N

N

A high-level synthesis approach optimizing
accumulations in floating-point programs using custom
formats and operators

Yohann Uguen, Florent de Dinechin, Steven Derrien

» To cite this version:

Yohann Uguen, Florent de Dinechin, Steven Derrien. A high-level synthesis approach optimizing
accumulations in floating-point programs using custom formats and operators. 2017 IEEE 25th Annual
International Symposium on Field-Programmable Custom Computing Machines (FCCM), Apr 2017,
Napa, United States. pp.80-80, 10.1109/FCCM.2017.41 . hal-01498357v2

HAL Id: hal-01498357
https://hal.science/hal-01498357v2
Submitted on 24 Feb 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01498357v2
https://hal.archives-ouvertes.fr

A high-level synthesis approach
optimizing accumulations in floating-point programs
using custom formats and operators

Yohann Uguen
Univ Lyon, INSA Lyon, Inria, CITI
F-69621 Villeurbanne, France
Yohann.Uguen@insa-lyon.fr

Abstract—High-level synthesis (HLS) is a big step forward in
terms of design productivity. However, it restricts data-types and
operators to those available in the C language supported by the
compiler. The present work lifts this restriction: it is a case study
of enhancing an HLS design flow with non-standard operators,
which can then be automatically optimized for their application
context. The focus here is on widely used summation-reduction
patterns. A source-to-source compiler rewrites, inside critical loop
nests of the input C code, selected floating-point additions into
sequences of simpler operator using non-standard arithmetic
formats. This enables hoisting floating-point management out
the loop. What remains inside the loop is a sequence of fixed-
point additions whose size is computed to enforce a user-specified,
application-specific accuracy constraint on the result. Evaluation
of this method demonstrates significant improvements in the
speed/resource usage/accuracy trade-off.

I. INTRODUCTION

Many case studies have demonstrated the potential of Field-
Programmable Gate Arrays (FPGAs) as accelerators for a wide
range of applications, from scientific or financial computing
to signal processing and cryptography. FPGAs offer massive
parallelism and programmability at the bit level. This enables
programmers to exploit a range of techniques that avoid many
bottlenecks of classical von Neumann computing: dataflow
operation without the need of instruction decoding; massive
register and memory bandwidth, without contention on a
register file and single memory bus; operators and storage
elements tailored to the application in nature, number and size.

However, to unleash this potential, development costs for
FPGAs are orders of magnitude higher than classical pro-
gramming. High performance and high design costs are the
two faces of the same coin.

Hardware design flow and High-level synthesis: To ad-
dress this, languages such as C or Java are increasingly being
considered as hardware description languages. This has many
advantages. The language itself is more widely known than any
HDL. The sequential execution model makes designing and
debugging much easier. One can even use software execution
on a processor for simulation. All this drastically reduces
development time.

The process of compiling a software program into hardware
is called High-Level Synthesis (HLS), with tools such as Vi-

Florent de Dinechin
Univ Lyon, INSA Lyon, Inria, CITI
F-69621 Villeurbanne, France
Florent.de-Dinechin @insa-lyon.fr

Steven Derrien
University Rennes 1, IRISA
Rennes, France
Steven.Derrien @univ-rennes1.fr

vadoHLS [[11] or Catapult C [1_-] among others [[16]. These tools
are in charge of turning a C description into a circuit. This
task requires to extract parallelism from sequential programs
constructs (e.g. loops) and expose this parallelism in the target
design. Today’s HLS tools are reasonably efficient at this task,
and can automatically synthesize highly efficient pipelined
dataflow architectures.

They however miss one important feature: they are not able
to tailor operators to the application in size, and even less in
nature. This comes from the C language itself: its high-level
datatypes and operators are limited to a small number (more
or less matching the hardware operators present in mainstream
processors). Any high-level C description must therefore live
with this constraint. The broader objective of this work is to
address this limitation.

Arithmetic in HLS: To better exploit the freedom offered
by hardware and FPGAs, HLS vendors have enriched the C
language with integer and fixed-point types of arbitrary sizeﬂ
However the operations on these types remain limited to the
basic arithmetic and logic ones. Exotic or complex operators
(for instance for finite-field or floating-point arithmetic) may
be encapsulated in a C function that is called to instantiate the
operator. This is actually what happens when ones processes
floating-point code through HLS.

