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Abstract— The finite Fourier transform operator, and in particular its singular values, have been
extensively studied in relation with band-limited functions. We study here the sequence of singular
values of a random discretization of the finite Fourier transform in relation with applications to
wireless communication. We prove that, with high probability, this sequence is close to the sequence
of singular values of the finite Fourier transform itself. This also leads us to develop `2 estimates for
the spectrum of kernel random matrices. This seems to be new to our knowledge. As applications,
we give fairly good approximations of the number of degrees of freedom and the capacity of an
approximate model of a MIMO wireless communication network. We provide the reader with some
numerical examples that illustrate the theoretical results of this paper.

1 Introduction

In this work, we are interested in the study of the behaviour of the spectrum of the n × n random
matrix A, whose j, k entry is given by

aj,k =

√
m

n
exp(2iπmZjYk),

where m is a positive number, 1 ≤ m ≤ n and where the Yj , Zk are independent random variables,
following the uniform law on I = (−1/2,+1/2). Note that this matrix depends on a variable ω
varying in some probability space Ω but we systematically omit this variable in the expressions.
Also, the matrix A may be seen as a random discretization of the finite Fourier transform Fm, which
is defined on L2(I) by

Fm(f)(y) =
√
m

∫ +1/2

−1/2
exp(2iπmyz)f(z)dz, |y| < 1/2.

With the normalization constant
√
m
n given in the coefficients aj,k, the Hilbert-Schmidt norm of A

is equal to the Hilbert-Schmidt norm of Fm. Recall that the Hilbert-Schmidt norm of A is given by

‖A‖2HS =

n∑
j,k=1

|aj,k|2.

The random matrix n√
m
A was proposed by Desgroseilliers, Lévêque and Preissmann [9, 10] as an

approximate model for the channel fading matrix (after some renormalization) in a wireless commu-
nication MIMO (Multi Input Multi Output) transmission network. This model is done under the

1This work was supported in part by the French-Tunisian CMCU project 10G 1504 project and the Tunisian
DGRST research grants UR 13ES47.
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assumptions that one has a line of sight propagation and that network nodes are gathered in clus-
ters. They do not add any noise for simplification of the model and studied two main related issues:
the first issue is the number of degrees of freedom of the system, the second one is its information
capacity. They have partial results and we refer to their papers for the interested reader. We found
that the previous issues led us to some interesting mathematical questions, which we discuss in the
present paper. As in the previous two references, m and n are assumed to be large, with m � n.
As far as the network capacity is concerned, a reasonable expression for it, with p the total power
of the transmitters that is assumed to be equally distributed, is given by

C(p) = log det
(
In +

np

m
A∗A

)
. (1)

Here In is the identity matrix. We show that, with a large probability and under assumptions on
m,n and p, this capacity is well approximated by m log(npm ). We also prove that the number of
degrees of freedom is well approximated by m. We only need to assume that m and n/m are large
enough, which is much less restrictive than the previous results in this direction obtained in [9, 10].
Succeeding in this approximation has been the guiding thread of this study.

The whole paper is based on a comparison of the singular values of A with those of the integral
operator Fm. More precisely, we have the following result,

Theorem 1. The singular values of A are close to the singular values of Fm. More precisely, for
any ξ > 0, we have n−1∑

j=0

|λj(A∗A)− λj(F∗mFm)|2
1/2

≤ (2ξ +
√

2)m√
n

. (2)

with probability 1− 4e2e−ξ
2/2.

Here the sequence of the singular values λj(T ) = (λj(T
∗T ))1/2, are taken in decreasing order,

starting from j = 0. The notation is used for singular values (arranged in the decreasing order)
of a Hilbert-Schmidt operator with finite or infinite rank. We recall that for a Hermitian positive
semi-definite operator, the singular values are eigenvalues of this later. Note that we also estimate
the expectation of the left hand side of (2).

Remark that for small values of m, one could use a Taylor approximation based technique to
derive such estimate, see for instance [4]. But, in this work, we are interested in the spectrum of
A∗A when m and n are large. We will see that m/n small will allow to consider the right hand
side of (2) as a rest, so that the spectrum of A∗A can be well approximated by the spectrum of
the corresponding integral operator F∗mFm. The behaviour of this last operator, known as the Sinc
kernel operator, has been largely explored in the literature, see for example [2, 7, 8, 14]. This gives
us precise information on singular values of A. As predicted by our theoretical results, we check
numerically that the singular values of A, and Fm have some similarity when m/n is small. The
similarity increases when m2/n is small. Also, by using some precise behaviour and decay estimates
of the sequence of the eigenvalues of the Sinc kernel operator, we give fairly good estimates of the
number of degrees of freedom and the capacity of the wireless network studied in [9, 10].

Our strategy in proving the previous estimate (2) is simple and essentially based on the use of a
generalized version of McDiarmid’s inequality. By taking the expectation of the matrix A∗A in the
Z-random variables, we find the matrix

H = Hκm =
1

n


κm(Y1, Y1) κm(Y1, Y2) · · · κm(Y1, Yn)
κm(Y2, Y1) κm(Y2, Y2) · · · κm(Y2 − Yn)

...
...

...
...

