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Abstract
Pentameric ligand-gated ion channels (pLGICs) are ubiquitous neurotransmitter receptors

in Bilateria, with a small number of known prokaryotic homologues. Here we describe a new

inventory and phylogenetic analysis of pLGIC genes across all kingdoms of life. Our main

finding is a set of pLGIC genes in unicellular eukaryotes, some of which are metazoan-like

Cys-loop receptors, and others devoid of Cys-loop cysteines, like their prokaryotic relatives.

A number of such “Cys-less” receptors also appears in invertebrate metazoans. Together,

those findings draw a new distribution of pLGICs in eukaryotes. A broader distribution of

prokaryotic channels also emerges, including a major new archaeal taxon, Thaumarch-

aeota. More generally, pLGICs now appear nearly ubiquitous in major taxonomic groups

except multicellular plants and fungi. However, pLGICs are sparsely present in unicellular

taxa, suggesting a high rate of gene loss and a non-essential character, contrasting with

their essential role as synaptic receptors of the bilaterian nervous system. Multiple align-

ments of these highly divergent sequences reveal a small number of conserved residues

clustered at the interface between the extracellular and transmembrane domains. Only the

“Cys-loop” proline is absolutely conserved, suggesting the more fitting name “Pro loop” for

that motif, and “Pro-loop receptors” for the superfamily. The infered molecular phylogeny

shows a Cys-loop and a Cys-less clade in eukaryotes, both containing metazoans and

unicellular members. This suggests new hypotheses on the evolutionary history of the

superfamily, such as a possible origin of the Cys-loop cysteines in an ancient unicellular

eukaryote. Deeper phylogenetic relationships remain uncertain, particularly around the split

between bacteria, archaea, and eukaryotes.

Introduction
Pentameric ligand-gated ion channels (pLGICs) mediate fast synaptic transmission in the ner-
vous system of animals with bilateral symmetry (Bilateria), where they are ubiquitous and
known as Cys-loop receptors [1–4]. Each receptor is a fivefold symmetric or pseudosymmetric
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transmembrane assembly of protein subunits surrounding a central pore that is selective of
either cations or anions.

The idea that pLGICs are ancient enough to predate eukaryotes, and that they may have
prokaryotic relatives was formulated in 1990 by Cockcroft et al. [5]. No pLGIC was known out-
side metazoan Cys-loop receptors until the discovery of their prokaryotic homologues by Tas-
neem et al. [6]. Since prokaryotic receptors lack the eponymous cysteine residues, the Cys-loop
family was then superseded by the superfamily that became known as pLGICs. Two prokary-
otic pLGICs have been cloned and characterized functionally [7, 8] and were the choice models
for high-resolution structural studies [9–13] that paved the way for the recent successes with
animal Cys-loop receptors [14–16].

The currently documented taxonomic distribution of pLGICs is that established by Tas-
neem et al. [6], that is, Cys-loop receptors are ubiquitous in Bilateria and other pLGICs are
found sporadically in several bacterial taxons and one archaeal genus. Subsequent work by the
same group [17] refined the methods but did not fundamentally alter that picture, while Cor-
ringer et al. [18] reported that cursory searches of genome databases revealed more bacterial
genes likely to belong to the superfamily. Tasneem et al. interpreted the taxonomic distribution
as indicating a complex evolutionary history involving multiple lateral transfers and frequent
gene loss. The case of non-bilaterian metazoans has received relatively little attention, presum-
ably due to the scarcity of genome data, although pLGICs have been documented in the cnidar-
ians Hydra[19] and Nematostella[20, 21]. While the discovery of prokaryotic homologues has
provided a fascinating glimpse on the evolutionary origin of animal pLGICs, many questions
remain open, among which the ancestry of animal Cys-loop receptors, the reasons for the
sparse yet broad distribution of pLGICs in prokaryotes, and the biological roles of those micro-
bial proteins, none of which has been studied in vivo.

Here we exploit the ever-growing body of genomic data to expand our knowledge of
pLGICs throughout the tree of life, focusing on taxonomic groups where they are less well char-
acterized. We extend the inventory of members of the superfamily across all kingdoms of life
by performing remote homology searches in protein sequence databases. As metazoan mem-
bers are better known, we focus on unicellular organisms, and find previously unreported
pLGICs in unicellular eukaryotes (called “protists” below for brevity), as well as a broader dis-
tribution of prokaryotic channels including a major new archaeal taxon. We also detect and
investigate metazoan pLGICs lacking the eponymous Cys-loop cysteines. We construct a mul-
tiple sequence alignment of a broadly distributed set of pLGIC sequences, and use it to derive a
maximum-likelihood phylogenetic tree that suggests new hypotheses on the evolutionary his-
tory of this ancient superfamily. Finally, we discuss the questions that remain unsolved, partic-
ularly in light of the difficulty of inferring ancient evolutionary relations based on limited
phylogenetic signal.

Results

Taxonomic distribution
We find predicted pLGICs in new prokaryotic organisms including several Archaea, and per-
haps more surprisingly, in a number of unicellular eukaryotes. Compared with the work of
Tasneem et al. [6], we find pLGICs in 61 new bacterial genera, 10 new archaeal genera, and 22
protist genera. This new taxonomic distribution of pLGICs is Illustrated in Fig 1, wherein
each pLGIC-possessing taxon is placed within a tree of life and colored branches indicate new
taxons.

The main novel finding is the existence of pLGIC genes in a wide array of protists. Those
include Stramenopiles (a large group including marine organisms such as diatoms, and
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Fig 1. Phylogenetic tree of organisms whose genomes contain predicted Pro-loop receptors.Colored branches represent taxons that were not
discussed previously in the pLGIC literature (green: unicellular eukaryotes, orange: archaea, magenta: bacteria). Colored squares next to eukaryotic taxa
indicate the types of pLGICs present (green: Cys-less, blue: cationic-type Cys-loop, red: anionic-type Cys-loop); the half green squares next to metazoan
taxons indicate the presence of Cys-less pLGICs in some species. The tree is extracted from NCBI Taxonomy.

doi:10.1371/journal.pone.0151934.g001
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Oomycetes), Chlorophyta (green algae such as Chlamydomonas and Chlorella), Opisthokonta
(the group that also includes animals and Fungi), and Alveolata. Noteworthily, we detect no
pLGICs in multicellular plants (relatives of Chlorophyta) or Fungi (Opisthokonta). Thus,
metazoans remain the only multicellular organisms known to possess pLGICs. Within
Opisthokonta, pLGIC genes are found in the ChoanoflagellateMonosiga brevicollis, one of the
closest known relatives of metazoans, [22] and Capsaspora owczarzaki, in the slightly more dis-
tant taxon Filasterea [23]. In contrast, the one other complete genome from a Choanoflagellate,
Salpingoeca rosetta[24], yields no hit.

