N

N

A high-level synthesis approach optimizing
accumulations in floating-point programs using custom
formats and operators

Yohann Uguen, Florent de Dinechin, Steven Derrien

» To cite this version:

Yohann Uguen, Florent de Dinechin, Steven Derrien. A high-level synthesis approach optimizing
accumulations in floating-point programs using custom formats and operators. 2017. hal-01498357v1

HAL Id: hal-01498357
https://hal.science/hal-01498357v1

Preprint submitted on 1 Apr 2017 (v1), last revised 24 Feb 2017 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01498357v1
https://hal.archives-ouvertes.fr

A high-level synthesis approach
optimizing accumulations in floating-point programs
using custom formats and operators

Yohann Uguen
Univ Lyon, INSA Lyon, Inria, CITI
F-69621 Villeurbanne, France
Yohann.Uguen @insa-lyon.fr

Many case studies have demonstrated the potential of Field-
Programmable Gate Arrays (FPGAs) as accelerators for a wide
range of applications. FPGAs offer massive parallelism and
programmability at the bit level. This enables programmers
to exploit a range of techniques that avoid many bottlenecks
of classical von Neumann computing. However, development
costs for FPGAs are orders of magnitude higher than classical
programming. A solution would be the use of High-Level
Synthesis (HLS) tools, which use C as a hardware description
language. However, the C language was designed to be exe-
cuted on general purpose processors, not to generate hardware.
Its datatypes and operators are limited to a small number (more
or less matching the hardware operators present in mainstream
processors), and HLS tools inherit these limitations. To better
exploit the freedom offered by hardware and FPGAs, HLS
vendors have enriched the C language with integer and fixed-
point types of arbitrary size. Still, the operations on these types
remain limited to the basic arithmetic and logic ones.

In floating point, the current situation is even worse. The
operator set is limited, and the sizes are restricted to 32 and
64 bits. Besides, most recent compilers, including the HLS
ones, attempt to follow established standards, in particular
C11 and IEEE-754. This ensures bit-exact compatibility with
software, but greatly reduces the freedom of optimization by
the compiler. For instance, a floating point addition is not
associative even though its real equivalent is.

In the present work we attempt to give the compiler more
freedom. For this, we sacrifice the strict respect of the IEEE-

Florent de Dinechin
Univ Lyon, INSA Lyon, Inria, CITI
F-69621 Villeurbanne, France
Florent.de-Dinechin @insa-lyon.fr

arithmetic
AN optimization C/C++ D
plugin with low-level
High level GeCoS description HLS tool Hardware
source-to-source » of context- . ..
C/C++ . . (VivadoHLS) description
compiler specific
arithmetic
operators

Steven Derrien
University Rennes 1, IRISA
Rennes, France
Steven.Derrien @univ-rennes1.fr

754 and Cl1 standards, but we replace it with the strict
respect of a high-level accuracy specification expressed by the
programmer through a pragma.

The case study in this work is a program transformation
that applies to floating-point additions on a loop’s criti-
cal path. It decomposes them into elementary steps, resizes
the corresponding subcomponents to guarantee some user-
specified accuracy, and merges and reorders these components
to improve performance. The result of this complex sequence
of optimizations could not be obtained from an operator
generator, since it involves global loop information.

For this purpose, we used a compilation flow involving one
or several source-to-source transformations operating on the
code given to HLS tools (Figure 1).

The proposed transformation already works very well on
3 of the 10 FPMarks where it improves both latency and
accuracy by an order of magnitude for comparable area. For
2 more benchmarks, the latency is not improved (but not
degraded either) due to current limitations of HLS tools. This
defines short-term future work.

The main result of this work is that HLS tools also have
the potential to generate efficient designs for handling floating-
point computations in a completely non-standard way.

In the longer term, we believe that HLS flows can not only
import application-specific operators from the FPGA literature,
they can also improve them using high-level, program-level
information.

Figure 1: The proposed compilation flow