κm(Yn, Y1) κm(Yn, Y2) · · · κm(Yn, Yn)

 , (3)
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where κm(x, y) is the positive definite Sinc kernel, given by

κm(x, y) = sinc(m(x− y)) =
sinmπ(x− y)

π(x− y)
. (4)

The previous random matrix is a special case of a more general (kernel) Gram matrix Hκ, with
entries 1

nκ(Yj , Yk), where the Yj are sample points drawn randomly according to a probability law P
on some input space X and κ(·, ·) is a kernel function on X ×X . More precisely, the random variables
Yj form an are i.i.d sequence and the kernel κ is symmetric positive semi-definite. Note that we
state a large part of our results in this general case. We give a last definition before describing them.
Let Tκ be the integral operator with kernel κ and defined on L2(X , P ), by

Tκ(f)(x) =

∫
X
κ(x, y)f(y) dP, x ∈ X . (5)

It is well-known [16], that with large probability, the eigenvalues λj(Hκ) are comparable with
their expectation E(λj(Hκ)). These expectations are themselves comparable with the eigenvalues of
the integral operator Tκ, associated with the kernel, see [16, 1]. Here, we prove a stronger result by
having an inequality in the `2 norms. If we assume that R = supy κ(y, y) is finite, then we prove the
following result,

Theorem 2. Let κ be a positive semi-definite kernel, Tκ the integral operator and Hκ the random
kernel matrix as above. We assume that R = supy κ(y, y) is finite. Then, for any ξ > 0, we have
the inequality

n−1∑
j=0

(
|λj(Hκ)− λj(Tκ)|2

)1/2 ≤ (ξ +
√

2)R√
n

,

with probability 1− 2e2e−ξ
2/2.

Such an inequality has been given in [16] for each eigenvalue separately and up to some slightly
better constants. The following theorem is central in this work.

Theorem 3. Assume that R = sup
y
κ(y, y) is finite. Then, under the previous notations, we have

E

n−1∑
j=0

|λj(Hκ)− λj(Tκ)|2
 ≤ 2R2

n
. (6)

This seems to be new, even if it is inspired from the work of V. Koltchinskii and E. Giné [11],
who have given estimates of this kind.

Let us make a last remark. In kernel principal component analysis (Kernel-PCA), the subspace
spanned by the first m eigenvectors of Hκ is used to form a lower m dimensional representation of the
given data. For more information on this widely used application, the reader is refereed for example
to [1] and[16]. Such a representation makes also sense for the matrix A and we give estimates for
the reconstruction error in the appendix.

This work is organized as follows. In section 2, we first give two concentration inequalities for
functions of an i.i.d sequence of n random variables with values in a Hilbert space H. Then, we prove
some general approximation results in the `2−norm of the eigenvalues of a random kernel matrix by
the eigenvalues of the associated kernel integral operator. Then, we restrict ourselves to the special
interesting case of the random Fourier matrix A. In particular, we prove that the spectrum of A∗A
can be well approximated by the spectrum of the corresponding integral operator F∗mFm. In section
3, we use some precise decay and estimate of the eigenvalues of the Sinc kernel operator and give
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estimates of the number of degrees of freedom and the capacity, associated with the random matrix
A. In section 4, we give some numerical examples that illustrate the different results of this work.
Finally, in the appendix, we give the proof of Theorem 3, which is a central result of this work. Also,
we give some further inequalities relating the singular values of the random discrete finite Fourier
and the finite Fourier transform operators.

We will write P, PZ (resp. PY ) depending whether we take the probability on the whole proba-
bility space, or only in Z1, · · · , Zn (resp. Y1, · · · , Yn).

2 Concentration inequalities and approximation of the eigen-
values of kernel random matrices.

We first recall the Hilbert valued version of McDiarmid’s concentration inequality, given by the
following proposition, which is due to T. Hayes. As it will be seen later on, this inequality plays a
central role in our estimates of the eigenvalues of kernel random matrices.

Proposition 1 ([5]). Let Φ be a measurable function on Rn with values in a real Hilbert space H.
Assume that

‖Φ(z1, · · · , z`, · · · , zn)− Φ(z1, · · · , z′`, · · · , zn)‖H ≤ R

for each sequence (zj)j 6=`, z`, z
′
`. If Z1, · · ·Zn are independent random variables, then we have

P (‖Φ(Z1, · · · , Zn)− EΦ(Z1, · · · , Zn)‖H > ξ) ≤ 2e2 exp

(
− 2ξ2

nR2

)
.

This is McDiarmid’s Inequality when H = R. The previous general McDiarmid’s inequality is
a direct consequence of the Azuma-Hoeffding inequality for Hilbert-valued random variables given
in [5]. The proof of this last one is very intricate. We will also be interested in expectations. The
proof of the next lemma is standard. It is an easy generalization of the way to deduce McDiarmid’s
inequality from Azuma-Hoeffding inequality in the scalar case.

Lemma 1. Under the same assumptions as in Proposition 1, we have the inequality

E
(
‖Φ(Z1, · · · , Zn)− EΦ(Z1, · · · , Zn)‖2H

)
≤ nR2.