The new bacterial pLGIC genes belong to species in many taxons, and diverse ecological
niches: marine, soil, plant pathogens, and a few human pathogens. Bacterial species associated
with humans include Erysipelotrichaceae bacterium, which was isolated from the gut of patients
with Crohn’s disease; human pathogens Francisella tularensis, Fusobacterium varium, and
Legionella drancourtii.

Many new archaeal genomes have been sequenced since the work of Tasneem et al. Whereas
the two pLGICs ofMethanosarcina pinpointed by that work were taxonomically isolated and
offered little basis for evolutionary interpretation, this larger set supports a more substantial
analysis of molecular phylogeny. We find pLGIC genes in new archaeal species in Euryarch-
aeota and in a number of Thaumarchaeota [25]. Taxonomic coverage of those groups is very
difficult to measure, as most hits come from datasets that are not annotated as whole genomes.
Notably, we find no hit in the phylum Crenarchaeota, despite the presence of dozens of
genomes (complete or partial) in databases. Finally, as this work was being completed, the
taxon Lokiarchaeota was described based on metagenomic data, and presented as a link
between archaea and eukaryotes [26]. Extending our search to the set of predicted proteins for
the candidate species Archaeon loki did not yield significant hits.

Our representative set of metazoan genomes includes two non-bilaterian species: Hydra vul-
garis and Nematostella vectensis (both Cnidaria). Both have genes in the anionic and cationic
groups of Cys-loop receptors.Hydra has two Cys-loop receptors, automatically annotated as γ-
aminobutyric acid (GABAA, Uniprot ID T2MFN2) and nicotinic acetylcholine receptor
(nAChR, T2MCD8). A taxonomically unrestricted search in UniprotKB yields no other exam-
ples of non-bilaterian pLGICs. In particular, there is no hit in the genomes of basal metazoans
Placozoa [27], Porifera [28], and Ctenophora [29]. Of these three phyla, only Ctenophora pos-
sess a nervous system, which has been proposed to have evolved independently from those of
Bilateria and Cnidaria, which share a common origin [29].

pLGICs of bothHydra[19] and Nematostella[20] have been discussed before. The authors
who reported theHydra genome found the expression pattern of the nAChR gene to be com-
patible with a function in neuromuscular signaling [19]. They find the neuromuscular junction
ofHydra to possess many, but not all, of the molecular components found in the equivalent
bilaterian system. Neither the GABAA-like receptor of Hydra, nor the pLGICs of Nematostella
have been characterized experimentally.

Multiple sequence alignment
The complete multiple sequence alignment is provided as S1 Dataset. It contains 561 protein
sequences: 218 metazoan (among which 69 Cys-less), 193 eubacterial, 24 archaeal and 126
from protists. The alignment has 3405 positions, discarding segments at the N and C-termini
that do not align with the pLGIC domains. The variable M3M4 cytoplasmic region accounts
for 1170 gap-rich positions. The “core” of the alignment includes about 320 well-aligned posi-
tions (a typical pLGIC sequence length without the cytoplasmic loop), interspersed with about
1915 poorly aligned and gap-rich positions. Despite the high noise level, significant structural
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elements emerge as less gapped blocks, most notably the four transmembrane helices and some
beta-strands of the extracellular domain (ECD).

A sub-alignment of 15 sequences is presented in Fig 2. Several regions of the ECD appear
poorly conserved, including some hydrophilic regions of the ECD that, in known structures,
contribute to the β-sandwich core. This highlights the contrast between a tightly conserved
fold and divergent sequences. In contrast, transmembrane segments align readily, constrained
by the reduced alphabet of hydrophobic amino-acid residues. Aligning the M4 segment poses a
challenge, as it is surrounded in N-term by the variable or absent cytoplasmic domain, and
sometimes in C-term by sequence regions that do not belong to the common pLGIC architec-
ture. As a result, predicted M4 helices only appear aligned when using the local alignment-
based, iterative algorithms of MAFFT (E-INS-i and L-INS-i). A sequence profile for the bal-
anced dataset is provided as S1 Fig.

Conserved motifs and notable sequence features
The most conserved residues across the superfamily are listed in Table 1 and their three-
dimensional arrangement is pictured in Fig 3. It is evident from the figure that these residues
are clustered at the interface between ECD and TMD, within the coupling pathway between
ligand binding and pore opening in known pLGICs. At the level of the superfamily, no conser-
vation linked to more specific function emerges, reflecting the functional diversity of both
ligand-binding and ion translocation. Furthermore, well-studied pLGICs including those of
prokaryotes have demonstrated a high degeneracy of the sequence to fold to function relation-
ship, with divergent sequences giving rise to a remarkably conserved fold, supporting a com-
mon functional pattern of ligand or pH-gated, anion or cation-selective transport.

The highly conserved [F/Y]PxD motif forms the tip of the β6-β7 loop (“Cys loop”), and is
the most recognizable signature of the pLGIC superfamily. In known structures, the aspartate
residue forms a salt bridge with the equally conserved arginine of the pre-M1 linker. The pro-
line residue is the single most conserved residue in our alignment (Table 1), and the only abso-
lutely conserved residue throughout the superfamily.

The pair of cysteines flanking the Cys loop and forming a disulfide bridge are conserved in
metazoans, and were noted by Tasneem et al. to be absent from bacterial sequences, where they
are typically replaced with a polar residue for the first cysteine and with a hydrophobic residue
for the second. We find that protist pLGICs fall under two separate categories: most contain a
prokaryotic-like, Cys-less loop, but four species possess pLGICs featuring a bona fide Cys loop
(annotations in Fig 1). A more precise relationship between those categories is elicited in the
phylogenetic analysis described below.