Such low-level descriptions are currently taken from a
parameterized library or operator generators [5]. The latter
enables many opportunities of compiler optimizations to the
operators (not all of which are currently exploited):

o Constant propagation is well understood in compilers,
and allows to use hardware multipliers and dividers
specialized for a constant argument.

e Other algebraic transformations may be detected using
classical instruction selection techniques, and exploited.
For instance, in hardware, a squarer or a cuber may cost
much less than a multiplier [5].

¢ Operators may be shared and fused [14].

Catapult C Synthesis, Mentor Graphics, 2011, http:/calypto.com/en/
products/catapult/overview/

2 Arbitrary-size floating-point should follow some day, it is well supported
by mature libraries and tools

http://calypto.com/en/products/catapult/overview/
http://calypto.com/en/products/catapult/overview/

arithmetic
optimization
plugin

GeCoS
source-to-source
compiler

High level
C/C++

CIC+H+ D

with low-level
description
of context-
specific
arithmetic
operators

Hardware

- descriplion

Figure 1: The proposed compilation flow

In these examples, the compiler directs the construction of
the arithmetic, but the opposite can also be true. For instance,
the pipeline levels necessary in large floating-point operators
can be exploited as tiling memory [2]]. In this case, it is the
arithmetic datapath inside the loop that defines the parameters
of a loop transformation.

The case study in this work is a program transformation
that applies to floating-point additions on a loop’s criti-
cal path. It decomposes them into elementary steps, resizes
the corresponding subcomponents to guarantee some user-
specified accuracy, and merges and reorders these components
to improve performance. The result of this complex sequence
of optimizations could not be obtained from an operator
generator, since it involves global loop information.

For this purpose, we envision a compilation flow involving
one or several source-to-source transformations, as illustrated
by Figure [T} Before detailing it, we must digress a little on
the subtleties of the management of floating-point arithmetics
by compilers.

HLS faithful to the floats: Most recent compilers, includ-
ing the HLS ones [10], attempt to follow established standards,
in particular C11 and, for floating-point arithmetic, IEEE-754.
This brings the huge advantage of almost bit-exact repro-
ducibility — the hardware will compute exactly the same results
as the software. However, it also greatly reduces the freedom
of optimization by the compiler. For instance, as floating point
addition is not associative, C11 mandates that code written
atb+c+d should be executed as ((a+b) +c) +d, although
(a+b) + (c+d) would have shorter latency. This also pre-
vents the parallelization of loops implementing reductions. A
reduction is an associative computation which reduces a set
of input values into a reduction location. Listing 1| provides
the simplest example of reduction, where acc is the reduction
location.

The first column of Table [I| shows how VivadoHLS synthe-
sizes Listing [I] on Kintex7. The floating-point addition takes
7 cycles, and the adder is only active one cycle out of 7 due
to the loop-carried dependency. Listing [2] shows a manually
unrolled version of Listing |1} VivadoHLS will not transform
Listing |I| into Listing [2} because they are not semantically
equivalent (the floating-point additions are reordered as if
they were associative). However Listing [2] expresses more
parallelism, which VivadoHLS is able to exploit (second
column of Table[l). The main adder is now active at each cycle
on a different sub-sum. Note that a parallel execution with the

Listing 1: Naive reduction

#define N 100000
float acc = 0;
for (int 1=0; 1i<N;

acct+=in[i];

}

i++) {

Listing 2: Unrolled reduction
#define N 100000
float acc = 0, tmpl=0, ... ,
for (int 1i=0; 1i<N; i+=10) {
tmpl+=in[i];

tmpl0=0;

tmplO+=in[i+9];
}
acc=tmpl+...+tmpl0;

sequential semantics is also possible, but very expensive [12]].
Towards HLS faithful to the reals: Another point of
view, chosen in this work, is to assume that the floating-
point C program is intended to describe a computation on
real numbers. In other words, the floats are interpreted as
real numbers in the initial C, thus recovering the freedom of
associativity (among other). Indeed, most programmers will
perform the kind of non-bit-exact optimizations illustrated by
Listing [2] (sometimes assisted by source-to-source compilers
or “unsafe” compiler optimizations). In a hardware context,
we may also assume they wish they could tailor the precision
(hence the cost) to the accuracy requirements of the application
— a classical concern in HLS [9], [3]. In this case, a pragma
should specify the accuracy of the computation with respect
to the exact result. A high-level compiler is then in charge of
determining the best way to ensure the prescribed accuracy.
The proposed approach uses number formats that are larger
or smaller than the standard ones. These, and the correspond-
ing operators, are presented in Section [l Then Section [III
presents and evaluates the compiler side of the proposed tech-
nique, and section evaluates it on the FPMark benchmark
suite.

