on RZ See also [2I]. The Strichartz estimates (B.1]) on T? in Lemma B1] follows from those
on R? and the finite speed of propagation.

When b > %, the X -spaces enjoy the transference principle. In particular, as a corollary
to Lemma Bl we obtain the following space-time estimate. See [23, [32] for the proof.

Lemma 3.2. Let T < 1. Given 0 < s <1, let (q,r) be s-admissible. Then, for b > %, we
have

lulleg Ly S llull g
Lastly, we state the nonhomogeneous linear estimate. See [13].

Lemma 3.3. Let —% <V <0<b<V+1. Then, for T <1, we have

Csin((t— #)(V),)
'A Wy,

3.2. Proof of Theorem In the following, we simply consider the case s = Seit + 0
with § < 1. Given T < 1, define ¥ (w) by

sin((t =) (V),)
(Vo
Let b= %—1—. Then, for 0 < § <1 — b, by Lemma [3.3], we have

S Tl—b+b’ HFHXSiLb/ ‘
x5t T

S(w A+ 2)?m T dt

wwwzvmmw@A

1)l zp S TN (w+ 22 | gacramso. (3.2)
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From ([23)), we have

2m+-1
w4 22 = 3 <2m€+ 1) W2
=0

Then, by duality, we have

2m—+1
) 2m+1, 2m41-0 . ¢,
I (w + 2™ || o100 < > Conl w02 Hlysmro-1so
/=0
2m—+1
< Z Cmgsup //1[ T W by dadt|, (3.3)

for any extension @ of w, where the supremum is taken over hy € X'~170=0 with
||| x1-s1-0-0 = 1. By choosing 6 > 0 sufficiently small, we have 1 —b—6 = 1 —.

e Case 1: m =1.
In this case, we have s = s¢it +0 = %4—5. Noting that (1_132 %) is ( + = 5) admissible,
it follows from Lemma that

(V) ]

e S
T

X1+§6+5 7+ ~ |
T

for any extension w of w, as long as ¢ < %5. By taking an infimum over all the extensions
w of w, we obtain

i <
[\ RN T S (3.4)
On the one hand, noting that (— %) is (% — %5)-admissible, Hélder’s inequality (with
T < 1) and Lemma B2 yield
9 Rl g 3 SVl g S DRl -3 35)

On the other hand, applying Holder’s inequality in ¢ and Sobolev’s inequality in =, we have

HVZhell g 3 SHVIRell 4 S IEV) hellxr-20. (3.6)
T

1
L3 2L

T

Interpolating (3.5) and ([B.0) with sufficiently small § > 0, we obtain

3—26

(V)" A Lo b S el oz g51eav0 S el xr-s--0 (3.7)

as long as ¢ < ié.
For £ =0,1,2,3, define (g¢,7¢) by
1+26 3—-26 1 1-9 1

— (3 - 1=3-0—2 445+~
(3—1) 13 + 1 +qé and (3—14) 3 + —I-le




INVARIANT GIBBS MEASURES FOR THE 2-d DEFOCUSING NLW 17

When ¢ = 0, we have ¢y = 79 = oo and : 2°: = 1. Then, by fractional Leibniz rule and
Holder’s inequality with (3:4]) and ([B71), we have

B 1nf // TT]w C. 2t hydadt
= inf g (V) (@* Che) (V) 7€ 12" dadt
w|[—T,T]=w
< inf e ~13—¢ € —€. Z: ,
Nwhjﬂﬂ:wH(W W\IL%% g}%II(W thIL?f_gng%\KW 20 [l e
S ”w”XSthZ”Xl S\ 12t ”L‘IT‘ZL;‘Z
= ||w||3 V)72 2 e e (3.8)

as long as 0 < £ < 14. Hence, by Proposition Z3 with (B32), B3), and (B8], we obtain

HW(I&M<QW§:WMXW (3.9
outside a set of probability < exp ( — —.) for some ¢ > 0. Similarly, we have
[ 01) — W) o <fr9;£; 255 + a2 on = wal (3.10)

outside a set of probability < exp ( — ). Therefore, it follows from (39) and BI0) that
for each T < 1, there exists a set Q7 with P(Q5.) < exp (— —C) such that, for each w € Qrp,

U% is a contraction on a ball of radius O(1) in X;’b.
e Case 2: m > 2.
In this case, we have s = st +0 =1 — % + 0. Define (g,r) by