We find Cys-less pLGIC sequences in invertebrate Metazoa from our representative set. To
complete this surprising finding, we ran a taxonomically unrestricted search that yielded more
Cys-less channels in metazoan species, including one cnidarian and one echinoderm, several
nematodes, platyhelminths, annelids, and mollusks (bivalvia and gastropoda). Cys-less Pro-
loop receptors are not found in any vertebrate species, and only in two chordates: the cephalo-
chordate Branchiostoma floridae (amphioxus or lancelet) and the tunicate Oikopleura dioica.
One Cys-less metazoan pLGIC was identified in the nematode Dirofilaria immitis[30] even
before the discovery of prokaryotic pLGICs, yet that finding has not been widely publicized in
the community. This channel (Uniprot ID Q70GM3) possesses a unique variant of the Pro
loop sequence, with a YPFE motif (with E instead of the more common D) shifted by one resi-
due towards the N-terminus. This trait is shared by four other nematode pLGICs, which form
a molecular clade (see phylogeny below).
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Fig 2. Subset of largemultiple sequence alignment. Contains 11 novel pLGIC sequences from bacteria, archaea, and eukaryotes. GLIC, nematode
GluCl, mouse serotonin, and human GABAA β3 receptors are included for comparison. Residues are colored by type according to the ClustalX scheme.
Unconserved regions are hidden and indicated by blue, vertical lines. Species names are abbreviated in the figure. Bacteria:Gloeobacter violaceus,
Crocosphaera watsonii, Synechococcus sp., archaea: Thaumarchaeota archaeon, Methanobacterium formicicum, Nitrososphaera viennensis, eukaryotes:
Capsaspora owczarzarki, Monosiga brevicollis, Pythium ultimum, Stylonychia lemnae.

doi:10.1371/journal.pone.0151934.g002

Table 1. Summary of most conserved amino-acid residues throughout pLGICs in all taxons.

position residue frequency (%) motif substitutions GLIC GABAA β3 5HT3

β6–β7 F 71a F/YPxDb Y 25% 119 143 142

β6–β7 P 100 F/YPxD - 120 144 143

β6–β7 D 93 F/YPxDc E 3% 122 146 145

β9 W 71a ECD cored F 16%, Y 11% 160 186 187

pre-M1 R 94 salt bridgec - 192 216 218

M1 14’e P 77a M1 kink G 5% 204 228 230

M2M3 P 88 M2M3 loop G 3% 247 273 274

The table lists residues with conservation above 80% in our balanced set of 561 pLGIC sequences throughout the tree of life. Substitutions above 2%

frequency with similar residues are indicated. To prevent bias due to fragmentary sequences, this conservation measure excludes gaps. All positions

listed have a gap content below 2%. Residue numbering is given for three pLGICs crystallographic structures: Gloeobacter GLIC, human GABAA β3 and

mouse serotonin receptors.
a Included because similar residues are more than 80% conserved.
b Packed between aromatic M1 2’, β6–β7 proline, and bulky apolar M2 22’.
c These two residues form a salt bridge.
d This aromatic sidechain is buried in the hydrophobic core of the β-sandwich fold of the ECD.
e See our proposed prime notation for M1 and M3 in the TM domain section below.

doi:10.1371/journal.pone.0151934.t001
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Fig 3. Location of the most conserved residues within the structure of a pLGIC subunit.One subunit of
the homomeric GABAA β3 receptor shown as cartoon, colored from blue to red along the sequence.
Conserved residues listed in Table 1 are shown as sticks and colored by residue type (orange: Pro, grey:
Phe, green: Tyr, red: Asp, blue: Arg).

doi:10.1371/journal.pone.0151934.g003
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The ECD displays a number of partially conserved aromatic positions. Based on known
structures, some belong to the hydrophobic core of β-sandwich structure, while others are
expected to participate in the ligand-binding site where they might form cation-pi interactions.
The latter are less conserved than the former, consistent with the fact that the ligand-bind
motifs are more variable than the core architecture of the ECD, although the known set of
binding site structures and corresponding ligands may only represent a fraction of the func-
tional repertoire of pLGICs in unicellulars.

The most conserved position within TM helices is a proline in M1 that forms a kink in
known structures. This kink has been shown to undergo a structural transition during the gat-
ing and desensitization processes in nicotinic receptors. [31]

Charged residues in pre-M2 position have long been documented to form a charge selectiv-
ity filter [32, 33]. In our dataset, the cationic residue at M2 0’ is found with 79% conservation
(R and K combined). The previous two residues that form the classic metazoan motifs are
more variable in prokaryotic sequences. M2 has one other relatively conserved position: Leu 9’
(75%), which can be substituted with a Phe (13%).

Transmembrane domain: prime numbering for M1 and M3
Homologous residues in transmembrane helix M2 are conventionally compared across pLGICs
using a standard prime numbering. The lack of a similar convention for M1 and M3 is imprac-
tical, as evidenced by published work on a glycine receptor [35] referring to an M1 residue as
-26’, in M2 notation. Most prokaryotic pLGICs as well as some mammalian cases (5HT3)
show indels within the M1M2 linker, making that notation non-constant across receptor fami-
lies. The prime numbering used for M3 by Auerbach and coworkers [34] is defined for nAChR
subunits only.

Despite significant variability in transmembrane helices M1 and M3, we find that the align-
ments are robust enough to propose universal prime numberings for those two helices as well
(Fig 4). We follow the convention of numbering residues from cytoplasmic to extracellular
side.

In M1, we give the partly conserved C-term aromatic residue (GLICW217) number 1’.
Conserved residues include F 2’, P 14’, and extending beyond the helix, R 26’ (pre-M1 linker).

The M2M3 loop is well-known to be critical, and would benefit from a universal residue
notation. Cationic channels typically display an insertion at the end of that segment, just before
M3 0’. M2 numbering may be extended until position 25’ unambiguously, after which indels
appear in some sequences.

For helix M3, we follow the convention started by Cadugan and Auerbach [34] for nicotinic
receptor α subunits. As helix M3 is relatively divergent across families, we anchor the number-
ing by referring to motifs present in individual groups of pLGICs. The initial T/P/K position
(GLIC T253, Torpedo nAChRα P272, GABAA β3 K279) takes number 29’. Position 24’ is aro-
matic-rich (65% in balanced set, 89% in metazoan sequences only). Typical metazoan anionic
channels have: K/T 29’, D 26’, C 20’, F 15’, E 10’. Typical metazoan cationic channels have P
29’, G 26’, Y/F 24’, polar 4’.

In eukaryotes, most acetylcholine receptors have a Cys at M1 10’, while most anionic chan-
nels have one at M3 10’. In GABAA α and γ subunits, both are present, and predicted to be ide-
ally positioned to form a potential disulfide link between M1 and M3. [36] The recent crystal
structure of a GABAA β3 homopentamer did confirm the structural predictions of that study,
yet unfortunately did not provide a test of the hypothetical disulfide bridge, as β3 subunits lack
the M1 cysteine.
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The sequences for helix M4, although they broadly align together, show too little conserva-
tion for a global numbering to be reliable.

