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Many case studies have demonstrated the potential of Field-
Programmable Gate Arrays (FPGAs) as accelerators for a wide
range of applications. FPGAs offer massive parallelism and
programmability at the bit level. This enables programmers
to exploit a range of techniques that avoid many bottlenecks
of classical von Neumann computing. However, development
costs for FPGAs are orders of magnitude higher than classical
programming. A solution would be the use of High-Level
Synthesis (HLS) tools, which use C as a hardware description
language. However, the C language was designed to be exe-
cuted on general purpose processors, not to generate hardware.
Its datatypes and operators are limited to a small number (more
or less matching the hardware operators present in mainstream
processors), and HLS tools inherit these limitations. To better
exploit the freedom offered by hardware and FPGAs, HLS
vendors have enriched the C language with integer and fixed-
point types of arbitrary size. Still, the operations on these types
remain limited to the basic arithmetic and logic ones.

In floating point, the current situation is even worse. The
operator set is limited, and the sizes are restricted to 32 and
64 bits. Besides, most recent compilers, including the HLS
ones, attempt to follow established standards, in particular
C11 and IEEE-754. This ensures bit-exact compatibility with
software, but greatly reduces the freedom of optimization by
the compiler. For instance, a floating point addition is not
associative even though its real equivalent is.

In the present work we attempt to give the compiler more
freedom. For this, we sacrifice the strict respect of the IEEE-
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754 and Cl1 standards, but we replace it with the strict
respect of a high-level accuracy specification expressed by the
programmer through a pragma.

The case study in this work is a program transformation
that applies to floating-point additions on a loop’s criti-
cal path. It decomposes them into elementary steps, resizes
the corresponding subcomponents to guarantee some user-
specified accuracy, and merges and reorders these components
to improve performance. The result of this complex sequence
of optimizations could not be obtained from an operator
generator, since it involves global loop information.

For this purpose, we used a compilation flow involving one
or several source-to-source transformations operating on the
code given to HLS tools (Figure 1).

The proposed transformation already works very well on
3 of the 10 FPMarks where it improves both latency and
accuracy by an order of magnitude for comparable area. For
2 more benchmarks, the latency is not improved (but not
degraded either) due to current limitations of HLS tools. This
defines short-term future work.

The main result of this work is that HLS tools also have
the potential to generate efficient designs for handling floating-
point computations in a completely non-standard way.

In the longer term, we believe that HLS flows can not only
import application-specific operators from the FPGA literature,
they can also improve them using high-level, program-level
information.

Figure 1: The proposed compilation flow



