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Abstract—In this paper, we aim to blindly calibrate the re-
sponses of a sensor network whose outputs are possibly corrupted
by outliers. In particular, we extend some well-known nullspace-
based blind calibration approaches, proposed for fixed sensors
with affine responses—i.e., with unknown gain and offset for each
sensor—to that difficult case. These state-of-the-art approaches
assume that the true data lie in a known lower dimensional
subspace, so that in practice sensors can be calibrated by
projection of the uncalibrated observations to this subspace. A
robust extension was recently proposed in order to provide less
sensitivity to noise. In this paper, we show that such methods
(including the robust extensions) are very sensitive to outliers and
we propose new extensions able to deal with such issues. For that
purpose, we assume the outliers to be rare events, which can be
modeled as a sparse contribution to the low-rank observed data.
Using such an assumption, we separate sparse outliers from the
low-rank data, so that we can perform calibration. We show that
the proposed approach is able to handle up to 10% of outliers in
the data without major impact on the calibration accuracy while
state-of-the-art methods are already sensitive to the presence of
one unique outlier.

I. INTRODUCTION

While being increasingly cheap, sensors are now part of
our daily lives. Indeed, deployed in large-scale networks, they
provide massive quantities of data and allow many applications
for, e.g., smart cities [1], agriculture [2], or environment
monitoring [3]. In such scenarios, the high number of mea-
surements provided by the numerous sensors compensate the
poor sensitivity and quality of an individual sensor (which is
due to the fact that such sensors are low-cost) [4].

However, an inherent problem to any sensor network is the
sensor calibration step which is necessary to get interpretable
and consistent data. Calibration usually consists of estimating
the unknown parameters that link the sensors outputs to the
corresponding physical inputs. Traditionally, calibration can
be performed in a laboratory by determining the calibration
parameters to fit a known and controlled input to which sensors
are exposed to. However, when the sensors are too numerous
or inaccessible, calibrating them in laboratory is no longer
possible and specific signal processing methods have been
proposed to remotely calibrate the sensors of the network from
the collected measurements.

In the current literature, these calibration approaches can be
classified into two main families, namely micro- and macro-
calibration [5]. Micro-calibration consists of calibrating one
single sensor of a network at a time while macro-calibration

operates on the whole set of sensors. Depending whether or not
the sensors are mobile in the network, different assumptions
have been proposed to solve such problem. When the sensors
are mobile, they can be in rendezvous, i.e., they are in the
same spatio-temporal neighborhood, thus sensing the same
phenomenon [6]. Such an assumption was recently used1 in
both micro- [8], [9], [10] and macro-calibration2 [12], [13],
[14]. However, in the case of fixed sensors, other assumptions
are needed. For fixed sensors, state-of-the-art calibration ap-
proaches assume to known the low-rank subspace where the
sensed phenomenon lies [15], [16] or consider a compressed
sensing framework [17], [18]. Other approaches use statistical
properties3 of the sensed phenomenon to derive estimates of
the calibration parameters [19].

Another issue with sensor networks may happen if the
sensors are faulty. In such a case, the readings result in outliers
which must be taken into account [20]. In this paper, we
investigate the influence of outliers on blind calibration. In
particular, we focus on the subspace-based approach [15] and
its robust extension [16]. We show that these methods are
very sensitive to the presence of even a unique outlier and we
propose an outlier-robust extension, which assumes that the
number of outliers is low with respect to the mass of generated
data, i.e., the outliers can be modeled as a sparse contribution
in the observed low-rank data.

The remainder of the paper reads as follows. We introduce
the sensor calibration problem in Section II. In Section III,
we briefly recall the principles of state-of-the-art methods
[15] and we show how sensitive to outliers these methods
are. In Section IV, we propose a novel outlier-robust calibra-
tion method which combines a preprocessing stage—which
finds and removes outliers from the sensor readings—to the
nullspace-based strategies. In Section V, we experimentally
show the enhancement provided by our proposed method. In
particular, the preprocessing stage is shown to be able to filter
up to 10% of outliers in the data. Lastly, we conclude and
discuss the possible extension of the work in Section VI.

For the sake of readability, the notations used in this paper
are defined in Table I.