Phylogeny of pLGICs
The maximum-likelihood prediction yields an unrooted tree. One approach to root it is to rec-
oncile the molecular phylogeny and the phylogeny of species with the program Notung, mini-
mizing a penalty reflecting the number of gene losses and duplications requested by each
choice of root. The results from that analysis are ambiguous, as many edges receive the best
root score. However, those likely roots lie within the same broad region of the tree, comprised
of the deep connections between prokaryotic branches. Although the precise position of the

Fig 4. Prime numbering scheme for transmembrane helices M1 to M3. A sequence alignment for a set of
pLGICs is shown annotated with a prime numbering convention in each helix, starting on the cytoplasmic
side. Sequences are labeled with their abbreviated gene and species names, or Uniprot identifier in the case
of the predicted pLGIC from the protozoanMonosiga brevicollis. The figure shows the existing convention for
M2, generalizes that proposed for M3 in nAChR α subunits [34], and proposes a new convention for M1.
Triangles indicate 1’ positions as well as conserved residues that may help anchoring other sequences.

doi:10.1371/journal.pone.0151934.g004
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root remains uncertain, this does not affect our conclusions below. The resulting unrooted tree
is available online for download as well as flexible, searchable visualization at: http://itol.embl.
de/shared/jhenin.

Eukaryotic pLGICs are predicted as monophyletic, although with low statistical support.
That is mostly reflected in one clade of bacteria whose position in the tree is unstable, and
which appears either close to or within the eukaryotic group depending on small variations in
the data, in particular alignment filtering. We opted for a loose filtering scheme following the
conclusions of Tan et al. suggesting that stricter alignments may reduce the accuracy of
inferred phylogenies.[37] The same lack of statistical support was apparent in the tree pub-
lished by Tasneem et al., only made more striking by a considerably smaller dataset wherein
most relationships were deep relationships and therefore difficult to ascertain.

Eukaryotic proteins form two notable clades: Cys-less channels, including a group of Cys-
less channels of invertebrate metazoans; and a Cys-loop clade. The Cys-less clade includes
genes from protists and one group of Cys-less channels from metazoans, which is dominated
by Lophotrochozoa but also includes a group of sequences from Platyhelminths, and a sister
group of 5 sequences from Deuterostomia (Branchiostoma and Strongylocentrotus), together
with an isolated sequence from Nematostella.

The Cys-loop group includes two subclades, one of which contains the anionic channels of
metazoans, as well as protist Cys-loop receptors with a sequence signature for anion selectivity
in the pore-lining M2 segment, the second contains cationic channels of metazoans and protist
sequences with the equivalent signature for cation selectivity. Thus, the grouping of multicellu-
lar and unicellular genes within the Cys-loop clades is congruent with a very simple, 3-amino-
acid sequence signature in the transmembrane domain (with the exception of one Nemtostella
sequence, colored black in Fig 5, which has neither the typical cationic, not the typical anionic
signature). Henceforth we will refer to those two groups as anionic-type and cationic-type Cys-
loop receptors, respectively, although the ionic selectivity of their unicellular members is pre-
dicted from a simple sequence signature and phylogenetic grouping with bilaterian receptors,
rather than characterized experimentally.

A few Cys-less sequences are also found within the anionic Cys-loop clade: we refer to them
as “secondary” Cys-less pLGICs. They mostly belong to two groups of nematode genes, one of
which includes the unusual Pro loop sequence of Dirofilaria immitis[30]. Isolated cases of sec-
ondary Cys-less sequences are two sequences in the spider Stegodyphus mimosarum and one in
Oikopleura dioica. Note that a search for Cys-less sequences in all Metazoan genomes yielded
no Cys-less pLGICs in other tunicate genomes, including that of Ciona intestinalis. A group of
two Cys-less sequences from ciliate protozoa of the family Oxytrichidae (Stylonychia lemnae
and Oxytricha trifallax) appear within the cationic Cys-loop clade.

Within prokaryotes, a clade of sequences belonging to Thaumarchaeota emerges, while
other archaeal sequences are more interspersed with their bacterial relatives. Seven Cys-less
sequences from protists appear within the prokaryotic branches (pale green in Fig 5), although
always with SH support below 90%, indicating uncertain placement. Conversely, one isolated
sequence from Synechococcus groups with eukaryotic sequences, and the bipartition separating
it from other prokaryotes and Cys-les seukaryotes has a low SH support value of 68%.

Discussion

Pro-loop receptors
Confirming previous results [6, 17], we find that the proline residue forming the tip of the β6–
β7 loop is the single most conserved position in the superfamily. This degree of conservation
implies that it is subject to high evolutionary pressure: it is presumably essential in maintaining
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a conformation of the loop that is functionally critical. Based on a high-resolution structure of
GLIC and a reinterpretation of crystallographic data on other pLGICs, this proline has been
argued to be in a cis configuration in all known structures [12]. This suggests that the super-
family’s absolutely conserved, defining feature is not just a proline, but specifically a cis-proline
residue, in line with a precise requirement on the local conformation of the loop. Rendon et al.
[17] already noted this conservation and suggested renaming the Cys loop p-loop, however,
the phrase has not gained adoption since, perhaps because of possible confusion with similarly

Fig 5. Inferred phylogenetic tree of the Pro-loop superfamily. Branch colors represent a combination of taxonomy and sequence features: magenta:
eubacteria, orange: archaea, pale green: Cys-less pLGICs of protists cyan: Cys-less pLGICs of metazoans, blue: cationic-type Cys-loop of metazoans, dark
blue: cationic-type Cys-loop of protists, red: anionic-type Cys-loop of metazoans, dark red: anionic-type Cys-loop of protists, pale red: anionic-type Cys-less
of metazoans. Circles indicate SH support above 90%. The gray arrow indicates two bacterial branches of poorly-defined position, which sometimes group
with eukaryotic sequences.

doi:10.1371/journal.pone.0151934.g005
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named motifs. More closely mimicking the name “Cys loop”, however, we propose that “Pro
loop” would be an accurate and unambiguous name for both the loop and for the superfamily.

The Pro loop as a whole is a highly conserved motif at the core of the conserved cluster
within the ECD/TMD interface (Fig 3 and Table 1). This interface features two conserved pro-
lines, two aromatic residues, and a pair forming a salt bridge between the Pro loop and the
short β10–M1 linker. An explanation for the high selection pressure on these residues is that
they maintain the subtle mechanical contact between the two domains in a way compatible
with signal transduction across the interface. The fact that this conservation transcends recep-
tors families with different functions is consistent with the persistence of signal transduction in
chimeric receptors that mix those families [38–41].