Proof. We give it for completeness. We write

Φ(Z1, · · · , Zn)− EΦ(Z1, · · · , Zn) =

n∑
k=1

(EΦ(Z1, · · · , Zn|Fk)− EΦ(Z1, · · · , Zn|Fk−1) =

n∑
k=1

Vk

with Fk the σ−algebra generated by Z1, · · · , Zk when k ≥ 1 and F0 the σ−algebra generated by
the constants, so that E(V |F0) = E(V ). For each k > 1, the random variable is Fk-measurable and
we have the equality E(Vk|Fk−1) = 0. As a consequence, if j < k, then

E(〈Vj , Vk〉H) = E(〈Vj ,E(Vk|Fk−1〉) = 0.

Consequently, we have

E
(
‖Φ(Z1, · · · , Zn)− EΦ(Z1, · · · , Zn)‖2H

)
=

n∑
j=1

‖Vj‖2H.

We then use the fact that Vj is obtained as a mean of differences of values of Φ that involve only
the j-th coordinate. So each term ‖Vj‖2H is bounded by R2. This concludes the proof.
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The following lemma will be used to study the general eigenvalues approximation of kernel
random matrices.

Lemma 2. Let X be the input space and Y1, · · · , Yn i.i.d with values in X . Let P be their common
probability law on X . Let Tκ be the integral operator with kernel κ and defined on L2(X , P ). Then

E(‖Hκ‖2HS) =
1

n

∫
X
κ(x, x)2dP +

n− 1

n
‖Tκ‖2HS.

Proof. The proof is straightforward, it suffices to note that

E(‖Hκ‖2HS) = E

(
1

n2

n∑
i=1

(κ(Yi, Yi))
2

)
+ E

 1

n2

n∑
i,j=1,i6=j

(κ(Yi, Yj))
2


=

1

n2

n∑
i=1

∫
X
κ(x, x)2dP +

1

n2

n∑
i,j=1,i6=j

∫
X×X

(κ(x, y))2dPdP

=
1

n

∫
X
κ(x, x)2dP +

n2 − n
n2

‖Tκ‖2HS

Let Hκ be the random matrix that we defined in the introduction, namely, the matrix with
entries κ(Yj , Yk). We know, by [16] that its eigenvalues λj(Hκ) are comparable with their expectation
E(λj(Hκ)). We prove more by comparing the sum of squares of the differences.

Proposition 2. Let κ be a positive semi-definite kernel and let Hκ be the corresponding random
kernel matrix as in Theorem 2. We assume that R = supy κ(y, y) is finite. For any ξ > 0, we have
the inequality n−1∑

j=0

|λj(Hκ)− E(λj(Hκ)|2
1/2

≤ ξR√
n

with probability 1− 2e2e−ξ
2/2.

Proof. We use Proposition 1 for the mapping (x1, · · · , xn) 7→ λ(x1, · · · , xn), which maps x =
(x1, · · · , xn) ∈ Rn into the ordered spectrum of the matrix with entries 1

nκ(xj , xk). The Hilbert
space used here is `2n, the space of finite sequences of length n endowed with the Euclidean scalar
product. We have to prove that ‖λ(x) − λ(x′)‖`2 ≤ 2R

n when all coordinates of x, x′ are identical

except one of them. It is sufficient to prove that ‖λ(x) − λ̂(x)‖`2n ≤
R
n where λ̂(x) is the ordered

sequence of eigenvalues of the matrix Ĥκ, obtained from Hκ by substituting the coefficients of j−th
row and the j−th column of Hκ with zeros. Note that λ̂n−1(x) = 0 and from the Cauchy eigenvalues
interlacing property, we have

λi(x) ≥ λ̂i(x) ≥ λi+1(x), ∀ 1 ≤ i ≤ n− 1.

Hence, by using the previous inequality, together with the trace of a square matrix, one gets

‖λ(x)− λ̂(x)‖`1n =
∑
j

(λj(x)− λ̂j(x)) =
1

n
κ(xj , xj) ≤

R

n
.

Since the `2n−norm is bounded by the `1n−norm, one gets

‖λ(x)− λ̂(x)‖`2n ≤ R

n
,

which we wanted to prove.
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One may be interested to compare our results with those of [1, 16], which concern separately
each eigenvalue and not the norm of the spectrum in `2n. It may look surprising that the inequalities
that we get from our estimates by just bounding one term by the `2n are the same as theirs, except
for the factor e2 in the probability. This means that if we are interested in having simultaneously
estimates for |λj(Hκ)−E(λj(Hκ)| ≤ ξR√

n
for k different indices j, the bound for the probability given

in the previous proposition is better than the one given in [16] as soon as n ≥ 8.

End of the proofs of Theorems 3 and 2. The proof of Theorem 3, which is more elaborate, is post-
poned to the appendix. Proposition 2 and Theorem 3 imply Theorem 2.

Remark that in general there is no reason that the error, which is of order R/
√
n, be small

compared to the Hilbert-Schmidt norm of Tκ or Hκ. But we will see that it is the case for the Sinc
kernel.

In the sequel of this section, we are interested in the behaviour of the spectra of the random
matrices A∗A and H = Hκm . The input space is I = (−1/2,+1/2) and the law P is the uniform law
on I. We claim that H is the expectation in Z of A∗A. Indeed, when considering the (j, k) entry of
A∗A, we get

EZ

(
m

n2

n∑
`=1

exp(2iπmZ`(Yk − Yj))

)
=

1

n
EZ
(
m exp(2iπmZ1(Yk − Yj))

)
=

1

n
κm(Yk − Yj).