1Some approaches, e.g., [7], do not use the rendezvous assumption.
2Please note that in that case, macro-calibration has similarities with low-

rank matrix completion [11].
3Moment-based calibration methods were also proposed for mobile sensor

networks, e.g., in [7].



TABLE I
NOTATIONS USED IN THIS PAPER.

Symbol Definition
a a scalar
a a column vector
A a matrix
A a diagonal matrix

variables x, x, or X the sensed physical phenomenon
variables y, y, or Y the outlier-free contributions of the sensor readings
variables z, z, or Z the sensor readings

P(.) the projection operator on the nullspace of x(t)

II. PROBLEM STATEMENT

In this paper, we assume to observe the sensed signals
z(t) ∈ Rn provided by a synchronized network composed
of n fixed sensors. Moreover, we also assume that the sensors
are possibly defecting. Sensor faults might be due to, e.g.,
communication errors between sensors, signal subsampling
due to desynchronization (assuming that missing samples are
set to zero), sparse or continuous spurious sensor readings
(see Fig. 1). In that case, the corrupted sensor readings z(t),
observed at time t read

z(t) = y(t) + o(t), (1)

where y(t) and o(t) are the vectors of outlier-free sensor
readings and outliers, respectively. In this paper, we assume
the outliers to be sparse, i.e., most values in o(t) are null.

If one consider that sensor readings are outlier-free, i.e.,
o(t) = 0 for any time t, then one can directly observe y(t).
If we assume that the calibration functions for each sensor of
the network to be affine, then the true input phenomenon—
denoted xi(t)—reads

xi(t) = yi(t) · αi + βi, (2)

where yi(t) is the signal observed by the i-th sensor at
time t, and αi and βi are the unknown sensor gain and
offset associated with the sensor i, respectively. Then, by
defining x(t) ∈ Rn as the column vector containing the input
phenomenon observed by the n sensors and Y(t) the diagonal
matrix of y(t), one can write

x(t) = Y(t) · α+ β, (3)

where α and β are the vectors containing the sensor gains
and offsets, respectively. Calibrating the sensor network then
consists of estimating α and β.

For that purpose, we briefly recall the assumptions made
in [15], upon which we build our proposed method. We first
assume that the sensor network is oversampling the observed
signal, i.e., x(t) lies in a low dimensional subspace S which
is assumed to be spanned by a set of r basis vectors, where
r � n is the rank of S . These basis vectors are assumed to
be known. Such an assumption might look strong. However, it
arises in several situations, e.g., for bandlimited signals with
sensor distances lower than required by the Shannon-Nyquist
sampling rate [15]. It is also valid in a machine learning
framework—where the sensors are calibrated in their early
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Fig. 1. Examples of sensor faults: (top) outlier-free sensor reading, (middle)
presence of 2 local sensor faults (e.g., constant or bottom-noise fault) , and
(bottom) fault due to defective sensor or communication lost.

life—so that S can be learned from early sensor readings.
Then, while sensors are aging, their responses drift with time,
i.e., their calibration parameters vary. This implies that at a
given time t, the sensor readings follow the calibration model
(3). Besides, as S is known, one can compute P , the linear
projection on its orthogonal subspace. The key idea used in
[15] (and in its robust extension [16]) consists of noticing that
x (t) is in the nullspace of P , i.e.,

P(x(t)) = P(Y(t) · α+ β) = 0. (4)

In practice, we assume to collect synchronized snapshots
y(t1), y(t2), . . . , y(tk) from the sensor network, where tj
denotes the time of the j-th snapshot. In order to perform
calibration, the number k of snapshots satisfies [15]

k ≥
⌈
n− 1

n− r

⌉
+ 1. (5)

Defining Yj , Y(tj) , the nullspace blind calibration problem
thus aims to solve

{α̂, β̂} = argmin
α,β

∣∣P (Yj · α+ β
)∣∣ , ∀j ∈ [[1, k]] . (6)

In the next sections, we briefly introduce the principles
of the nullspace-based calibration methods [15], [16]. We
then show that they are very sensitive to the presence of
outliers in the observed signals—i.e., when o(t) 6= 0—and we
propose a novel nullspace calibration method which introduces
a preprocessing stage to remove outliers.