The present results confirm that the cystine bridge closing the β6–β7 (“Cys”) loop is a sec-
ondary feature of pLGICs in some eukaryotes (including most metazoa and all vertebrates),
rather than a primitive characteristic of the superfamily. The few reports of experiments inves-
tigating the role of these residues find them to be essential. Based on mutagenesis on the α sub-
unit of Torpedo nAChR, Mishina et al. [42] hypothesized as early as 1985 that the pair of
cysteine residues is “essential for maintaining the proper conformation of the extracellular
region of the AChR molecule”, as it abolished binding of bungarotoxin to the surface of
injected Xenopus oocytes. A mutagenesis study on glycine receptor subunit α1 indicated that
mutation of one cysteine (198) to serine abolishes receptor expression to the cell surface, while
mutation of the second cysteine (209) allows some expression to the cell surface, but still abol-
ishes glycine-induced whole cell currents and strychnine binding [43]. In contrast, cysteine
cross-linking experiments on glycine [44], GABAA[45, 46], and nicotinic [47] receptors found
that a reducing agent had no significant functional effect on wild-type receptors, implying
either that the Cys-loop disulfide is too stable to be reduced under the conditions of those stud-
ies, or that such a reduction has little impact on the fully folded receptors. In support of the sec-
ond hypothesis, the fold of the ECD in GLIC and ELIC is essentially identical to that of Cys-
loop receptors and stable in the absence of a disulfide. The hypothesis that the disulfide is nec-
essary for native folding of Cys-loop receptors is neither validated nor contradicted by the exis-
tence of GLIC and ELIC, as bacteria have a different protein expression machinery; however,
GLIC can be readily expressed in eukaryotic cells such as Xenopus oocytes [7]. The present
data reinforces that notion, with the finding of native Cys-less pLGICs in eukaryotes (many
protists and a few invertebrates). Although those are predicted proteins without biochemical or
biophysical characterization, at least some of these sequences can be expected to yield func-
tional proteins. If indeed the pair of cysteines is essential for folding Cys-loop receptors, then
Cys-less pLGICs must have an alternate mechanism that forms and stabilizes the very same
native fold. Thus, the appearance and subsequent conservation of the bridging cysteines
remains partly unexplained. We postulate that functional Cys-less mutants of Cys-loop recep-
tors could be designed based on Cys-less sequences, perhaps including additional hydrophobic
residues stabilizing the core of the ECD.

Congruency and incongruencies of molecular and species phylogenies
Some taxonomic clades are reflected in the molecular phylogeny, although often with excep-
tions. Those congruent groups include eukaryotes, and within those, metazoa, as three separate
sub-clades of larger groups of eukaryotic pLGICs: cationic-type Cys-loop, anionic-type Cys-
loop, and Cys-less.

Within unicellular eukaryotes, the distribution of different clades of pLGICs shows little cor-
relation with cladistic groupings (Fig 1). We find no Cys-loop genes in Oomycetes, compatible
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with an early gene loss in that group. Other groups have too few representatives in our dataset
to draw any conclusion.

Although Opisthokonta are the closest extant relatives of Metazoa, we find no Cys-loop
gene in unicellular members of that taxon, but only Cys-less pLGICs; conversely, Cys-loop
receptors are found in a wide range of eukaryotic taxons, pointing to either an early origin fol-
lowed by frequent loss, or very widespread lateral transfers, or both. Some sequences ofMono-
siga do appear at the base of the Cys-less group of eukaryotic pLGICs, placing them close to the
anionic group of Metazoan Cys-loop receptors. We note that the phylogenetic position of 2 out
of 4 such sequences has poor statistical support.

The case of Emiliania has been pointed out as unusual: it is a “pan genome” [48] assembled
from many strains, which explains the extraordinary number of pLGIC genes it contains
(34 after excluding fragments), compared with any other genome outside Metazoa. Those
sequences exhibit limited taxonomic congruency: although many of them form clades, others
group with those of different protists. This may reflect either ancient divergence of those
groups, or the uncertainty of the predicted deep relationships, highlighted by the large dataset
from Emiliania.

One group of eukaryotic-like bacterial sequences including the GLIC and ELIC channels
(gray arrow in Fig 5) shows an unstable position, appearing within the eukaryotic branch in
some phylogenies inferred from intermediate data (not shown). Accordingly, its grouping in
the tree presented here has poor statistical support.

Of note, the ten pLGIC sequences from Thaumarchaeota form a statistically robust clade,
suggestive of a single gene acquired by an ancestor of that group. Taxonomic coverage of that
group is, however, partial, indicating gene loss. These Thaumarcheota sequences are part of a
clade of 16 sequences from Archaea. Eight other archaeal genes are split into several groups
among bacterial relatives, possibly reflecting acquisition through several independent lateral
gene transfers.

Tentative evolutionary history
Fig 6 presents a speculative, schematic evolutionary history of the pLGIC superfamily based on
the molecular phylogeny of Fig 5 and including alternate hypotheses for some unresolved
questions.

The scattered presence of pLGICs in Bacteria across several major phyla is intriguing. It
points to either massive gene loss happening in most clades, or a number of lateral transfer
events. It remains unclear in what taxon pLGICs originated, for three reasons: their sparse dis-
tribution in extant species, the uncertainty on deep phylogenetic relationships, and the result-
ing difficulty of precisely rooting the complete gene tree.

The origin of archaeal pLGICs is equally unclear, but again, requires a combination of lat-
eral transfer and gene loss events given the sparse distribution and taxonomically incongruent
phylogeny. The main novel information is the presence of pLGICs in 6 species of the relatively
recent group Thaumarchaeota [25], whose pLGICs form a molecular clade.

The result that eukaryotic pLGICs are monophyletic is compatible with two simple hypoth-
eses for their origin: either a single speciation event, namely the appearance of eukaryotes, or a
single lateral transfer event to an ancestral eukaryote. Whichever of these two events occurred
was followed by early duplication and differenciation into the extant pLGIC families, as well as
frequent loss of some of those differentiated types of receptors (all of them, in some unicellular
species). The high rate of loss in unicellulars might be explained by contraction of unicellular
genomes [49]. The presence of both the cationic and anionic Cys-loop clades in unicellular
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eukaryotes pushes back the appearance of these clades to an early stage of eukaryotic evolution,
before the appearance of metazoans.