II. THE ARITHMETIC SIDE: AN APPLICATION-SPECIFIC
ACCUMULATOR IN VIVADOHLS

Kulisch advocated a very large floating-point accumulator
[13] whose 4288 bits would cover the entire range of double
precision floating-point. Such an accumulator would remove

Listing Listing Listing Listing Listing FloPoCo VHDL
(float) (float) (double (double (71 bits (71 bits)
LUTs 266 907 801 2193 736 719
DSPs 2 4 3 6 0 0
Latency 700K 142K 700K 142K 100K 100K
Accuracy 17 bits 17 bits 24 bits 24 bits 24 bits 24 bits

Table I: Different ways of implementing a simple accumulation.

rounding errors from all the possible floating-point additions
and sums of products, with the added bonus that addition
would become associative.

So far, Kulisch’s full accumulator has proven too costly to
appear in mainstream processors. However, in the context of
application acceleration with FPGAs, it can be tailored to the
accuracy requirements of applications. Its cost then becomes
comparable to classical floating point operators, although it
vastly improves accuracy [6]. This operator can be found
in the FloPoCo [5] generator and in Altera DSP Builder
Advanced. Its core idea, illustrated on Figure [2] is to use a
large fixed-point register into which the mantissas of incoming
floating-point summands are shifted (top) then accumulated
(middle). A third component (bottom) converts the content
of the accumulator back to the floating-point format. The
sub-blocks visible on this figure (shifter, adder, and leading
zero counter) are essentially the building blocks of a classical
floating-point adder.

The accumulator described in this section presents two
improvements over the one offered in FloPoCo [6]:

¢ In FloPoCo, Float-to-Fix and Accumulator form a single
component, which restricts its application to simple ac-
cumulations similar to Listing |1} The two components of
Figure [2] enable a generalization to arbitrary summations
within a loop, as Section [ITI] will show.

¢ Our implementation supports subnormal numbers.

A. The parameters of a large accumulator

The main feature of this approach is that the internal
fixed-point representation is configurable in order to control
accuracy. It has two parameters:

e« MSB, is the weight of the most significant bit of the ac-
cumulator. For example, if MSB 4 = 20, the accumulator
can accommodate values up to a magnitude of 220 ~ 10°.

o LSB, is the weight of the least significant bit of the accu-
mulator. For example, if LSB4 = —50, the accumulator
can hold data accurate to 275 ~ 10~1°,

The accumulator width w, is then computed as MSB 4 —
LSB4+1, 71 bits in the previous example. 71 bits represents a
wide range and high accuracy, and still additions on this format
will have one-cycle latency for practical frequencies on recent
FPGAs. If this is not enough the frequency can be improved
thanks to partial carry save [6] but this was not useful in
the present work. For comparison, for the same frequency, a
floating-point adder has a latency of 7 to 10 cycles, depending
on the target.

Mantissa

Exponent

| |
| |
| . !
! Registers 5 ;
| < |
| =X
B =,
! + g1
| <
e |
s e w
l \ Negate | |
| i E
| | LZC + Shifter | ch
| < |
| e ws £,
| |
Exponent Mantissa Sign

Figure 2: The conversion from float to fixed-point (top), the
fixed-point accumulation (middle) and the conversion from the
fixed-point format to a float (bottom).

B. Implementation details

This accumulator has been implemented in C, using
arbitrary-precision fixed point types (ap_int). The addition
is then written +, the shift is written using the C operator
<<. The leading zero count, bit range selections and other
operations are implemented using VivadoHLS built-in func-
tions. A few VivadoHLS compiler directives are also used to
get the best performance from the design. Altogether these
components are written as two C functions of 28 lines of code
for the FloatToFix, 22 lines for the FixToFloat.

C. Validation

To evaluate and refine this implementation, we used Listing
which we compared to Listings [I] and 2] In the latter, the

loop was unrolled by a factor 7, as it is the latency of a
floating-point adder on our target FPGA (Kintex-7).

For test data, we use as in Muller et al. [15]] the input values
cl[i]=(float)cos (i), where? istheinputarray’s index.
Therefore the accumulation computes > c[i].