III. NULLSPACE-BASED SENSOR CALIBRATION

We now briefly recall the principles of the nullspace-based
calibration methods. As P is linear and defining

Ȳ ,
1

k

k∑
j=1

Yj , (7)



the centered version of Eq. (4) reads

P
((

Yj − Ȳ
)
· α
)
= 0, ∀j ∈ [[1, k]] , (8)

which yields

P
(
Yj − Ȳ

)
· α = 0, ∀j ∈ [[1, k]] . (9)

The authors in [15] then defined a matrix C by stacking the
projection in each snapshot, i.e.,

C ,

 P
(
Y1 − Ȳ

)
...

P
(
Yk − Ȳ

)
 . (10)

Combining Eqs. (9) and (10) implies that the unknown gain
vector α is solution of

α̂ = argmin
α
||C · α||2 , (11)

which can be solved using ordinary Least Square (LS) or
SVD—noticing that the last eigenvector is proportional to α—
as proposed in [15]. However, the solutions of Eq. (11) are
not unique: indeed, if α is a solution to Eq. (11), then λ · α
is also a solution. The authors in [15], [16] removed the scale
ambiguity by setting the first element4 of α to 1.

The authors in [16] then proposed an extension of [15]
which uses Total Least Square (TLS) to solve Eq. (11). TLS
mainly consists of a weighted SVD where the weights allow
to take into account the accuracy of each sensor.

Once the gain vector is estimated, the authors in [15]
estimate the offsets5, assuming the observed phenomenon is
zero-mean (or at least its average value is known). In that case,
one easily derive

β = −Ȳ · α. (12)

Finally, the calibration process is summarized in Algo-
rithm 1 and provides an interesting performance while remain-
ing easy to implement. However, the projection step makes

Algorithm 1 Nullspace-based calibration methods [15], [16].

Center the measurement matrices Yj (see Eq. (9)) ;
Construct C (see Eq. (10)) ;
Estimate α from Eq. (11) using LS, SVD or TLS ;
Estimate β (see Eq. (12)).

the method very sensitive to outliers. Indeed, in a realistic
framework, the measurements provided by the sensor network
can be corrupted by outliers, as explained in Section II.
The outlier-free vectors y(tj) are thus inaccessible and one
must deal with corrupted sensor readings z(tj) instead. If

4Please note that other strategies—e.g., assuming to know the sum of the
values of the unknown calibration parameters [18]—have been proposed in the
literature and can be also applied with these methods instead. In the remainder
of the paper, we follow the same strategy as in [15], [16].

5An approach for estimating β when n � m offsets are known was also
proposed in [15].

one directly applies the above nullspace-based calibration
techniques on z(tj), then

P
(
Zj · α+ β

)
= P

(
(Yj + Oj) · α+ β

)
, (13)

= P
(
Yj · α+ β

)
+ P (Oj · α) , (14)

where Zj , diag (z(tj)) and Oj , diag (o(tj)). It turns out
that the estimation of α is perturbated by Oj , which also
implies a poor estimation accuracy of β. Please note that
the TLS method should be robust to outliers if the latter are
present in very few sensors. Indeed, by lowering the weights
associated to the relevant sensors, it should be still possible
to perform accurate calibration on the outlier-free sensors.
However, TLS should provide a very limited enhancement (or
even no enhancement at all) if the outliers are distributed over
all the sensors readings, which is more likely to happen in
practice.

It should be noticed that the above methods were also
extended to a partially blind calibration problem in [15], [16].
In that case, some sensor calibration parameters are assumed
to be known, thus improving the calibration performance.
However, even these methods are sensitive to outliers as they
are also based on nullspace projection.

As a consequence, a novel approach able to handle outliers
must be proposed, which we introduce in the next section.

IV. PROPOSED OUTLIER-ROBUST CALIBRATION METHOD

The outliers that may corrupt the data can be seen as
sparse noisy data. In sensor networks, it usually corresponds
to spurious readings or transmission faults.

At this stage, it should be noticed that Zj ·α+β in Eq. (13)
can also be expressed as

Zj · α+ β = A · z(tj) + B, (15)

where A , diag (α) and B , diag
(
β
)
, respectively. We now

define the matrix Z , [z(t1), . . . , z(tk)], i.e., whose (i, j)-th
element reads

(Z)ij , zi(tj). (16)

From Eq. (1) and Eq. (16), we can derive

Z = Y +O, (17)

where Y and O contain the entries of y(tj) and o(tj),
respectively.