Consequently, we have
EZ(A∗A) = H. (7)

As it is classical, we note Qm the operator Tκm , which is defined on L2(I) by

Qm(f)(x) =

∫
I

sin(mπ(x− y))

π(x− y)
f(y) dy. (8)

There is a huge literature on this operator, or more frequently, on the operator Q̃c with kernel
sin(c(x−y))
π(x−y) on the interval (−1,+1). A simple dilation allows to pass from one operator to the other,

and one has the equality

λj(Qm) = λj(Q̃c) for m =
2c

π
.

It is well known (see [6], Chapter 1) that for m > 1, we have

m−O(logm) ≤ ‖Qm‖2HS ≤ m. (9)

This implies that ‖Qm‖HS ∼
√
m for m tending to ∞. The same is valid for ‖H‖HS when m and

n/m tend to ∞. Under these assumptions the error terms, which are multiples of m√
n
, tend to ∞

more slowly than
√
m.

We recall some other elementary properties of the spectrum of Qm. All the eigenvalues of Qm
are bounded by 1 and

Trace(Qm) =

∞∑
j=0

λj(Qm) = m.

Using (9), we deduce that ∑
j≥0

λj(Qm)(1− λj(Qm)) ≤ C0 logm, (10)

for some constant C0 independent of m.
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Next, we show that the eigenvalues of the random matrix B = A∗A are well approximated by the
corresponding eigenvalues of the matrix H. For this purpose, it suffices to check that the matrices
B and H have comparable Hilbert-Schmidt norms.

Lemma 3. For H as before, depending on Z1, · · · , Zn, we have the inequalities(
EZ(‖A∗A−H‖2HS)

)1/2 ≤ m√
n
. (11)

Moreover, for all ξ > 0, we have

PZ
(
‖A∗A−H‖HS > ξ

m√
n

)
≤ 2e2e−

ξ2

2 . (12)

Proof. Consider the real Hilbert space H of n× n Hermitian matrices equipped with the real inner
product

〈B1, B2〉 = Trace(B∗2B1).

Note that the norm associated with this inner product is simply given by the Hilbert-Schmidt norm
‖ · ‖HS , that is for M = [mij ] ∈ H, we have

Trace(M∗M) = ‖M‖2HS .

Let the function Φ : Rn → H, defined by Φ(z1, . . . , zn) =

n∑
k=1

B(zk), where the coefficients of the

matrix B(zk) are given by

bj,k =
m

n2
exp(2iπmzk(Yk − Yj)). (13)

Hence, we have

‖Φ(z1, . . . , zj , . . . , zn)− Φ(z1, . . . , ẑj , . . . , zn)‖HS = ‖B(zj)−B(ẑj)‖HS
≤ 2m

n2

√
n2 − n < 2m

n
= R.

Consequently, by using Proposition 1 and (7), one gets (12). Let us give a direct proof of (11)
instead of using Lemma 1, which would give the same result but with a constant 2 in the right hand
side. We just remark that

EZ(‖A∗A−H‖2HS) = nEZ(‖B(Z1)− E(B(Z1)‖2HS) ≤ nEZ(‖B(Z1))‖2HS) =
m2

n
.

The result given by (12) is equivalent to the fact that, with probability larger than 1−2e2e−ξ
2/2,

we have the inequality

‖A∗A−H‖HS ≤
ξm√
n
. (14)

By Hoffman–Wielandt inequality, this implies thatn−1∑
j=0

|λj(A∗A)− λj(H)|2
1/2

≤ ‖A∗A−H‖HS ≤
ξm√
n
, (15)

with probability larger than 1−2e2e−ξ
2/2. This inequality makes sense when ‖H‖HS is large compared

to the error term ξm
n1/2 . This is the case when n/m is large enough.
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End of the proof of Theorem 1. Theorem 2 and (15) imply Theorem 1.

As a consequence of Theorem 3, (11) and Hoffman–Wielandt inequality, we have also the following
proposition.

Proposition 3. The following inequality holds.E
( n−1∑
j=0

|λj(A∗A)− λj(F∗mFm)|2
)1/2

≤ (1 +
√

2)m√
n

.

3 Degrees of Freedom and Capacity, associated with the ran-
dom Fourier matrix

In this section, we describe what the previous concentration inequalities imply for the spectra of
A∗A and H. In particular, we give estimates of the number of degrees of freedom and the capacity
associated with the random Sinc kernel matrix H and the matrix A. For this purpose, we first give
the decay behaviour of the spectrum of the integral operator Qm.

3.1 Decay of the spectra

It is well known that all the eigenvalues of Qm are smaller than 1. Roughly speaking, they are very
close to 1 for j ≤ m − c logm and very close to 0 for j > m + c logm, for some constant c. The
region in between is called the plunge region. The most complete answer of this behaviour, is an
asymptotic formula for m tending to ∞, which has been given by Landau and Widom (see [6]).
More precisely, for 0 < α < 1, let

NQm(α) = #{λj(Qm); λj(Qm) > α},

then we have

NQm(α) = m+

[
1

π2
log

(
1− α
α

)]
log(m) + o(log(m)). (16)

For the random Sinc kernel matrix H, let NH(α) be as defined by (16). Also, we will frequently use
the following constant

γξ = ξ +
√

2, ξ > 0. (17)

We know that with a probability larger than 1−2e2e−ξ
2/2, we have the inequality |λj(H)−λj(Qm)| ≤

γξm√
n
, for each j ≥ 0 (for instance, if we exclude an event of probability 1%, then ξ =

√
4 + 2 log(200),

so that γξ =
√

2 +
√

4 + 2 log(200) ≈ 5.) Using the elementary inequality

Nm

(
α+

γξm√
n

)
≤ NH(α) ≤ Nm

(
α− γξm√

n

)
,

we have with probability larger than 1− 2e2e−ξ
2/2,

NH(α) = m+

[
1

π2
log

(
1− α
α

)]
log(m) + o(log(m)) +O

(
γξm√
n

)
logm, (18)

for
2γξm√
n
< α < 1− 2γξm√

n
.