7
The parameters chosen for the accumulator are:

e MSBA = 17. Indeed, as we are adding cos(¢) 100K times,
an upper bound is 100K, which can be encoded in 17 bits.

e MAXMSBx = 1 as the maximum input value is 1.

e LSBA = -50: the accumulator itself will be accurate to
the 50th fractional bit. Note that a f1oat input will see
its mantissa rounded by FloatToFix only if its exponent
is smaller than 2725, which is very rare. In other words,
this accumulator is much more accurate than the data that
is thrown to it.

The results are reported in Table [I] for simple and double
precision. The Accuracy line of the table reports the number of
correct bits of each implementation, after the result has been
rounded to a f1oat. All the data in this table was obtained by
generating VHDL from C synthesis using VivadoHLS followed
by place and route from Vivado v2015.4, build 1412921.
This table also reports synthesis results for the corresponding
FloPoCo-generated VHDL, which doesn’t include the array
management.

Listing 3: Sum of floats using the large fixed-point
accumulator

#define N 100000
float acc = 0; ap_int<68> long_accumulator = 0;
for(int 1 = 0; i < N; i++) {
long_accumulator += FloatToFix(in[i]);
}

acc =

FixToFloat (long_accumulator);

VivadoHLS uses DSPs to implement the shifts in its
floating-point adders. Even if the shifts were implemented
in LUTs, the first column would remain well below 500
LUTs: it has the best resource usage. However the latency
of one iteration is 7 cycles, hence 100K iterations takes
700K cycles. When unrolling the loop, VivadoHLS is using
almost 4 times more LUTs for floats, and 3 times more for
doubles. The unrolled versions improves latency over naive
versions. Nevertheless, our approach gets even betters latencies
for a reasonable LUT usage. Also, we achieve maximum
accuracy for the float format which caps at 24 bits (the
internal representations of the double, unrolled double and
our approach have a higher accuracy than 24 bits, but are
then casted to the 24 bits of the f1oat format). Finally, our
results are very close to FloPoCo ones, both in terms of LUTSs
usage, DPSs and latency.

Using this implementation method, we also created an exact
floating-point multiplier with the final rounding removed as in
[6]. This function is called ExactProductFloatToFix.
Due to lack of space we do not present it in de-
tail. As the output of this multiplier is not standard,
we also created an adapted Float-to-fix block called

ExactProductFloatToFix. These functions represent 44
lines of code for ExactProduct and 21 lines of code for
ExactProductFloatToFix.

III. THE COMPILER SIDE: GECOS SOURCE-TO-SOURCE
TRANSFORMATIONS

Now that we showed that VivadoHLS is able to generate
specialized operators of similar quality to FloPoCo’s ones, we
want to provide a tool that not only transforms Listing |1| into
Listing 3] but also generalizes this transformation to many
more situations.

We chose to develop this work in GeCoS [8]], an open-
source, extensible source-to-source compiler framework built
upon model-driven engineering. Indeed, all the present work
is already freely available as a GeCoS plugin.

This work focuses on two computational patterns, namely
the accumulation and the sum of product. Both are specific
instances of the reduction pattern, which can be optimized
by many compilers or parallel run-time environments. Such
patterns are therefore exposed to the compiler/runtime either
by the user through directives, or automatically identified using
static analysis techniques [17], [7].

Since our focus is not on the detection of reductions, our
tool follows a simple approach based on a combination of user
directive and (simple) program analysis. More specifically,
the user has to identify target accumulation variable through
a pragma, and provide additional information such as the
dynamic range of the accumulated data along with the target
accuracy.

This local approach is easier, more general and less invasive
than approaches that attempt to convert a whole floating-point
program into fixed-point [18].

Listing 4: Illustration of the use of a pragma for the
naive accumulation

#define N 100000
float accumulation(float in[N]) {
float acc = 0;
#pragma FPacc VAR=acc MaxAcc=100000
epsilon=1E-15 MaxInput=1
for(int i=0; i<N; i++){
acc+=in[i];
}

return acc;

A. Compiler directive

In imperative languages such as C, reduction are imple-
mented using for or while constructs. Our compiler direc-
tive must therefore appear inside such a construct. Listing [
illustrates its usage on the code of Listing [I]

The pragma must contain the following information:

o The keyword FPacc, which triggers the transformations.

e The name of the variable in which the accumulation
is performed, preceded with the keyword VAR. In the
example, the accumulation variable is acc.

o The maximum value that can be reached by the accumu-
lator through the use of the MaxAcc keyword. This value
is used to determine the weight MSB 4.

o The desired accuracy of the accumulator using the
epsilon keyword. This value is used to determine the
weight LSB 4.

e Optional: The maximum value of the inputs of the
accumulator in the MaxInput field. This value is used
to determine the weight MaxMSB x. If this information
is not provided, then MaxMSB x is set to MSB 4.