This finding solves one question raised by Tasneem et al. a decade ago [6]: did eukaryotes
acquire pLGICs “well before the emergence of the animal lineage”, followed by frequent loss in
other eukaryotes, or was there “a single precursor for all the animal sequences”, from which
“the massive radiation of the Cys-loop receptors occurred only after the animals branched
off”? Those authors accurately added that this could only be answered after more eukaryotic
sequences become available. Although the present data, is compatible with a single ancestor
gene for all eukaryotic pLGICs, it indicates that some of the diversity of Cys-loop receptors—
namely, the anionic and cationic branches—predates the appearance of metazoans.

The recruitment of pLGICs into synapses in Cnidaria and Bilateria was linked with an evo-
lutionary pattern of successive gene loss and gene expansion events [50]. In those metazoans, a
dependence on rapid synaptic transmission may have enshrined the corresponding pLGICs
and prevented the pattern of drastic gene loss that prevails in unicellulars. Still, it appears that

Fig 6. Schematic, putative molecular phylogeny of the Pro-loop superfamily. Each taxonomic category represents many species. Dashed lines indicate
alternate hypotheses. Speciation events followed by short branches ending with gene loss depict the many unicellular lineages that have likely lost their Pro-
loop receptors. In the case of metazoans, the cyan line indicates the clade of Cys-less Pro-loop receptors that survives in a few extant invertebrates. The red
arrow indicates appearance of the Cys loop, presumably in an ancient unicellular eukaryote. Dashed red-blue lines describe the ancestral Cys-loop receptor,
which may have been anionic or cationic-type.

doi:10.1371/journal.pone.0151934.g006
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some Bilateria did lose individual families of pLGICs, such as GABA(A) receptors in the case
of Schistosoma mansonii[51].

Among the protists identified, the ChoanoflagellateMonosiga brevicollis, one of the closest
known relatives of metazoans, prompts new hypotheses about the origin of metazoan pLGICs.
One such hypothesis is that extant metazoan pLGICs have direct ancestors in protists of the
clade Holozoa. Unfortunately, the phylogenetic positions ofMonosiga pLGICs have poor
statistical support, not allowing for clear conclusions. We should note that discussing the evo-
lution of individual genes in protists is all the more difficult that the deep phylogeny of eukary-
otes is subject of active research, and their taxonomy somewhat unstable [52].

We find that “true” Cys-loop receptors form a monophyletic group within pLGICs, consis-
tent with a character acquired once and conserved since. There are few cases indicating second-
ary loss of the cysteines, and conversely they are not found outside the Cys-loop clade. We
cannot say whether all such genes were inherited linearly from a very ancient common ances-
tor, or appeared more recently, evolved in a more limited lineage, and were acquired by distant
eukaryotic species through lateral transfer. All three pLGIC groups (Cys-less, anionic-type and
cationic-type) are present in Emiliania (Haptophyte), Aureococcus (Heterokont), Ciliates, and
Opisthokonta, including metazoans (Fig 1). Based on the present data, it is not possible to
place the origin of Cys-loop receptors with certainty any later in the history of eukaryotes than
the common ancestor of all those groups, which may well be the common ancestor of all extant
eukaryotes.

Cys-less Pro-loop receptors are unexpected in metazoans. Most of them belong to Lopho-
trochozoa and form a statistically well-supported clade together with Cys-less protist channels,
and a few are “secondary” Cys-less pLGICs within the Cys-loop clade. Two possible histories
can be proposed for the Cys-less eukaryotic clade: 1) They derive from an ancestral receptor
that was lost in other metazoans, possibly because it did not undergo the same selection pres-
sure as Cys-loop receptors, for example due to a function outside the nervous system. 2) These
metazoans with Cys-less pLGICs acquired the Cys-less form through a lateral transfer event
from a unicellular euaryote. The biology of such channels is not documented, as only one
member is mentioned in the literature [30] with a report that an RNAi experiment yielded “no
obvious phenotype”. The channel in question belongs to the nematode Dirofilaria immitis and
is predicted to belong to the anionic Cys-loop clade, which implies that it probably results from
a secondary loss of the cysteine residues. Based on that result, together with their evolutionary
grouping with protist proteins, we predict that Cys-less invertebrate pLGICs could have a non-
synaptic expression pattern.

Incongruencies between the present molecular phylogeny and that of species suggest several
lateral transfers in unicellular organisms. This notion is compatible with the ecology of many
of the pLGIC-containing unicellular species, many of which share biotopes, or are even symbi-
onts or parasites of larger organisms. Microbial organisms with pLGICs include many marine
species, among which some of the most abundant species of photosynthetic plankton, both
prokaryotic (Prochlorococcus and Pelagibacter) and eukaryotic (Emiliania). Teredinibacter
turnerae is an endosymbiont of mollusks [53]; Chlorella is an endosymbiont of freshwater uni-
cellular organisms such as Paramecium bursaria. In general green algae of the Trebouxiophy-
ceae class encompass endosymbionts of many organisms including mollusks. One species of
Synechococcus was recently shown to accumulate in cells of the oyster Crassostrea gigas in a
manner compatible with endosymbiosis [54]. Cases of photosymbiosis (symbiosis with a pho-
tosynthetic guest) exist between Platyhelminth and green algae [55]. Such symbiosis relation-
ships with metazoans raise the possibility that Cys-less receptors may have been absent from
the metazoan common ancestor, and were instead acquired through an ancient lateral transfer
event.[56]

Evolution of Pentameric Ligand-Gated Ion Channels: Pro-Loop Receptors

PLOS ONE | DOI:10.1371/journal.pone.0151934 March 17, 2016 15 / 24



Evolutionary biology of pLGICs in unicellular organisms
Among Cys-loop receptors, the presence of two clades including respectively the cationic and
anionic members suggest a classification of protist Cys-loop receptors into a cationic-like and
an anionic-like group. In contrast, the present phylogenetic study gives no indication on the
potential ion selectivity of Pro-loop channels outside the Cys-loop clade, whether in eukaryotic
or prokaryotic organisms. As the number of known pLGICs in unicellulars grows, it becomes
more striking that we know no biological role for any of them. The in vivo function of GLIC,
although by far the best-characterized prokaryotic pLGICs, is unknown. This is largely
explained by the difficult to grow Gloeobacter in the laboratory. The ELIC channel is sensitive
to GABA; it has been hypothesized that its function is linked to degradation of amino-acids in
plant roots by Dickeya dadantii[8].