1 Im—1 +5 q 1 3m+4 0
- = 4 = an - — .
qg 3mi2m+1) 6 r 6m2m+1) 3

Noting that (¢, ) is (Scrit + %5) -admissible, it follows from Lemma that
9) @l 1 S 1o yssete S 1 ge

for any extension w of w, as long as ¢ < %(5. By taking an infimum over all the extensions
w of w, we obtain

bV gy Sl (3.11)
W|[—1,T]=W T
Now, define (q,7) by

1 1 2m +1 1 3m—4 2m+1

= = — — 5 d = = 5'

qg 3m 6 a T 6m * 3

Then, (,7) is (1 — serit — 2%t 6)-admissible. On the one hand, by Lemma 2] we have
1070 hellg 1z S 1CO) el s a2 (312

On the other hand, by Sobolev’s inequality, we have
IV hell g 1 S IV hell oot _amizsy 1y omas. (3.13)
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Note that the temporal regularity on the right-hand side of (3:I3)) is less than % by choosing
0 > 0 sufficiently small. Hence, by interpolating (12]) and BI3]) with sufficiently small
6 > 0, we obtain

V) hell gz 1z S Ihellxi-scne—moreas-o S [lhefl x1-s1-0-0 (3.14)

as long as € < (m — 1)J.
Proceeding as before, it follows from Holder’s inequality with (BI1]) and (3.I4]) that

// 1nf 1 s ]1'172m+1 Co 2 hydadt
][
inf

// (V) (@ R (V)78 2 2f s dadt
w\[ T,T|=W

< inf 2mA1-L holl a - |[(V) ¢ : 2 -
S gy w (V) wll75 7 IV hell 1 1 IKV) HL;%L%

2m+1 l —e . 0.
S Il el oo 7Y 5575 g
o 2m—+1—/4
= Il ) 527 g (3.15)
as long as 0 < & < 4. Hence, by Proposition 23] with 32), (33), and (BI5]), we obtain
2m+1

< 70 Z 2m+1-—¢
)l ysr T > ||w||X;,b :

2m
6 2m—~{ 2m—~{
[ (wr) = W(ws)lyz0 ST Z_: (le\\X”;b + sz\\X”;b )l = wall o

outside a set of probability < exp ( — %) for some ¢ > 0. Therefore, for each T' < 1, there
exists a set Q7 with P(2%) < exp ( — %) such that, for each w € Qp, U¥ is a contraction
on a ball of radius O(1) in X3".

This completes the proof of Theorem
4. WEAK UNIVERSALITY: WICK ORDERED NLW AS A SCALING LIMIT

In this section, we present the proof of Theorem We follow closely the argument
in [T6]. With 2. = 22 = S(t)(¢2, ¢¢1), let us decompose ue = 2 +w. as in ([22)). Then,
the residual term w, satisfies

O, — D+ pu = F(u), (1)
where F;(w.) is given by
Fo(w:) = e 3{ f(e(ze + we)) +e(e®p — pe)(2: + w:) }
F®(0)
6

= e {f'(0) +%p — p} (2 + we) + (2e + we)® + Re, (4.2)

where the second equality follows from f(0) = f”(0) = 0 and Taylor’s remainder theorem
with the remainder term R. given by

R. = 5/01 u _69)3f(4)(9€(z6 +we))dh - (2 +w. ) (4.3)
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From (L30), we see that z.(¢,x) is a mean-zero real-valued Gaussian random variable
with variance

0. = E[22(t,z)] ~ loge™!.

Note that o, is independent of z € T? and ¢ € R. Recalling from ([2.2)) that 23 = H3(z;0) +
3ox, it follows from (£2) and (£3]) that

(3)
Fow,) - E‘z{f’(O) +etp—pt 3, L0 }<za w)

30
+ JCT()H;),(Z8 + we; o) + Re.

For each € > 0, we set p. by

3)(0
pe = f(0) +e%p+ szaaf 2( )
so that the first term on the right-hand side vanishes. Then, by letting A = %, we
obtain
F.(w:) = AH3(z: + we;02) + Re dof :ug’: +R..
From (£3) and (L28)), we have
1 3
1—6
Rl = e [ 2R 00 w9 (ot )
0
M+4
S eflzel + e}
In particular, we can write (41 as
V& M+4
O*w. — Awe + pw. = )\Z <£> b w4+ O (e 2] + |wel} - ). (4.4)

£=0

It follows from Proposition 23] with (I.30) that

5”2’5”%—% = o:(1)
almost surely. Then, by proceeding as in Section [B] (where we handle the second term on
the right-hand side of ([4]) by applying the argument in Section B with 2m + 1 > M + 4),
we obtain an a priori bound on w,, uniformly in € > 0. Moreover, the local existence time
T =T, can be chosen to be independent of £ > 0.

Let u be the solution to (IL3I]). In an analogous manner, we can estimate the difference
w — we, where w = u — z as in ([L22)). Together with the almost sure convergence of z. to z
(see Remark 2.4)), we see that u. converges to u in C([~T,,T,]; H*(T?)) for s < 0. This
completes the proof of Theorem
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