In the case when no size parameters are given, a full Kulisch
accumulator is produced. Also note that the user can quietly
overestimate the maximum value of it’s accumulator without
major impact on area. For instance, overestimating MaxAcc
by a factor 10 only adds 3 bits to the accumulator width.

B. Code transformation

The proposed transformation consists in an algorithm that
navigates and modifies the intermediate representation (IR) of
the program. To illustrate this algorithm, consider the sample
program shown in Listing 5] It performs a reduction into
the variable sum, involving both sums and sums of product.
The IR associated to the loop body is the directed acyclic
graph (DAG) of Figure The keywords FPMul and FPAdd
represent the use of floating-point multipliers and adders
respectively. The dotted arrows represent the data dependency
between two consecutive iterations of the loop. With a floating-
point adder needing 7 cycles, the next iteration will be stalled
during this operation. As the proposed algorithm pushes the
floating-point normalization out of the loop, the adder only
have a 1-cycle delay. Therefore we are able to have an iteration
iterval of 1 as shown in Figure [@a]

Listing 5: Simple reduction with multiple accumulation
statements

#define N 100000
float computeSum(float inl[N],
float sum = 0;
#pragma FPacc VAR=sum MaxAcc=300000
epsilon=1le-15 MaxInput=3
for (int i=1; i<N-1; i++) {
sum+=inl [i]*in2[i-1];
sum+=inl[i];
sum+=in2 [i+1];
}
return sum;

}

float in2[N]) {

The code transformation is applied to every block within the
for block annotated with our pragma. It is a bottom-up walk
of the program DAG, starting from a FPAdd node that writes
to the accumulation variable. During this walk, the following
actions are performed depending on the visited nodes:

o A node with the summation variable is ignored.

e A FPAdd node is transformed to an accurate fixed-point
adder. The analysis is then recursively launched on that
node.

] in2[i-1] \

float add

’inl[i] \

in2[i+1]

(a) DAG
inl[i]

in2[i+1]

in2[i-1]

(b) Architecture

Figure 3: DAG of the loop body from Listing |5| (top) and it’s
corresponding architecture (bottom)

e A FPMul node is replaced with a call to the
ExactProduct function followed by a call to
ExactProdFloatToFix.

e Any other node has a call to Float ToFix inserted.

This algorithm rewrites the DAG from Figure |3af into the
new DAG shown on Figure

Then the corresponding C code is generated. In addintion,
we provide a statement on the accumualation loop that tries to
reduce the iteration interval to 1. The synthesized codes from
before and after the transformations result in the architectures
from Figure [3b] and Figure [b| respectively. Also, at the end
of the transformed loop, a call to FixToFloat is inserted in
order for the programmer to retrieve his value as a floating-
point.

C. Evaluation of the toy example of Listing

The proposed transformations work on non-trivial examples
such as Listing [5] Table [l shows how resource consumption

]inz[i-l] \ ’inl[i] \
]

Exact Product

ExactProduct
FloatToFix

in2[i+1]
‘ long_: accumulator @

! long_accumulator

(a) DAG

in2[i+1] in2[i-1] inl[i]

Fixed Add |

L —
| Fixed Add |

long_accumulator
(b) Architecture

Figure 4: DAG of the loop body from Listing |5| (top) and it’s
corresponding architecture (bottom) after transformations

depends on epsilon, all the other parameters being those
given in the pragma of Listing [5} All these versions where
synthesised for 100MHz, but note that they all can run at
400MHZ.

Our transformed code makes VivadoHLS use more LUTs
for less DSPs. Again this is due to Vivado’s use of DSP for the
shifters. In all cases, on this example, the transformed code
has its latency reduced by a factor 20.

IV. EVALUATION ON FPMARK BENCHMARKS

In order to evaluate the relevance of the proposed transfor-
mations on real-life programs, we used the EEMBC FPMark
benchmark suite [1]].