This means that Landau–Widom Formula is also an approximate for H with high probability
for m2/n tending to 0. The same is valid for A∗A, with the two following modifications: “high
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probability” means now that the probability is larger than 1− 4e2e−ξ
2/2, and γξ is substituted with

γ2ξ =
√

2 + 2ξ.

We will also make use of Landau’s double inequality [7],

λdme(Qm) ≤ 1/2 ≤ λ[m]−1(Qm). (19)

Here, [x] and dxe refers the to integer part and the least integer greater than or equal to x, respec-
tively. The previous inequalities say that, roughly speaking, λj((Qm)) goes through the value 1/2

at m. An approximate result is valid for H and A∗A when m2

n is small.

Landau-Widom Theorem gives us an approximate asymptotic decay of the eigenvalues in the
plunge region after m, that is

λk(Qm) ≈ exp

(
−π

2(k −m)

logm

)
.

One does not know any non asymptotic comparable result. The following result is to the best of our
knowledge, the first non asymptotic exponential decay estimate of the λn(Qm). It is a consequence
of the estimates given in [2]. This kind of statement, with estimates of constants is developed in a
separate paper [3].

Theorem 4. There exists a uniform constant η such that, for m > 1 and k ≥ m+ logm+ 10, one
has the inequality

λk(Qm) ≤ 1

2
exp

[
−η
(
k −m
logm

)]
. (20)

A better decay, namely a super-exponential decay rate, is obtained after the plunge region (see
[2, 3]), but we will not use it here.

3.2 Degrees of Freedom

In this paragraph, we are interested in the number of degrees of freedom of a matrix or an operator,
which makes sense in the area of wireless communication networks. Different definitions have been
given in this context in [18]. We give here a simple definition in terms of eigenvalues. Similar
definitions may be found in approximation theory or in computational complexity theory, where it is
known as a complexity number. We aim here to show that it is easily approximated for the integral
operator Qm. Consequently, this provides us with a good approximation for the corresponding
random matrices H and A∗A.

Definition 1. Let T be a Hilbert-Schmidt positive semi-definite Hermitian operator. We define the
numbers of degree of freedom at level ε by

deg∞(T, ε) = min{s;λs(T ) ≤ ε}. (21)

Depending on the application in view, it makes sense to be interested in small values of ε, or
values that are close to the largest eigenvalue of the integral operator, that is close to 1 when
considering Qm. Remark that the difference of deg∞(Qm, 1/2) with m is bounded by 1 by Landau’s
double inequality. For other values of ε we have the following proposition.

Proposition 4. Let m ≥ 2 be a positive real number. For ε < 1/2, the number of degrees of freedom
satisfies the inequalities

m− 1 ≤ deg∞(Qm, ε) ≤ m+O(ε−1 logm). (22)

For 1/2 < ε < 1, these inequalities are replaced by

m−O((1− ε)−1 logm) ≤ deg∞(Qm, ε) ≤ m+ 1. (23)

9



Proof. The left hand side of the first inequality, as well as the right hand side of the second one,
follow from Landau’s double inequality (19). Moreover, by using (10) and (19), we obtain the two
inequalities ∑

j≤m−1

(1− λj(Qm)) ≤ 2C0 logm (24)

∑
j≥m+1

λj(Qm) ≤ 2C0 logm. (25)

As a consequence of (24), we have the inequality

#{j ≤ m− 1 , λj(Qm) < ε} ≤ 2C0 logm

1− ε
.

The left hand side of (23) follows at once. The remaining inequality, that is, the right hand side of
(22), follows from a similar argument, with (25) used in place of (24).

Remark 1. In the inequality (22), it is possible to replace ε−1 by log(ε−1). This follows from the
decay of eigenvalues given in (20).

Let us now consider the degrees of freedom of the random matrices H and A∗A, which we define
as follows.

Definition 2. Let M be a positive semi-definite random Hermitian matrix. We define the numbers
of degree of freedom at level ε and confidence level α by

deg∞(M, ε, α) = min{s;λs(T ) ≤ ε with probability ≥ α}. (26)

The next lemma allows to prove that with high probability that the degrees of freedom of the
random matrices H and A∗A are close to the ones of Qm.

Lemma 4. Let T1, T2 be two self-adjoint Hilbert-Schmidt operators on the same Hilbert space H,
and let 0 < ε1 < ε2. Then

deg∞(T2, ε2) ≤ deg∞(T1, ε1) +

∑
j≥0(λj(T1)− λj(T2))2

(ε1 − ε2)2
.