Using the same formalism as in Eq. (15), Eq. (3) provides

X = A · Y + B, (18)

where X , [x(t1), . . . , x(tk)]. Since x(t) lies in a low
dimensional subspace S defined by r � min(n, k) basis
functions, it turns out that X is a low-rank matrix, and as
a consequence, Y is also low-rank. As O is assumed to be
sparse, it turns out that the sensor readings Z are written
as the sum of a low-rank and a sparse matrix, which has
been intensively studied under the name of Robust Principal



Component Analysis (RPCA) since the pioneering work in
[21], [22]. RPCA aims to solve

min
Y,O
||Y ||2? + λ ||O||1 , s.t.Z = Y +O, (19)

where ||·||? is the nuclear norm of a matrix—i.e., the sum of its
eigenvalues—||.||1 is the `1 norm, and λ a positive weighting
parameter. RPCA became a popular tool as it finds numerous
applications, e.g., in video surveillance, face recognition, or
ranking and collaborative filtering [22].

Numerous RPCA algorithms have been proposed in the
literature and can thus be applied to Z, in order to estimate
Y and O. In some preliminary tests, we found the Inexact
Augmented Lagrange Multiplier (IALM) method [23] to be
fast and accurate for the considered application. As most
RPCA algorithms, the IALM-RPCA technique is iterative and
computes partial SVDs of the size of Z to estimate O and to
derive Ŷ , an estimation of Y .

Then, we can easily extract the vectors ŷ(tj) and build
the diagonal matrices Ŷj , ∀j ∈ [[1, k]] . At this stage, it is
straigthforward to perform blind calibration by applying any
of the above projection-based calibration techniques to Ĉ,
the matrix defined in Eq. (10) using the estimated Ŷj . The
structure of the proposed methods is provided in Algorithm 2.
Let us stress that using RPCA as a preprocessing stage of

Algorithm 2 Proposed outlier-robust calibration methods.

Construct Z (see Eq. (16))
Estimate Ŷ using IALM-RPCA [23]
Center the matrices Ŷj (see Eq. (9)) ;
Construct Ĉ (see Eq. (10)) ;
Estimate α from Eq. (11) using LS, SVD or TLS ;
Estimate β (see Eq. (12)).

the nullspace-based calibration does not involve any extra-
assumption. Moreover, in a machine learning framework, it
can also be applied to early readings—where the sensors are
assumed to be calibrated—as sensor faults or communication
errors might happen. In that case, the estimation of S might
be improved as well. Lastly, such a preprocessing can also be
applied to the partially blind extensions of the above nullspace-
based blind calibration methods, as proposed in [15], [16].

In the next section, we investigate the enhancement provided
by our proposed method with respect to the state-of-the-art
ones, in both blind and partially blind scenarios.

V. EXPERIMENTAL VALIDATION AND DISCUSSION

In this section, we investigate the performance of the
proposed outlier-robust calibration methods. To that end, we
simulate a low-dimensional subspace S of rank r = 20 and
we derive a set of n = 100 sensors by randomly picking 100
gains and offsets. We then simulate k = d3 ·r · log(n)e signals
from the subspace S—as done in [16]—and we derive the
outlier-free sensor responses associated to each signal—using
Eq. (2)—thus providing the vectors y

j
, ∀j ∈ [[1, k]] .

In the tests below, we explore the effects of both the
subspace error and the number of outliers on the calibration
performance. Indeed, as the subspace is assumed to be learned
prior to the calibration, it may be not perfectly known. Its
estimation error is simulated by adding random zero-mean
Gaussian perturbations to the theoretical subspace with in-
creasing variance [15]. Such an error is then estimated as

εS ,
1

k
·
k∑
i=1

||P (xi)||2
||xi||2

. (20)

In the tests reported below, the values of εS range from 0 to
0.45. A few outliers are then randomly added to the observed
data matrix Y . Their proportion ρo ranges between 0 and
20% of the number of data points in Z. For each pair of
parameters (εS , ρo), we apply the LS [15] and TLS [16]
nullspace-based calibration methods to the sensor readings
corrupted by outliers. The weights used in TLS are all set to
1, so that TLS behaves as SVD. We also apply our proposed
extension, where IALM-RPCA is applied to Z before applying
LS or TLS calibration.