Naive Transformed Transformed Transformed
LSBy = —14 | LSB4 = —20 | LSB4 = —50
LUTs 538 693 824 1400
DSPs 5 2 2 2
Latency | 2000K 100 K 100K 100K

Table II: Comparison between the naive code from Listing
[and its transformed equivalent. All these versions run at
100MHz.

This suite consists of 10 programs. A first result is that half
of these programs contain visible accumulations:

o Enhanced Livermore Loops (1/16 kernels contains one
accumulation)

o LU Decomposition (multiple accumulations)

o Neural Net (multiple accumulations)

o Fourier Coefficients (one accumulation)

e Black Scholes (one accumulation)

The following focuses on these, and ignores the other half
(Fast Fourier Transform, Horner’s method, Linpack, ArcTan,
Ray Tracer).

Most benchmarks come in single-precision and double-
precision versions, and we focus here on the single-precision
ones.

A. Benchmarks and accuracy: methodology

Each benchmark comes with a golden reference against
which the computed results are compared. As the proposed
transformations are controlled by the accuracy, it may happen
that the transformed benchmark is less accurate than the orig-
inal. In this case, it will not pass the benchmark verification
test, and rightly so.

A problem is that the transformed code will also fail the
test if it is more accurate than the original. Indeed, the golden
reference is the result of a certain combination of rounding
errors using the standard FP formats, which we do not attempt
to replicate.

To work around this problem, each benchmark was first
transformed into a high-precision version where the accumu-
lation variable is a 10,000-bit floating-point numbers using
the MPFR library. We used the result of this highly-accurate
version as a “platinum” reference, against which we could
measure the accuracy of the benchmark’s golden reference.
This allowed us to choose our epsilon parameter such that
the transformed code would be at least as accurate as the
golden reference.

B. Benchmarks improved by the proposed transformation

Enhanced Livermore Loops: This program contains 16
kernels of loops that compute physics equations. Among
these kernels, there is one that performs a sum-of-product
(banded linear equations). This kernel computes 20000 sums-
of-products. The values accumulated are taken from an array.
This is a perfect candidate for the proposed transformations.

For this benchmark, the optimal accumulation parameters
were found as:

MaxAcc=50000 epsilon=le-5 MaxInput=22000

Synthesis results of both codes (before and after transforma-
tion) are given in Table As in the previous toy examples,
latency and accuracy are vastly improved for comparable area.

Latency | LUTs | DSPs | Accuracy
Original Code 80K 384 5 11 bits
Transformed Code 20K 576 2 13 bits

Table III: Synthesis results of one Livermore Loops kernel
before and after transformations.

LU Decomposition and Neural Net: Both the LU decom-
position and the neural net programs contain multiple nested
small accumulations. In the LU decomposition program, an
inner loop accumulates between 8 and 45 values. Such accu-
mulations are performed more than 7M times. In the neural
net program, inner loops accumulate between 8 and 35 values,
and such accumulations are performed more than 5K times.

Both of these programs accumulate values from registers or
memory that are already computed. It makes these programs
good candidates for the proposed transformations.

Due to lack of time, and also because VivadoHLS is unable
to predict a latency for these implemented designs due to their
variable loop sizes, we do not present complete results for
these two benchmarks. Still, in order to show that the approach
works on these examples, the LU inner loops were transformed
and synthesized. Table shows the results obtained for the
smallest (8 terms) and the largest (45 terms) sums-of-products:
the latency is vastly improved even for the smallest one.

Latency | LUTs | DSPs
8 terms Original Code 82 809 5
Transformed Code 17 1007 2
45 terms Original Code 452 819 5
Transformed Code 54 1034 2

Table IV: Synthesis results of the loops from LU benchmark.

C. Benchmarks that suggest future work

Fourier Coefficients: The Fourier coefficients program con-
tains an accumulation which is performed in simple precision.
This program comes in three different configurations: small,
medium and big. Each of them computes the same algorithm
but with a different amount of iterations. The “’big” version
is supposed to compute the most accurate answer. We get
similar results for the three versions of this program, so we
only present the ’big” version here. In this version, 2K terms
are accumulated multiple times during the computation. The
accumulator is reset at every call.