Chimeric receptors [38, 40, 41] and reverse-selectivity mutants [33, 57] have shown that the
respective structures of the ECD and TMD can dictate ligand and ion selectivity independently,
which implies that these two domains may, in principle, respond independently to evolutionary
pressure regarding either ion or ligand specificity. The conserved core pictured in Fig 3 may
then be seen as a universal adapter that allows these two modular structural elements to com-
municate after perhaps two billion years of independent evolution. In practice, the phylogeny of
Cys-loop receptors reflects an early differentiation of anionic and cationic channels, followed by
that of large clades of receptors with unique ligands in early Bilateria or earlier [58]. Ligand
sensitivity shows more evolutionary mobility than ion selectivity: indeed, cases of convergent
evolution of ligand sensitivity has been discussed in some Cys-loop receptors. Dent mentions
nematode acetylcholine-gated chloride channels, whose neurotransmitter binding site “repre-
sents a unique structural solution to the problem of binding acetylcholine” [21]. Cases of homo-
plasy have also been reported for glutamate sensitivity of GluCl receptors [20, 59].

The M2 helix, like the ECD, is variable, but in metazoans it exhibits either of the GE[K/R]
and A[R/K] motifs, which correlate with ionic selectivity (respectively cationic and anionic)
[4]. For prokaryotic and protist sequences, this location in the alignment is in general not suffi-
cient to predict ionic selectivity, as the residues of the two motifs are often substituted, only the
final, basic residue being conserved.

Limitations of this study
The high divergence of the superfamily makes both the search for homologues and subsequent
sequence alignment challenging. Homologous sequences could exist in the currently sequenced
genomes and yet evade detection for two reasons: genome assembly errors resulting in the tran-
script being incorrectly predicted or not at all; or a high degree of divergence making similarity
to other pLGICs undetectable. The main argument pointing to the robustness of the search
is the mostly similar sets discovered by Psi-BLAST and by HMM-based methods such as
HMMer and InterPro.

While the Pro-loop motif Y/FPxD is found to be the single best marker of the superfamily,
it could be argued that this reasoning is circular, as that motif contributes significantly to the
statistical model built and used to detect pLGICs. It is hence entirely possible that pLGIC
sequences divergent enough to be missing this motif would defeat remote homology searches
and escape detection entirely, although a handful of sequences are detected although they lack
the motif. One would expect to find a hint of this phenomenon in “gray area” sequences that
are neither similar enough to known pLGICs, nor different engouh from them to conclusively
decide whether they belong to the superfamily. In practice, the edge cases are mostly fragments,
or appear to combine fragments of pLGIC sequence with unrelated fragments, and may reflect
unreliable genome assembly rather than actual gene variants. One limitation of a full-length
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search including the transmembrane domain is that sequences with a similar membrane topol-
ogy appear close to the detection threshold due to the lower sequence complexity of mem-
brane-spanning segments. The requirement of a full-length match allows such cases to be
eliminated.

The reliability of the inferred molecular phylogeny is limited by the evolutionary diversity
of this set of sequences, and their ancient divergence. First, long divergence may lead to long-
branch attraction. Second, mutation saturation may occur in the less conserved regions, lead-
ing to loss of pylogenetic signal. Finally, rooting the tree is made difficult by differences in
evolutionary rates, which makes mid-point rooting meaningless, as well as a nonlinear evolu-
tionary history. The most likely root lies deep within prokaryotic branches, yet root placement
is approximate. Moreover, the relationship between the Pro-loop receptors of Archaea, Eubac-
teria, and Eukaryota is as unclear as the phylogenetic relationship between those clades them-
selves, that is, the placement of the root of the tree of life [60].

Due to the difficulty of aligning many divergent sequences, in this work we intentionally dis-
carded terminal parts of the sequence before and after the two signature domains of Pro-loop
receptors. Furthering the work started by Tasneem et al. [6] of studying the domain architec-
tures of all members of the superfamily could lead to much insight into the roles of these pro-
teins in unicellular organisms, and possibly non-bilaterian animals. Still, we note that the
association of the classic pLGIC architecture with other domains has only been evidenced at
the genome level so far: any biological conclusions would require experimental validation.

Our molecular phylogeny displays incongruencies with the species phylogeny, which carries
some uncertainty itself. It could be argued that this reflects not just a non-linear evolutionary
history but the dynamic nature of prokaryotic genomes, which challenges their very represen-
tation as a “tree of Life” [49].

Perspectives for future work
These results leave many questions open, the deepest of which is the ancient evolutionary his-
tory of pLGICs. In what taxon did they appear? How were they acquired by ancient eukaryotes?

Co-evolution analysis may point to evolutionary networks: binding sites, interfaces between
subunits or between TM helices, signaling network between the ECD and TM domains. At the
genome level, it would be interesting to search for co-evolution of pLGIC genes with genes
involved in the nervous system in animals.

Since the TMD ad ECD seem to dictate ion and ligand specificity, respectively, recombining
these segments among paralogous genes may have been an evolutionary path to functionally
novel receptors. This could be detected as incongruencies between phylogenies inferred sepa-
rately from each domain, although isolated TMD sequences are likely to yield poor phyloge-
netic signal, making the analysis challenging.

The number of whole sequenced genomes for unicellular eukaryotes is still small. As more
data becomes available, it should become possible to confirm or falsify the hypotheses put forth
here.

Methods

Searching protein sequence databases for pLGIC homologues
In the spirit of Rendon et al. [17], we tested three independent approaches: iterative BLAST
(Psi-BLAST [61]) and two methods based on hidden Markov models: HMMer [62], and Inter-
pro [63]. Searches were run on the Uniprot SwissProt and TrEMBL databases, and NCBI
Refseq and NR, using searches in larger and less well-curated databases to complete results
from the smaller ones.

Evolution of Pentameric Ligand-Gated Ion Channels: Pro-Loop Receptors

PLOS ONE | DOI:10.1371/journal.pone.0151934 March 17, 2016 17 / 24



Psi-BLAST was found to be the most sensitive method by Rendon et al. We ran an iterative
psi-BLAST [61] search (max. target sequences:5000, BLOSUM 45 matrix, e-value threshold: 1).
Due to the over-representation of metazoan proteins in databases, unrestricted searches result
in Position-Specific Scoring Matrices (PSSM) that are, in practice, characteristic of metazoan
sequences. To avoid such a bias, the search was restricted by excluding the kingdomMetazoa.

We stopped at the third iteration due to a sharp increase in the number of false positives
(detected as explained below). To mitigate the low specificity of the psi-BLAST search, we used
two methods that were expected to be more specific: a domain-based search in InterPro [64]
and an HMM-based search with HMMERsearch [65].