As a performance criterion, we compute the error between
the estimated parameters α̃ and the true ones α using

Error =
||α− α̃||2
||α||2

. (21)

Figure 2 shows the median performance of the tested methods
obtained over 100 trials. Let us first focus on the enhancement
reached by the state-of-the-art methods. When the proportion
of outliers is set to 0, the TLS calibration approach out-
performs the LS one, which is consistent with [16]. While
the median calibration error reached using LS is above 0.9
when the subspace error εS is above 0.26, the TLS-based
technique provides median calibration errors always below
0.30. However, its spread (shown by considering minimum
and maxium errors) is higher than with LS. As an example,
the errors reached when εS = 0.45 are between 0.17 and 0.92
with TLS calibration while they are between 0.94 and 0.98
with LS calibration. When some outliers are added to the data,
the calibration error reached by both methods significantly
increases. However, their behaviour is not similar. On the one
hand, the median error reached with LS calibration remains
close to 1 for almost any tested value εS of the subspace
error (it is always above 0.9 when only ρo = 0.2% of outliers
are present in the data, for any initial subspace error). On
the contrary, the median TLS calibration error remains always
below 0.6 when ρo ≤ 0.2%. However, for higher values of
ρo, the median TLS calibration error drastically increases (it
is always above 10 when ρo ≥ 2%, for any tested value of
εS ), thus showing that such a robust approach is actually very
sensitive to the presence of outliers.

On the contrary, both our proposed methods—which com-
bine the IALM-RPCA preprocessing with the above calibra-
tion techniques—provide almost constant performance up to
ρo = 10% of outliers. Interestingly, the preprocessing does
not affect the calibration performance when no outlier is
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Fig. 2. Performance of the nullspace-based calibration methods with respect to the subspace estimation error εS and the outlier proportion ρo. The nullspace
in Eq. (11) is estimated using: (a) LS [15], (b) RPCA preprocessing + LS, (c) TLS [16], and (d) RPCA preprocessing + TLS.

present in the data. Indeed, in that case, the performance
reached by the state-of-the-art calibration methods and their
respective proposed extensions are almost equal. When the
outlier proportion is higher than 20% (the situation is not
plotted on Fig. 2), the outlier matrix O is not very sparse
and the IALM-RPCA method fails in accurately estimating it,
thus leading to a degradation of the calibration performance.

We also investigated the case of partially blind (PB) cali-
bration. We reproduced the same experiment as above, except
that we considered a set of 5 sensors to be perfectly calibrated,
i.e., their calibration parameters are assumed to be known.
Due to space consideration, we cannot show the plots on
the paper but the performance reached by the state-of-the-
art and the proposed methods are consistent with the blind
case. Indeed, the PB state-of-the-art techniques using LS and
TLS show the same sensitivity to outliers than the blind LS
and TLS approached tested above. The use of well calibrated
sensors is then not sufficient to make these methods robust to
outliers. Using RPCA as a preprocessing for PB calibration
methods allows some robustness to the presence of up to 10%
of outliers while it does not affect the performance of the
methods in outlier-free simulations.

It should be noticed that in the nullspace-based calibration

problem, the rank of Y is assumed to be known, as it was
estimated with S. This knowledge is not fully taken into
account in the IALM-RPCA algorithm, as it aims to find a
matrix of minimal rank but it does not take into account the
known rank r + 1 of matrix Y . Keeping the rank equality
constraint in RPCA might allow to filter additive noise in the
sensor readings, and thus to improve the performance reached
by the proposed techniques.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a robust extension of nullspace-
based blind calibration methods. We reordered the collected
data in a low-rank matrix that we filtered using an RPCA
algorithm. While not adding any extra-assumption, such a
preprocessing stage allows removing up to 10% of outliers
without any loss of calibration performance. This work opens
many perspectives. We recently proposed some mobile sensor
calibration techniques based on informed matrix factorization
[12], [13], [14]. In future work, we will investigate some
outlier-robust extensions of these approaches, using a similar
low-rank modeling. We will compare such a formalism to
robust informed matrix factorization using parametric diver-
gences [24], [25] or the Huber norm [26], that we recently



proposed for another application [27]. Moreover, the proposed
techniques need to know the low-rank subspace where the
sensed phenomenon lie. We will investigate the use of machine
learning to learn S and to perform sensor calibration.
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