The parameters determined for this benchmark were the
following:

MaxAcc=6000 epsilon=le-7 MaxInput=10

This results in an accumulator using 14 bits for the integer
part and 24 bits for the fractional part. The synthesis results
obtained for the original and transformed codes are given in
Table [V]

Latency | LUTs | DSPs | Accuracy
Original Code 8K 34596 64 6 bits
Transformed Code 8K 34681 59 11 bits

Table V: Synthesis results of the Fourier coefficients program
before and after transformations.

Here, area is again comparable, accuracy is improved by
one order of magnitude, but latency is not improved. To
understand why, Listing [6] provides an example illustrating
the problem. The variable x from statement 1 (S1) is used as
a function parameter in S2. This introduces an intra-iteration
dependency between these statements. As we transform S2 to
be an application-specific accumulator with a 1 cycle latency,
we still have to wait for x to be ready at each iteration. This
makes the overall latency of one iteration to be limited by the
speed at which x can be computed.

As x is itself an accumulation, an idea is to apply the
transformation to x as well. The problem is that S2 needs
its value as a float at each iteration. If x is computed as a
non-standard fixed point number, it will need to be converted
to a float at each iteration, which takes several cycles.

In principle there is a solution, which is to decouple the two
accumulation loops and insert a fix-to-float pipeline between
them. However this transformation is well beyond the scope
of this article and is left for future work.

Listing 6: Illustration of a loop intra-iteration dependency

preventing a latency reduction

float x=0, acc=0;

for (int i=0; i<N;
S1: x += dx;
S2: acc += f(...,%x,...);

i++) {

Black Scholes: This program contains an accumulation that
sums 200 terms. The result of this computation is divided by
a contant (that could be optimized by using transformations
based on [4]). This process is performed 5000 times.

Here the optimal accumulator parameters are the following:
MaxAcc=245000 epsilon=le-4 MaxInput=278
This gives us an accumulator that uses 19 bits for the integer
part and 10 bits for the fractional part. The result of the
synthesis are provided in Table

Latency | LUTs | DSPs | Accuracy
Original Code 3M 15640 175 19 bits
Transformed Code 3M 15923 175 23 bits

Table VI: Synthesis results of the Black Scholes program
before and after transformations. The last column provides
the results for a hand tuned version where we split the loop
in two.

Again, for comparable area, accuracy is vastly improved
by latency is not improved. This time it is for a different
reason, illustrated by Listing [/} Let us consider the latency
of the floating-point accumulation to be NN, and the latency

of the function f to be M. The latency of one iteration is
then going to be max(N, M). In the case where M < N our
transformations will improve the overall latency by reducing
it to M.

Listing 7: Illustration of a computation latency preventing
a latency reduction

float acc=0;
for (int i=0; i<N;
acc += f(...);

}

i++) {

However, in the context of Black Sholes, M is greater than
N. Therefore, reducing the latency of the accumulation has
no impact on performance, as we have to wait for the result
of the computation of f at each iteration. Again, there is
an architectural solution to this, but VivadoHLS is currently
unable to find it.

V. CONCLUSION

The main result of this work is that HLS tools have the
potential to generate efficient designs for handling floating-
point computations in a completely non-standard way. The use
of application-specific intermediate formats can provide both
performance and accuracy at a competitive cost. For this, we
have to sacrifice the strict respect of the IEEE-754 and Cl11
standards. It is replaced by the strict respect of a high-level
accuracy specification.

Classically, designers have to face a trade-off between per-
formance and cost. This approach adds computation accuracy
to this trade-off. Some designers may not like this. To con-
vince them, consider that established performance benchmarks
compute results which are accurate only to a few bits. If only
a few bits are important, do we really need to instanciate 32-
bit or 64-bit floating-point operators to compute them ? Isn’t
this accuracy information worth investigating and exploiting?

This work also provides a practical tool that improves a
given C program. The input to the tool is application-specific
information representing high-level domain knowledge such
as the range and desired accuracy of a variable. The resulting
code is compatible with VivadoHLS.

The proposed transformation already works very well on
3 of the 10 FPMarks where it improves both latency and
accuracy by an order of magnitude for comparable area. For
2 more benchmarks, the latency is not improved (but not
degraded either) due to current limitations of HLS tools. This
defines short-term future work, which could be addressed
either within the back-end HLS tool, or as more source-to-
source transformations.