Proof. It is sufficient to write that

#{j > deg∞(T1, ε1) , λj(T2) > ε2} ≤ #{j > deg∞(T1, ε1) , λj(T2)− λj(T1) > ε2 − ε1}

≤
∑
j≥0(λj(T1)− λj(T2))2

(ε1 − ε2)2
.

We deduce from the two previous statements the following property.

Proposition 5. For ε > 0, 0 < δ = 1− α < 1, we have

deg∞(H, ε, α) = m+ EH ,deg∞(A∗A, ε, α) = m+ EA,

with |EH |, |EA| ≤ Cε
(
m
n

√
log(δ−1) + logm

)
. Here, Cε is a constant depending only on ε.

The errors are small for m large and n/m large. Asymptotically, when these two quantities tend
to ∞, we have deg∞(H, ε, δ) ∼ m and deg∞(A∗A, ε, δ) ∼ m for fixed ε and δ.

10



3.3 Capacity of a random matrix

We proceed as we have done for the degrees of freedom. Let us define, for m ≥ 2 and s > 0, the
capacity associated with the Sinc kernel integral operator Qm,

CQm(s) =
∑
k≥0

log(1 + sλk(Qm).

We claim the following.

Proposition 6. For any m ≥ 2 and any s > 0, we have

CQm(s) = m log(1 + s) +O((logm)(log(1 + s))).

The implicit constant in O is independent of s and m.

Proof. Let us first assume that s ≤ 2. We cut the sum into three parts and write

CQm(s) = [m] log(1 + s) +
∑
k<[m]

log

(
1 + sλk(Qm)

1 + s

)
+
∑
k≥[m]

log(1 + sλk(Qm)).

The last term is bounded by 2
∑
k≥[m] λk(Qm), which is O(logm) because of (24). In the second

term, all the λk(Qm) are bounded below by 1/2. Since for 0 ≤ x ≤ 1/2, we have log(1− x) ≥ −2x,
then one gets

log

(
1 + sλk(Qm)

1 + s

)
= log

(
1− s

1 + s
(1− λk(Qm))

)
≥ −2(1− λk(Qm)).

But
∑
k<[m](1− λk(Qm) = [m]−m+

∑
k≥[m] λk(Qm) and we conclude as before.

Next, for s ≥ 2, the proof follows the same lines. Let us consider separately the bounds below
and above. For the bound above, we cut the sum at [ms], where ms is given by

ms = m+ max(10,m+
1

η
log s) logm. (27)

Here η is the uniform constant given in (20). With this choice, we have∑
k>ms

λk(Qm)) ≤ C

s
logm.

When we write
CQm(s) ≤ [ms] log(1 + s)) +

∑
k>ms

log(1 + sλk(Qm)),

the bound above follows at once. For the bound below, we write

CQm(s) ≥ [m] log(1 + s) +
∑
k<[m]

log

(
1 + sλk(Qm)

1 + s

)
,

and conclude as in the case when s ≤ 2.

We now pass from Qm to A∗A.
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Proposition 7. There exist three constants C1, C2, C3 such that, for all values of m ≥ 1, n and p,
we have the following approximation for the expectation of the capacity defined in (1),

E(C(p)) = m log
(

1 +
np

m

)
+ E , (28)

with

−m−
(
C1
m2

n
+ C2 logm

)
log
(

1 +
np

m

)
≤ E ≤ m+ C3 logm log

(
1 +

np

m

)
.

In particular, when m and n/m tend to ∞,

E(C(p)) ∼ m log
(

1 +
np

m

)
.

Proof. Let us first prove the bound above. We cut the sum at ms as before. We conclude for the
last term by using the fact that the expectation of the sum

∑
j≥k E(λj(A

∗A)) is bounded by the
corresponding sum for Qm, that is

∑
j≥k λj(Qm). This is the inequality (36), which is proved in the

appendix. For the first sum, we can bound each term by log(1 + np
m ) as soon as λk(A∗A) is bounded

by 1. For the summation of the terms for which λk(A∗A)) > 1, we have to add

n−1∑
k=0

(λk(A∗A)− 1)+,

which is bounded by

n−1∑
k=0

(λk(A∗A)) = m. The same bound holds for the expectation. This concludes

the proof for the bound above.

For the bound below, we can use the concavity of the logarithm. It is sufficient to give a bound
below for ∑

k≤m−C1
m2

n −C2 logm

log(1 +
np

m
E(λk(A∗A))).

We claim that we can choose C1 and C2 so that E(λk(A∗A))) ≥ 1/2 for k ≤ m− C1
m2

n − C2 logm.
Indeed,

#{k < m, |1− E(λk(A∗A))| ≥ 1/2} ≤ 4
∑
k<m

(1− E(λk(A∗A)))
2

≤ 8
∑
k<m

(1− λk(Qm))
2

+ 8
∑
k<m

(λk(Qm)− E(λk(A∗A)))
2
.

The first sum is O(logm) by (24). The second one is bounded by 4m2/n by Proposition 3. From

now on, C1 andC2 are chosen so that E(λk(A∗A))) ≥ 1/2 for k ≤ m−C1
m2

n −C2 logm. Finally, the
difference

(m− C1
m2

n
− C2 logm) log

(
1 +

np

m

)
−

∑
k≤m−C1

m2

n −C2 logm

log
(

1 +
np

m
E(λk(A∗A))

)
is bounded as before by 2

∑
k<m−C1

m2

n −C2 logm
(1 − E(λk(A∗A))+, which is bounded by m. We

conclude at once.