The HMM-based search was run using the HMMer server (hmmer.janelia.org) [62]. The
initial input was the modest-sized alignment of metazoan and bacterial pLGIC sequences pub-
lished by Tasneem et al. An HMM profile was created from this alignment and used to screen
the Uniprot database.

As protein databases contain many thousands of metazoan pLGIC sequences, an unre-
stricted search yields a very large dataset that is heavily biased toward the Metazoa kingdom.
To avoid that imbalance, we restricted the metazoan search space to a set of 31 representative
metazoan species (S1 Table). The resulting dataset still contained 2400 metazoan sequences,
and only about 300 sequences outside of Metazoa. A second HMM was constructed by ran-
domly pruning the metazoan data down to 200 sequences, which formed a set of 500 sequences
when joined with all microorganism sequences. This sub-sampled dataset is more balanced
with respect to taxonomic distribution, which was expected to reduce biases in the alignment
or sequence profiles due to the over-representation of Metazoa. The less focused HMM
obtained by the alignment of this dataset was used as query in a new search with HMMsearch
on Uniprot database with the Metazoa kingdom excluded.

A final search performed on the larger NR database provided hits that represented new spe-
cies: only those hits were added to the Uniprot-derived database.

Separately, a domain-based search was performed using three InterPro signatures [63] com-
mon to the all pLGICs: the family signature IPR006201 (Neurotransmitter-gated ion-channel),
and both individual domain signatures IPR006202 (Neurotransmitter-gated ion-channel
ligand-binding domain) and IPR006029 (Neurotransmitter-gated ion-channel transmembrane
domain). Hits from that search not retrieved by HMMer, typically because they belonged to
subsets of Uniprot that were not available for scanning byHMMer, were retrieved, validated,
and added to the dataset.

Hit validation
A hit validation procedure was performed, combining reverse BLAST, a topological prediction,
and pairwise alignment with the sequences of GLIC and GluCl. A hit to be validated as a true
positive if it fulfilled at least two of the following criteria:

• A reverse BLAST starting from that sequence returns known pLGIC sequences in the first
hits (keeping the same parameters as in the initial psi-BLAST search).

• The membrane as predicted by TMHMM [66] is compatible with a pLGIC subunit, or at
least a topology compatible with a truncated pLGIC sequence. To account for the uncertainty
of the topology prediction, and based on tests on known true positives, we used a threshold
score of 0.2 to consider a residue as potentially part of a transmembrane helix, taking into
account the fact that pore-facing helix M2 is less hydrophobic and thus not consistently
detected as transmembrane.

• the sequence aligns well with GLIC, GluCl and other known pLGICs.
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Our final dataset contains all sequences from microorganisms sequences and a representa-
tive group of 31 metazoan species. This still yields a large number of metazoan sequences
(2088), mainly because animal genomes typically contain many pLGIC paralogues. For some
applications, metazoan sequences were sub-sampled as described above to form a more bal-
anced set of 500 sequences when joined with all microorganism sequences. This sub-sampled
dataset is more balanced with respect to taxonomic distribution, which was expected to reduce
biases in the alignment or sequence profiles. This set was complemented with all Cys-less meta-
zoan sequences that were detected by a regular expression test on all hits, finding regions that
matched the Pro-loop motif, but lacked one or both of the cysteines.

Multiple sequence alignments
Due to the low quality of some sequences from uncurated databases, including sequences of
very different lengths, some manual filtering was needed to enhance the quality of the align-
ment. Sequences that contained only small homologous fragments or large foreign insertions
within conserved regions were removed. Extraneous domains at the N and C termini were
truncated, either before a segment that aligned with the ECD of known pLGICs, or after the
predicted fourth TM helix. This yielded sequences of more comparable lengths, and improved
alignments.

Several alignment methods were assessed on our datasets: M-Coffee [67], MAFFT L-INS-i
and E-INS-i [68], Muscle [69], HMMalign [66], and Promals3D [70]. The final alignment was
produced with MAFFT version 7.266 [68], using the E-INS-i algorithm, which makes minimal
assumptions about the sequence set, with up to 1000 steps of iterative refinement, and the
BLOSUM62 matrix, which has been shown to exhibit better mathematical consistency than
BLOSUM30 (no violations of the triangle inequality) [71]. Alignments were visualized using
Jalview [72], annotating the alignment with the topological prediction from TMHMM [66] to
validate the alignment of transmembrane segments.

Alignments was validated by combining different assessment criteria:

• comparison with pairwise alignments of well-known pLGICs, including structural
alignments;

• lack of indels in key secondary structural elements, notably transmembrane helices;

• proper alignment of transmembrane helices as predicted by TMHMM; helix M4 proved par-
ticularly sensitive to alignment parameters.

Phylogenetic inference
The alignment to be used for phylogenetic inference was filtered using TRIMAL [73] using the
gappyout setting.

When developing the analysis workflow and working with intermediate datasets, we used
FastTree 2 [74] to infer near-maximum-likelihood phylogenies extremely rapidly (less than
half a minute for our data, on a single core of a desktop workstation).

After experimenting with filtering by TRIMAL [73] and GBlocks [75], and aware that strict
filtering may worsen the accuracy of phylogenetic inference [37], we opted for a loose (default)
filtering by Noisy [76], which aims at removing homoplasic positions that would drive phylo-
genetic inference into error. As the resulting alignment was still highly gapped and contained
positions that were not reliably aligned, we filtered out sites with more than 50% gaps.
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Assessment of the dataset by ProtTest [77] found the LG amino-acid substitution model
[78] with gamma-distributed rates and the observed amino-acid frequencies (LG+G+F) to be
optimal for this dataset. The maximum likelihood tree was inferred by RAxML, using LG+G
+F, using subtree pruning and regrafting moves (SPR). Branch support was estimated by the
Shimodaira x2013;Hasegawa approximate likelihood ratio test (SH-aLRT)[79] as implemented
in RAxML, because ML bootstrap is known to be overly conservative [79].

Notung 2.6 [80] was used to reconcile the gene tree with the phylogenetic tree of pLGIC-
possessing species, extracted from the tree of life of NCBI Taxonomy. The approach aims at
placing the root of the gene tree to minimize the number of gene duplications and losses in the
overall evolutionary model.

Phylogenetic trees of pLGIC genes were visualized and rendered in interactive Tree of Life
[81]. Species trees were rendered with Archaeopteryx [82].
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