In the longer term, we believe there is much more to
come. The arithmetic optimizations that a classical compiler
can do are very limited by the fixed hardware of classical
processors. With compilers of high-level software to hardware,
there is much more freedom, hence many more opportunities
to build application-specific arithmetic operators. Future work
will attempt to explore this new realm, starting with operator
specialisation, operator fusion, and compile-time generation

of application-specific cores, and building upon compiler pro-
gresses in program analysis.

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

EEMBC - the embedded microprocessor benchmark consortium. http:
/Iwww.eembc.org/.

Christophe Alias, Bogdan Pasca, and Alexandru Plesco. FPGA-specific
synthesis of loop-nests with pipelined computational cores. Micropro-
cessors and Microsystems, 36(8), 2012.

Gabriel Caffarena, Juan A. Lopez, Carreras Carreras, and Octavio Nieto-
Taladriz. High-level synthesis of multiple word-length DSP algorithms
using heterogeneous-resource FPGAs. In 2006 International Conference
on Field Programmable Logic and Applications, pages 1-4, Aug 2006.
Florent de Dinechin and Laurent-Stéphane Didier. Table-Based Division
by Small Integer Constants, pages 53—63. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

Florent de Dinechin and Bogdan Pasca. High-Performance Computing
Using FPGAs, chapter Reconfigurable Arithmetic for High-Performance
Computing, pages 631-663. Springer, 2013.

Florent de Dinechin, Bogdan Pasca, Octavian Cref, and Radu Tudoran.
An FPGA-specific approach to floating-point accumulation and sum-
of-products. In Field-Programmable Technologies, pages 33-40. IEEE,
2008.

Johannes Doerfert, Kevin Streit, Sebastian Hack, and Zino Benaissa.
Polly’s polyhedral scheduling in the presence of reductions. CoRR,
abs/1505.07716, 2015.

Antoine Floc’h, Tomofumi Yuki, Ali El-Moussawi, Antoine Morvan,
Kevin Martin, Maxime Naullet, Mythri Alle, Ludovic L'Hours, Nicolas
Simon, Steven Derrien, Francois Charot, Christophe Wolinski, and
Olivier Sentieys. GeCoS: A framework for prototyping custom hardware
design flows. In Source Code Analysis and Manipulation (SCAM), pages
100-105. IEEE, September 2013.

Marcel Gort and Jason H. Anderson. Range and bitmask analysis for
hardware optimization in high-level synthesis. In /8th Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 773-779, Jan
2013.

James Hrica. Floating-point design with vivado HLS, 2012. Xilinx
Application Note.

Xilinx Inc. Vivado Design Suite User Guide: High-Level Synthesis.
2015.

Nachiket Kapre and Andre DeHon. Optimistic parallelization of floating-
point accumulation. In 18th IEEE Symposium on Computer Arithmetic,
pages 205-216. IEEE, 2007.

Ulrich Kulisch and Van Snyder. The exact dot product as basic tool for
long interval arithmetic. Computing, 91(3):307-313, March 2011.
Martin Langhammer. Floating point datapath synthesis for FPGAs.
In 2008 International Conference on Field Programmable Logic and
Applications, pages 355-360, Sept 2008.

Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-
Pierre Jeannerod, Vincent Lefévre, Guillaume Melquiond, Nathalie
Revol, Damien Stehlé, and Serge Torres. Handbook of Floating-Point
Arithmetic. Birkhduser Boston, 2010.

R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T.
Chen, H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels.
A survey and evaluation of fpga high-level synthesis tools. [EEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 35(10):1591-1604, Oct 2016.

Xavier Redon and Paul Feautrier. Detection of scans in the polytope
model. Parallel Algorithms Appl., 15(3-4):229-263, 2000.

Olivier Sentieys, Daniel Menard, David Novo, and Karthick Parashar.
Automatic Fixed-Point Conversion: a Gateway to High-Level Power
Optimization. Tutorial at IEEE/ACM Design Automation and Test in
Europe (DATE), March 2014.

http://www.eembc.org/
http://www.eembc.org/

	Introduction
	The arithmetic side: an application-specific accumulator in VivadoHLS
	The parameters of a large accumulator
	Implementation details
	Validation

	The compiler side: GeCoS source-to-source transformations
	Compiler directive
	Code transformation
	Evaluation of the toy example of Listing 5

	Evaluation on FPMark benchmarks
	Benchmarks and accuracy: methodology
	Benchmarks improved by the proposed transformation
	Benchmarks that suggest future work

	Conclusion
	References