The previous proposition deals with expectation. It is easy to deduce estimates with high prob-
ability. Indeed, it suffices to use Mc Diarmid’s inequality for the mapping defined by the capacity.
This is done in [12]. From the computations made in [12], it follows that, for ξ > 0 and with

probability larger than 1− 2e−ξ
2/2, we have

|C(p)− E(C(p))| ≤ ξ log(1 + np)√
n

.
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Probability value lower bound of n
m

99% 90
95% 75
90% 70
85% 65
80% 60

Table 1: Lower bound of n
m so that the error given by (2) is smaller than

√
m, with a given probability.

This gives an error that is very small compared to the estimates that we have given for E .

Remark 2. In [9], the authors have stated that there exists a constant K > 0 such that

C(n) = log det

(
In +

n2

m
A∗A

)
≤ Kn log(n), (29)

with high probability as n gets large and m ≥
√
n. Bounds below have been obtained in [12]. The

previous proposition generalizes these results, with much more precise estimates.

4 Numerical examples

Let us first discuss the order of magnitude of the errors given in the different theorems if we want
them to be valid with high probability. For example, the eigenvalues approximation result given by
Theorem 1 is valid with probability 99%, whenever ξ = 2

√
1 + log 20 ≈ 4. In this case, the right

hand side of the inequality (2) is smaller than
√
m for n/m ≥ 90. The following table gives more

values for the condition on the ratios n/m, for different probabilities values.

The simulations below are done with a sample of size 2n of the uniform law on (−1/2,+1/2) in
place of the Zj ’s and the Yk’s for different values of n.

Example 1: In this first example, we illustrate the results of Proposition 3 and Theorem 1. For
this purpose, we have computed the spectra of the random matrices A∗A and H with n = 200 and
different values of 2 ≤ m ≤ 20. Since for each value of m, there is approximately m significant
eigenvalues, then we have computed the approximation relative `2−errors, given by 1√

m
‖λ(A∗A)−

λ(H)‖`2 , 1√
m
‖λ(H)−λ(Qm)‖`2 and 1√

m
‖λ(A∗A)−λ(Qm)‖`2 . Also, we have computed the magnitude

of the corresponding theoretical relative error, given by the quantity

√
m

n
. The obtained numerical

results are given by Table 2.

Example 2: In this example, we have considered the random matrix H, with n = 200 and dif-
ferent values of the bandwidth 2 ≤ m ≤ 20. In Figure 1 (a), we have plotted the eigenvalues
(λj(A

∗A))0≤j≤35 of the random matrix A∗A, arranged in the decreasing order, versus the eigenval-
ues of Qm. Then, we have repeated the previous numerical tests with the random matrix H instead
of the matrix A∗A. The obtained numerical results are given by Figure 1(b). Note that as predicted
by proposition 5, the matrices A∗A and H, each has m significant eigenvalues.
Also in order to check the decay of the eigenvalues of the random matrices A∗A and H. we have plot-
ted in Figures 2 (a) and 2(b), the graphs of log(λj(A

∗A)) and log(λj(H)). Note that as predicted by
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n = 200
‖λ(A∗A)−λ(H)‖`2√

m

‖λ(H)−λ(Qm)‖`2√
m

‖λ(A∗A)−λ(Qm)‖`2√
m

√
m
n

m = 2 24.3% 08.6% 20.7% 10.0%
m = 4 17.4% 08.1% 17.5% 14.1%
m = 6 14.0% 10.7% 15.0% 17.3%
m = 10 10.0% 13.4% 14.6% 22.4%
m = 20 14.5% 29.4% 17.6% 31.6%

Table 2: Illustrations of the results of Theorem 1 and Proposition 3.

Figure 1: (a) Graphs of λ(A∗A) (circles) versus λ(Qm) (boxes) with n = 200 and for the various
values of m = 2, 4, 6, 10, 20, (from the left to the right), (b) same as (a) with λ(H) instead of λ(A∗A).

our theoretical results, the eigenvalues of the random matrices A∗A and H have fast decays, starting
around k = m.

Example 3: In this last example, we illustrate our theoretical estimate for the network capacity.
We recall that this capacity is given by equation (1). To illustrate the previous bound estimate of the
network capacity, we have considered the value of n = 200 and the four values of m = 2, 4, 6, 10, 20,

then we have computed the eigenvalues n2

m λj(A
∗A) of the matrices n2

mA
∗A. In Table 2, we have

listed the values of

Cm = log det

(
In +

n2

m
A∗A

)
=

n∑
j=1

log

(
1 +

n2

m
λj(A

∗A)

)
, (30)

as well as the values of the corresponding estimations of the absolute and relative errors, given by

Em = |Cm − C̃m|, Erm =
|Cm − C̃m|

Cm
, C̃m = m log

(
n2

m

)
. (31)

Appendices

Appendix A: Proof of Theorem 3.

We will prove the following theorem, which is stronger and in the spirit of the estimates developed
in [11].
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Figure 2: (a) Graphs of log(λj(A
∗A)) with n = 200 and for the various values of m = 2, 4, 6, 10, 20,

(from the left to the right), (b) same as (a) with log(λj(H)) instead of log(λj(A
∗A)).

m Cm Em = |Cm − C̃m| Erm = |Cm−C̃m|
Cm

m = 2 51.4 31.6 6.2E − 01
m = 4 70.0 33.1 4.7E − 01
m = 6 85.5 32.7 3.8E − 01
m = 10 115.7 32.7 2.8E − 01
m = 20 181.6 29.6 1.6E − 01

Table 3: Illustrations of our bound estimate of the network capacity Cm, given by (30) and for
different values of m.
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Theorem 5. Let κ be a positive semi-definite kernel as in Theorem 2, Tκ be the integral operator
with kernel κ, and Hκ be the associated random kernel matrix . Then, we have

E

n−1∑
j=0

|λj(Hκ)− λj(Tκ)|2
 ≤ 1

n

∫
X
κ(x, x)2dP +

∑
j≥n

λj(Tκ)2. (32)

Proof. The left hand side may be written as

n−1∑
j=0

E(λj(Hκ)2)−
n−1∑
j=0

λj(Tκ)2 − 2

n−1∑
j=0

λj(Tκ)
(
E(λj(Hκ)− λj(Tκ)

)
.

We use Lemma 2 for the first term, and find that the sum of the two first terms is bounded by the
right hand side of (32). So it is sufficient to prove that

n−1∑
j=0

λj(Tκ)
(
E(λj(Hκ)− λj(Tκ)

)
≥ 0.

We use an Abel transformation and see that this sum is equal to

n−2∑
j=0

(
(λj(Tκ)− λj+1(Tκ)

)( j∑
k=0

E(λk(Hκ))− λk(Tκ)
)

+ λn−1(Tκ)
( n−1∑
k=0

E(λk(Hκ))− λk(Tκ)
)
.

All terms are non negative in this sum: terms λj(Tκ)−λj+1(Tκ) are non negative since the sequence

of eigenvalues is non increasing. It is well-known that terms
∑j
k=0 E(λk(Hκ)) − λk(Tκ) are non

negative (see [1, 16]).

To conclude for the proof of Theorem 3, it is sufficient to see that
∫
X κ(x, x)2dP is bounded by

R2, and to prove the inequality ∑
j≥n

λj(Tκ)2 ≤ R2

n
. (33)

But since
∑
j≥0 λj(Tκ) ≤ R and the sequence λj(Tκ) is decreasing, we have λj(Tκ) ≤ R

n for j ≥ n.

Remark 3. Depending on the decay of the sequence λj(Tκ), the left hand side of (33) may be very

small compared to R2

n . In particular, in our example, we have exponential decay for n > m+logm+
10. So this is rapidly negligible and one may replace the constant 2 by 1 in (6), up to a negligible
constant.

Appendix B: Further inequalities for the eigenvalues and reconstruction error.

We first recall that the reconstruction error, when approximating an n×n matrix by its projections
PVMPV on subspaces V of dimension d, is defined as

Rd(M) = min ‖M − PVMPV ‖2HS,

where the minimum is taken over all subspaces V of dimension d. This notion is central in [15]. It is
well-known that the minimum is obtained when V is generated by the first d eigenvectors of M∗M,
so that

Rd(M) =
∑
j≥d

λj(M
∗M).
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Equivalently, ∑
j<d

λj(M
∗M) = max

d−1∑
i=1

〈M∗Mvi, vi〉,

where the supremum is taken over all orthonormal system of d− 1 vectors.
We are interested in Rd(A). Let v∗i be the system for which the maximum is obtained when A∗A

is replaced by H. Clearly

max

d∑
i=1

〈A∗Avi, vi〉 ≥ max

d∑
i=1

〈A∗Av∗i , v∗i 〉.

By taking the expectation on both sides, we obtain the inequality

EZ
(∑
j<d

λj(A
∗A)

)
≥
∑
j<d

λj(H). (34)

The inequality

E
(∑
j<d

λj(H)
)
≥
∑
j<d

λj(Qm) (35)

can be found in [15]. Its proof follows from the same kind of arguments. As a consequence, we have
the inequality

E
(∑
j≥d

λj(A
∗A)

)
≤
∑
j≥d

λj(Qm). (36)

The same authors also use the Bounded Difference inequality to write that, with probability larger
than 1− 2e−ξ

2/2, we have ∣∣∣∑
j<d

λj(H)− E
(∑
j<d

λj(H)
)
| ≤ ξm√

n
. (37)

We remark that the trace norm can be used as well as the Hilbert-Schmidt norm in the proof of (3),
which allows to use the Bounded Difference Inequality for

∑
j<d λj(A

∗A) and the probability PZ .

With probability larger than 1− 2e−ξ
2/2, we have the inequality∣∣∣∑

j<d

λj(A
∗A)− EZ

(∑
j<d

λj(A
∗A)

)∣∣∣ ≤ ξm√
n
. (38)

Finally, with probability larger than 1− 4e−ξ
2/2, we have the inequality∑

j<d

λj(A)2 ≥
∑
j<d

λj(Qm)− 2ξm√
n
, (39)

and, as a consequence,

Rd(A) =
∑
j≥d

λj(A)2 ≤
∑
j<d

λj(Qm) +
2ξm√
n
. (40)

The same kind of techniques as in [15] can be used to have a reverse inequality.
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